

P4-86-369

О.М.Князьков*, И.Н.Кухтина

ЕДИНОЕ ПОЛУМИКРОСКОПИЧЕСКОЕ ОПИСАНИЕ РАССЕЯНИЯ ПРОТОНОВ И НЕЙТРОНОВ С ЭНЕРГИЕЙ 24 МэВ НА ЯДРЕ ¹¹⁶Sn

Направлено в журнал "Ядерная физика"

* Ленинградский государственный университет

1986

I. Введение

Совместный анализ неупругого рассеяния протонов и нейтронов низких энергий на одном и том же ядре дает возможность извлекать информацию об изоспиновой структуре неупругих переходов в ядрах. Стандартный подход к решению этой проблемы основан на использовании макроскопического метода связанных каналов (МСК), которому присущ ряд недостатков: большое число свободных параметров, неучет эффектов антисимметризации, отсутствие связи с полумикроскопическими ядерными моделями. В работах/1,2/ на основе полумикроскопического подхода (ПМП)/3-5/ к описанию взаимодействия нуклонов и ~-частиц низких энергий с ядрами развит полумикроскопический МСК, свободный от указанных недостатков.В формализме полумикроскопического МСК оптические потенциалы (ОП) и формфакторы неупругих переходов в замкнутой форме выражаются через эффективные нуклон-нуклонные силы, плотность распревещества в ядре и переходные плотности. Обменные нуклонделения нуклонные корреляции учитываются в локальном приближении формализма матрицы плотности.

В настоящей работе представлен изотопический формализм ПМП(п.2), протонные и нейтронные формфакторы неупругих переходов выражены через протонные и нейтронные переходные плотности. Проведены вычисления угловых распределений протонов и нейтронов с энергией 24,0 МэВ, упруго и неупруго рассеянных ядром ¹¹⁶sn, и получена при сравнении с экспериментальными данными информация о различиях в протонных и нейтронных переходных плотностях (п.3). В заключении сформулированы основные результаты и выводы работы.

2. Формализм подхода

Рассмотрим взаимодействие нуклона с четно-четным ядром-мишенью. Предполагая возможным описание нижних возбужденных состояний ядрамишени в рамках вибрационной модели, используем для вещественной части ОП и формфакторов неупругих переходов выражения, полученные в/I,5/. Для того чтобы в явном виде учесть различия в протонных и нейтронных переходных плотностях, перейдем к изоспиновому представлению. В результате будем иметь

опреднистиный киститут пастиных исследования БИБЛИОТЕКА

$$\begin{split} U_{io}(r) = U_{io}^{D}(r) + I_{i,oo}(r) \frac{1+I_{i,oo}(r) \chi_{i}^{2}(r) I_{i,o2}(r)}{1-\chi_{i}(r) I_{i,o1}(r)} + \\ &+ dy_{o}^{2}(r) + \frac{d}{4\pi} \sum_{\lambda} \beta_{\lambda}^{2}(r) + \\ &+ \sum_{\lambda} I_{i,\lambda 1}(r) \chi_{i}(r) \left\{ U_{i\lambda}^{D}(r) + 2dy_{o}(r) \beta_{\lambda}(r) + I_{i,\lambda o}(r) \right\}, \end{split}$$
(1)
$$&+ \sum_{\lambda} I_{i,\lambda 1}(r) \chi_{i}(r) \left\{ U_{i\lambda}^{D}(r) + 2dy_{o}(r) \beta_{\lambda}(r) + I_{i,\lambda o}(r) \right\}, \\ f_{i\lambda}(r) = \left\{ 1+I_{i,o1}(r) \chi_{i}(r) \right\} \left\{ U_{i\lambda}^{D}(r) + 2dy_{o}(r) \beta_{\lambda}(r) + I_{i,\lambda o}(r) \right\} + I_{i\lambda} I_{\lambda} I_$$

$$U_{i\lambda}^{D}(\mathbf{r}) = V_{ip}^{D} \int \beta_{p\lambda}(\mathbf{r}') v_{\lambda}(\mathbf{r},\mathbf{r}') (\mathbf{r}')^{2} d\mathbf{r}' +$$

(4)

(5)

+
$$v_{in}^{D} \int \beta_{n\lambda}(r') v_{\lambda}(r,r')(r')^{2} dr'$$
,

$$\begin{split} \mathbf{I}_{i,\lambda m}(\mathbf{r}) &= \mathbf{V}_{ip}^{\mathrm{E}} \int \boldsymbol{\rho}_{p,\lambda oo}(\mathbf{r},s) \mathbf{v}(s) \mathbf{j}_{m}(\mathbf{k}_{oi}(\mathbf{r})s) s^{m+2} \mathrm{d}s \quad + \\ &+ \mathbf{V}_{in}^{\mathrm{E}} \int \boldsymbol{\rho}_{n,\lambda oo}(\mathbf{r},s) \mathbf{v}(s) \mathbf{j}_{m}(\mathbf{k}_{oi}(\mathbf{r})s) s^{m+2} \mathrm{d}s \quad , \end{split}$$

$$k_{oi}^{2}(r) = \frac{2m_{i}}{\hbar^{2}} \left[E - U_{io}^{D}(r) - \frac{1}{2}(1 + \tau_{zi})V_{c}(r) \right], \qquad (6)$$

$$\rho_0(\mathbf{r}) = \rho_p(\mathbf{r}) + \rho_n(\mathbf{r})$$

$$\beta_{\lambda}(\mathbf{r}) = \beta_{p\lambda}(\mathbf{r}) + \beta_{n\lambda}(\mathbf{r}),$$

 $\mathscr{X}_{i}(r) = m_{i}^{k}/k_{0i}(r)h^{2}$ (i=p,n).

В формулах (I)-(6) $U_{i0}(r)$, $f_{i\lambda}(r)$, $F_{i\lambda_1\lambda_2}(r)$ - соответственно протонные (нейтронные) вещественные части ОП и формфакторы неупругих переходов первого и второго порядка. Параметр "d" характеризует плотностную зависимость эффективных нуклон-нуклонных сил, $\beta_{i,\lambda 00}(r,s)$ - λ - компоненты протонной (нейтронной) матрицы плотности $\rho(\vec{r},\vec{r}+\vec{s})$,

учитывающей вклад в ОП и формфакторы неупругих переходов обменных нуклон-нуклонных корреляций, обусловленных действием принципа Паули.

Центральная часть эффективного нуклон-нуклонного взаимодействия в общем случае может быть записана в следующем виде:

$$\mathbf{v}(\mathbf{s},\boldsymbol{\sigma},\boldsymbol{\tau}) = \mathbf{v}(\mathbf{s}) \left\{ \mathbf{a}_{\mathbf{0}} + \mathbf{a}_{\mathbf{v}}(\vec{\sigma}\vec{\sigma}') + \mathbf{a}_{\boldsymbol{\tau}}(\vec{\tau}\vec{\tau}') + \mathbf{a}_{\boldsymbol{\sigma}\boldsymbol{\tau}}(\vec{\sigma}\vec{\sigma}')(\vec{\tau}\vec{v}) \right\}.$$
(7)

Силовые константы v_{ip}^{D} , v_{in}^{D} , v_{ip}^{E} , v_{in}^{E} линейными соотношениями связаны с параметрами a_{o} , a_{σ} , a_{τ} , $a_{c\tau}$. Выражения (I)-(6) совместно с системой связанных дифференциальных

Выражения (1)-(6) совместно с системой связанных дифференциальных уравнений /1,6/ являются основой для полумикроскопического анализа экспериментальных данных по рассеянию с учетом сильной связи каналов с целью изучения различий в протонных и нейтронных переходных плотностях. В свою очередь эти различия отражают изоспиновую структуру неупругих переходов в ядрах. Рассеяние протонов (нейтронов) низких энергий обладает различной чувствительностью к распределению протонов и нейтронов в ядрах⁷⁷⁷. Поэтому наиболее достоверная информация об изоспиновой структуре неупругих переходов может быть извлечена при одновременном анализе неупругого рассеяния протонов и нейтронов на одном и том же ядре. Отметим, что впервые такой анализ на полумикроскопической основе был проведен в работе⁶⁸⁷, где,однако, описание экспериментальных данных проводилось в приближении локальной плотности теории ядерной материи без учета сильной связи каналов. Неучет связи каналов может приводить к искажению информации о различиях в протонной и нейтронной переходных плотностях.

З. Анализ экспериментальных данных

Применим развитый в предыдущем разделе формализм к анализу упругого и неупругого рассеяния протонов с энергией 24,5 МэВ и нейтронов с энергией 24,0 МэВ на ядре ¹¹⁶sn . Экспериментальные сечения упругого и неупругого рассеяния протонов взяты, соответственно, из работ^{/9,10/}, сечения нейтронов – из^{/II,I2/}.

Рассмотрим схему расчета. В качестве не зависящей от плотности распределения вещества в ядре части эффективных нуклон-нуклонных сил используем силы Вильдермута-Шмида^{/13/}, успешно применявшиеся для описания свободного NN- и ««- рассеяния, а также кластерных свойств легких ядер. Плотностной член в эффективном взаимодействии возьмем в следующем виде:

$$v_{p}(\vec{r},\vec{r}') = d_{p}(\frac{\vec{r}+\vec{r}'}{2})\delta(\vec{r}-\vec{r}').$$
 (8)

Таким образом, построенные эффективные нуклон-нуклонные силы были успешно использованы при описании упругого и неупругого рассеяния протонов низких энергий на группе ядер в рамках ПМП/I,I3-I6/, а также в едином полумикроскопическом анализе упругого и неупругого рассеяния протонов и ~-частиц на ядре-мишени ⁹⁰гг /2/. Параметр "d", эначения которого находились из наилучшего описания упругого рассеяния, оказался универсальным параметром. Для большой группы ядер (от ²⁰Ne до ²⁰⁸Pb) отклонение его значений от среднего значения не превысило 15%. В настоящей работе используется значение d = 750 MBB·čм⁶ /I4/.

Плотность распределения протонов в ядре ¹¹⁶ sn возьмем в форме/17/:

$$\rho_{p}(r) = \beta_{0}(1+\omega(r/c)^{2})/(1+\exp\{(r^{2}-c^{2})/z^{2}\}).$$
(9)

Для параметров ω , с, г используем значения, полученные из анализа упругого рассеяния электронов на $116_{\rm Sn}$ /I⁷/:

 $\omega = 0,272$, $c = 5,062\phi$, $z = 2,625\phi$.

Пренебрегая различиями в "геометрии"протонного и нейтронного распределений, для $\rho_n(r)$ будем иметь

$$\beta_n(\mathbf{r}) = \frac{N}{Z} \beta_p(\mathbf{r}).$$

Предполагая коллективный характер возбуждения нижних состояний $/2^+_1$ 7 и $/3^-_17$ в ядре ¹¹⁶ sn , используем для переходных плотностей модель Тасси:

$$\rho_{i\lambda}(\mathbf{r}) \sim \beta_{i\lambda} r^{\lambda-1} \frac{d \rho_i(\mathbf{r})}{dr} \qquad (i=p,n).$$
 (I0)

По формулам (I)-(6) с использованием (9)-(I0) были рассчитаны вещественные части ОП и формфакторы неупругих переходов первого порядка (хорошим приближением для $/2_1^+7$ и $/3_1^-7$ в 116 sn является однофононное приближение) для протонов с энергией 24,5 МэВ и нейтронов с энергией 24,0 МэВ. Построенные величины использовались далее в модифицированной версии/I/ программы ЕСІS для расчета дифференциальных сечений упругого и неупругого рассеяния протонов и нейтронов на 116 sn и анализа экспериментальных данных. Вычисления проводились в трехканальном приближении ($|o_1^+7 \rightarrow |2_1^+7 \rightarrow |3_1^-7$) полумикроскопического MCK.

В оптико-модельном анализе упругого рассеяния помимо вещественной части ОП необходимо также учитывать спин-орбитальный потенциал и потенциал поглощения. Для этих компонент ОП использовались предписания оптической модели в случае протонов и нейтронов соответственно из работ /10,11/. В настоящей работе все параметры ОП, за исключением параметров w и w_s, были фиксированы. Параметры w и w_s варьировались при описании экспериментальных угловых распределений, и их значения в результате несколько отличаются от значений параметров w и w_s из /10,11/. Значения параметров ОП, использованные в трехканальном расчете, приведены в таблице. Параметры $s_{1\lambda}$ ($\lambda = 2,3$), входящие в (10), находились из оптимального описания угловых распределений неупругорассеянных протонов и нейтронов.

Результаты вычислений по описанной схеме в рамках полумикроскопического МСК сечений упругого и неупругого рассеяния протонов с энергией 24,5 МэВ и нейтронов с энергией 24,0 МэВ на ядре 116 sn приведены на рис.I-4 вместе с экспериментальными данными. Обсудим результаты расчета / o_1^+7 . Из рис. I и 2 можно видеть, что получе-

1	ľa	б.	л	Ш	18
	_	-	and the second s		

N	w, МэВ	w _s ,МэВ	r _w , ¢	a _w ,φ	v _{so} ,МэВ	r _{so} ,φ	a _{so} ,φ
р	1,97	7,44	I,33	0,65	6,10	I,I3	0,75
n	I,9I	4, 46	I,30	0,63	6,20	1,01	0,75

i

Сечения упругого рассеяния протонов с энергией 24,5 МэВ на ядре 116 sn , вычисленные в ПМП: сплошная кривая – расчет без учета связи каналов, штриховая – с учетом связи каналов $|o_1^+] \rightarrow |2_1^+] \rightarrow |3_1^-];$ точки – экспериментальные данные.

10

60

90

120 0, rpeð.

7

30

Рис.2. То же, что и на рис.1, для нейтронов с энергией 24 МэВ.

Рис.3. Сечения неупругого рассеяния протонов с энергией 24,5 МэВ (нижняя часть рисунка) и нейтронов с энергией 24 МэВ (вержняя часть рисунка) на ядре ¹¹⁶ sn с возбуждением состояния $|2_1^+7|$ ($E_x = I293$ кэВ), вычисленные в ПМСК с учетом связи каналов $|0_1^+7+|2_1^+7+|3_1^-7|$; ${}^{B}_{p2} = 0,I3$, ${}^{B}_{n2} = 0,I45$, ${}^{B}_{p3} = 0,I4$, ${}^{B}_{n3} = 0,I8$;

но, в целом, хорошее описание упругого рассеяния протонов и нейтронов на одном и том же ядре-мишени с одним и тем же эффективным нуклоннуклонным взаимодействием, зависящим от плотности распределения вещества в ядре. В отличие от оптико-модельного стандартного расчета в настоящем полумикроскопическом расчете отсутствуют шесть свободных параметров (по три параметра вещественной части ОП для протонов и нейтронов). Достигнутое качество описания экспериментальных сечений упругого рассеяния свидетельствует о том, что полумикроскопические расчеты адекватно воспроизводят как изоскалярную, так и изовекторную часть ОП. Отметим, что включение связи каналов (ср.сплошные и штриховые кривые на рис. І и рис. 2) приводит к заметному улучшению качества описания экспериментальных данных. Дальнейшее улучшение согласия с экспериментальными угловыми распределениями полумикроскопических расчетов может быть также достигнуто путем варьирования "геометрических" параметров потенциалов поглощения и выбора различных значений параметра "d" для протонов и нейтронов.

 12_{1}^{+7} , $E_{y}=1293$ KBB . Из рис.3 можно видеть, что в целом получено удовлетворительное описание сечений неупругого рассеяния с возбуждением состояния 12_{1}^{+7} . Значение $B_{p2}=0,13$ всего на 10% отличается от значения параметра B_{2} , извлеченного из анализа кулоновского возбуждения 116_{sn} /I8/. Настоящий полумикроскопический анализ дает значение $B_{n2}/B_{p2}>1$. Этот вывод согласуется с выводами, полученными в работах /19,12/. 13_{1}^{-7} , $E_{x}=2266$ KBB . И в этом случае из рис.4 можно видеть, в целом, удовлетворительное воспроизведение полумикроскопическими расчетами экспериментальных угловых распределений неупругорассеянных протонов и нейтронов. Так же, как и для состояния $10/2_{1}^{+7}$, $B_{n3}/B_{p3}>1$. Аналогичный результат был получен в работе /I0/ в рамках метода искаженных волн.

Изоспиновая структура неупругих переходов в ядрах обычно характеризуется отношением M_n/M_p , в котором $M_i = \int \beta_i(r) r^{\lambda+2} dr$. В стандартной коллективной модели $M_n/M_p = N/z$. Настоящий анализ дает для состояний $|2_1^+\rangle$ и $|3_1^-7\rangle$ в 116 sn соотношение $M_n/M_p > N/z$. Это соотношение соответствует представлениям модели эффективного заряда /19/. Заметим, что в работе /20/ проводился анализ неупругого рассеяния протонов с энергией 25 МэВ на ядре-мишени 116 sn в рамках макроскопического метода искаженных волн. Для параметров динамической деформации в случае возбуждения состояний $|2_1^+7\rangle$ и $|3_1^-7\rangle$ были получены, соответственно, значения $B_2 = 0,134$ и $B_3 = 0,150$. Учитывая, что эти параметры связаны с переходными потенциалами, а параметры динамической деформации в ПМП - с переходными плотностями, а также бо́льшую чувствительность рассеяния протонов к нейтронным переходным плотностям и эффекты связи каналов, можно сделать вывод о том, что параметры динамической деформации из^{20/} согласуются с результатами, полученными в настоящей работе.

Ранее было показано (см., например, /19,21/), что совместный макроскопический анализ неупругого рассеяния протонов и нейтронов на одном и том же ядре дает возможность извлекать информацию об изоспиновой структуре неупругих переходов в ядрах. В частности, в/21/получено простое соотношение, связывающее отношение в 1/в (в и в соответственно параметры изовекторной и изоскалярной деформации) с величиной в pp,/в nn'. Однако параметры в рр, и в пп. определяются с большой погрешностью, кроме того, макроскопическому подходу присущи недостатки, отмеченные во введении. Схема, развитая в настоящей работе, позволяет непосредственно определять отношение м_/м_ в полумикроскопическом анализе данных по рассеянию. В связи с этим представляет интерес выход за рамки модели Тасси и использование в анализе изоспиновой структуры неупругих переходов в ядрах переходных плотностей, вычисленных в полумикроскопических ядерных моделях.

4. Заключение

Сформулируем основные результаты и выводы работы:

I .На основе изотопического формализма полумикроскопического подхода к описанию взаимодействия нуклонов низких энергий с ядрами развита схема анализа изоспиновой структуры неупругих переходов в ядрах при совместном описании неупругого рассеяния протонов и нейтронов на одном и том же ядре-мишени.

2. По модифицированной версии программы ECIS в трехканальном приближении проведены вычисления дифференциальных сечений упругого и неупругого (с возбуждением состояний 12^+_17 и 13^-_17 в ядре-мишени) рассеяния протонов и нейтронов с энергией 24,0 МэВ на ядре 116 sn. В расчетах использованы эффективные нуклон-нуклонные силы, зависящие от плотности распределения вещества в ядре, и учтены обменные нуклон-нуклонные корреляции, обусловленные действием принципа Паули.

3. Анализ упругого рассеяния показал, что полумикроскопические расчеты адекватно воспроизводят как изоскалярную, так и изовекторную часть нуклонного оптического потенциала.

4. Из сравнения вычисленных угловых распределений неупругорассеянных нейтронов и протонов с экспериментальными установлено, что $M_n/M_p > N/Z$ для состояний $|2_1^+7и|/3_1^-7$ в ядре ^{116}sn .

ЛИТЕРАТУРА

- I. Князьков О.М., Кухтина И.Н. ЯФ, 1985, т.42, с.615.
- 2. Князьков О.М., Кухтина И.Н., Феофилов Г.А. ОИЯИ, Р4-85-908, Дубна, 1985.
- 3. Князьков О.М. В кн.: Слабые и сильные утверждения в ядерной спектроскопии и теории ядра. Л., "Наука", 1981, с. 116.
- 4. Князьков О.М., Некрасов А.А. ЯФ, 1983, т.38, с.36.
- 5. Князьков О.М. Изв. АН СССР, сер.физ., 1985, т.49, с.928.
- 6. Tamura T. Rev. Mod. Phys., 1965, v.37, p.679.
- 7. Алхазов Г.Д. Изв. АН СССР, сер.физ., 1984, т.48, с.1858.
- Mellema S., Finlay R.W., Dietrich F.S., Petrovich F. Phys. Rev., 1984, v.C29, p.2385.
- 9. Wong C., Crimes S.M., Finlay R.W., Phys. Rev., 1984, v. C29, p. 1710.
- IO. Terrien Y. Nucl. Phys., 1973, v.A199, p.65.
- II. Rapaport J., Mohammed Mirzan, Hadizadeh H. et al. Nucl. Phys., 1980, v.A341, p.56.

- I2. Finlay R.W., Rapaport J., Hadizadesh M.H. et al. Nucl. Phys., 1980, v.A338, p.45.
- 13. Иванова С.П., Князьков О.М., Хрисанфов Ю.В. ЯФ, 1983, т.37, с.1429.
- 14. Князьков О.М., Максимачев Ю.В., Хрисанфов Ю.В. Изв. АН СССР, сер.физ., 1985, т.49, с.1020.
- 15. Князьков О.М., Зарубин П.П., Фретвурст Э. и др. Изв. АН СССР, сер.физ., 1984, т.48, с.145.
- I6. Князьков О.М., Колалис Р.П., Хрисанфов Ю.В. и др. Тезисы докладов XXXУ Совещания по ядерной спектроскопии и структуре атомного ядра. Л., "Наука", 1985, с.284.
- I7. Ficenec J.R., Fajardo L.A., Trower W.P., Sick I. Phys. Lett., 1972, v.42, p.213.
- I8. Stelson P.H., Grodzins L. Nucl. Data., 1965, v.A1, p.21.
- I9. Bernstein A.M., Brown V.R., Madsen V.A. Phys. Lett., 1981, v.103B, p.255.
- 20. Wienke H., Blok H.P., Blok J. Nucl. Phys., 1983, v. A405, p. 237.
- 21. Князьков О.М. Изв. АН СССР, сер.физ., 1985, т.49, с.2185.

Гуцоннов ноотупила в издательский отдел 10 июня 1986 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д 2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д 9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511 .	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 p. 55 ĸ.
A2,13-83-689	Труды рабочего совещания по проблемам излучения и детектировання гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 p. 50 κ.
д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30 ĸ.
д1,2-84-599	Труды VII Международного семинара по проблемам физики высоких энергии. дуона, гуо́ч.	Ξμ. Ξύ κ.
Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
Д¥0,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983 Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	3 р. 50 к. 13 р.50 к.
д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
д1 3-85-793	Труды ХП Международного симпозиуна по ядерной электронике. Дубна 1985.	4 р. 80 к.
Заж Издате	азы на упомянутые книги могут быть направленн 101000 Москва, Главпочтамт, п/я льский отдел Объединенного института ядерных	а по адресу: 79 Исследования

Князьков О.М., Кухтина И. Н. Единое полумикроскопическое описание рассеяния протонов и нейтронов с энергией 24 Мэв на ядре ¹¹⁸Sn

На основе изотопического формализма полумикроскопического подхода к описанию взаимодействия нуклонов низких энергий с ядрами развита схема анализа изоспиновой структуры неупругих переходов в ядрах при совместном описании неупругого рассеяния протонов и нейтронов на одном и том же ядре-мишени. Приведены результаты вычисления сечений упругого и неупругого рассеяния протонов и нейтронов с энергией 24 МэВ на ядре ¹¹⁸Sa. В расчетах использованы эффективные нуклон-нуклонные силы, зависящие от плотности распределения вещества в ядре, и учтены обменные нуклон-нуклонные корреляции, обусловленные действием принципа Паули. Анализ упругого рассеяния показал, что полумикроскопические расчеты адекватно воспроизводят как изоскалярную, так и изовекторную часть нуклонного оптического потенциала. Анализ неупругого рассеяния протонов и нейтронов дает возможность извлекать информацию об изоспиновой структуре неупругих переходов в ядрах. Получено соотношение, соответствующее представлениям модели эффективного заряда.

P4-86-369

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод авторов

Knyazkov O.M., Kuchtina I.N. P4-86-369 Unified Semimicroscopic Description of 24 MeV Proton and Neutron Scattering by Nucleus ¹¹⁸Sn

The isospin formalism of the semimicroscopic approach to the description of the low-energy nucleon-nucleus interaction is applied to perform the combined analysis of the proton and neutron inelastic scattering and to investigate the isospin structure of the inelastic transitions in target-nucleus. The cross-sections of 24 MeV proton and neutron scattering by ¹¹⁰Sn have been calculated.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.