

P4-86-255

ЦD

Р.В.Джолос, А.К.Насиров

УЧЕТ ВЛИЯНИЯ ОБМЕНА НУКЛОНАМИ НА ПОТЕНЦИАЛ ВЗАИМОДЕЙСТВИЯ ЯДЕР

Направлено в журнал "Ядерная физика"

1986

I. Введение

Теоретический анализ глубоконеупругих столкновений тяжедых ионов основывается на знании потенциала взаимодействия ядер / 1/, тензора приведенной массы и диссипативной функции. Потенциал взаимодействия является важнейшей характеристикой. Он зависит от многих динамических переменных, характеризующих систему из двух ядер, однако в приложениях, как правило, учитывается зависимость потенциала только от относительного расстояния, или от относительного расстояния и параметров "шейки", связывающей два ядра /2/. При этом фактически предполагается, что массовые числа взаимодействующих ядер остают~ ся фиксированными. Хотя это правильно в среднем (массовые распределения продуктов глубоконеупругих столкновений тяжелых ионов имеют максимумы при массовых числах сталкивающихся ядер). В ходе реакции происходит интенсивный обмен нуклонами, на что указывают большие ширины массовых распределений. Интенсивный обмен нуклонами означает, что плотность распределения ядерного вещества, а следовательно и потенциал взаимодействия ядер, может заметно изменяться в ходе реак ции. Влияние обмена нуклонами на мнимую часть оптического потенциала исследовалось в /3,4/. Мы исследуем влияние многонуклонных передач на вещественную часть потенциала взаимодействия ядер, основываясь на результатах работ /5,6/.

2. формулировка модели

Потенциальная энергия Uядерной системы, образовавшейся при столкновении налетающего иона P с ядром мишени T, может быть представлена в виде /I/:

$$\mathcal{T} = \int d^{3}\vec{x} \, d^{3}\vec{y} \, \rho(\vec{x}) F(\vec{x},\vec{y}) \, \rho(\vec{y}) \, , \qquad (I)$$

где $\rho(\vec{x})$ - плотность распределения нуклонов в образовавшейся ядерной системе, а $F(\vec{x},\vec{y})$ - эффективное взаимодействие нуклонов в ядерном веществе. Плотность $\rho(\vec{x})$ следующим образом выражается через среднее от произведения волновых операторов нуклонов:

$$\mathcal{P}(\vec{z}) = \langle \hat{\Psi}^{+}(\vec{z}) \hat{\Psi}(\vec{z}) \rangle , \qquad (2)$$

которые, в свою очередь, можно приближенно представить в виде суммы операторов, отвечающих каждому из образующих систему ядер:

$$\hat{\Psi}^{+}(\vec{x}) = \hat{\Psi}_{P}^{+}(\vec{x}) + \hat{\Psi}_{T}^{+}(\vec{x}).$$
⁽³⁾

Объсанисилый кнстктут адерных асследования **GHEINIOTEHA**

1

Операторы $\hat{\psi}_{p}^{+}(\vec{x})$ и $\hat{\psi}_{r}^{+}(\vec{x})$ можно разложить по одночастичному базису, отвечающему каждому из сталкивающихся ядер:

$$\hat{\Psi}_{p}^{+}(\vec{x},t) = \sum_{j_{p}} \Psi_{j_{p}}^{*}(\vec{x}) a_{j_{p}}^{+}(t) , \quad \hat{\Psi}_{T}^{+}(\vec{x},t) = \sum_{i_{T}} \Psi_{i_{T}}^{*}(\vec{x}) a_{i_{T}}^{+}(t) , \quad ($$

где j_p , i_{τ} - квантовые числа одночастичных состояний соответственно в налетающем ионе и в ядре-мишени; Ψ_{j_p} , $\Psi_{i_{\tau}}$ - одночастичные функции.

Здесь следует оговорить, что выше мы пренебрегли эффектом неортогональности одночастичных функций, отвечающих разным ядрам. Но количественно этот эффект мал, а наше исследование носит качественный характер. Подставляя (3) в (2), получаем

$$\mathcal{G}_{o}(\vec{x},t) = \langle \hat{\Psi}_{P}^{+}(\vec{x},t) \hat{\Psi}_{P}(\vec{x},t) \rangle + \langle \hat{\Psi}_{T}^{+}(\vec{x},t) \hat{\Psi}_{T}(\vec{x},t) \rangle, \quad (5a)$$

$$\mathcal{G}'(\vec{x},t) = \langle \hat{\Psi}_{p}^{+}(\vec{x},t) \hat{\Psi}_{T}(\vec{x},t) \rangle + \langle \hat{\Psi}_{T}^{+}(\vec{x},t) \hat{\Psi}_{p}(\vec{x},t) \rangle$$
(56)

Часть плотности g', описывающая переходы нуюлонов из ядра в ядро, мала по сравнению с g_o . Поэтому в потенциальной энергии Uможно ограничиться членами не выше первого порядка по ρ' :

Эффективное взаимодействие $F(\vec{x}, \vec{y})$ имеет вид $\frac{77}{2}$:

$$\begin{split} F(\vec{x}, \vec{y}) &= \left(\frac{d f_{oo}}{d \epsilon_{F}}\right)^{-1} \left(F_{in} \frac{f_{o}(\vec{x})}{f_{oo}} + F_{ex}\left(1 - \frac{f_{o}(\vec{x})}{f_{oo}}\right)\right) \cdot \delta(\vec{x} - \vec{y}) \equiv \\ &\equiv F_{\mathfrak{z} \varphi \varphi}(\vec{x}) \cdot \delta(\vec{x} - \vec{y}) \quad , \end{split}$$

где

$$F_{in,ex} = (f_{in,ex} + f'_{in,ex} \vec{\tau_1} \cdot \vec{\tau_2}) + (g_{in,ex} + g'_{in,ex} \vec{\tau_1} \cdot \vec{\tau_2}) \vec{\epsilon_1} \cdot \vec{\epsilon_2} ,$$

 S_{oo} – плотность ядерной материи, $\epsilon_{\rm F}$ – энергия Ферми. Значения безразмерных параметров $f_{in,ex}$, $f'_{in,ex}$, $g_{in,ex}$, $g'_{in,ex}$ приведены в 77. Как показали расчеты, в нашем олучае существенной является только не зависящая от спиновых и изоспиновых переменных часть эффективного взаимодействия. Отбрасывая в V_o слагаемые, не зависящие от относительного расстояния между ядрами, мы получаем потенциал взаимодействия ядер \mathcal{V}_{int} в виде потенциала свертка.

Подставляя (4) в (56), мы получаем следующее выражение для 9:

$$\mathcal{P}'(\vec{x},t) = \sum_{i_{\tau},j_{\rho}} \left(\Psi_{j_{\rho}}^{*}(\vec{x}) \Psi_{i_{\tau}}(\vec{x}) \langle a_{j_{\rho}}^{+}(t) a_{i_{\tau}}(t) \rangle + \Psi_{i_{\tau}}^{*}(\vec{x}) \Psi_{j_{\rho}}(\vec{x}) \langle a_{i_{\tau}}^{+}(t) a_{j_{\rho}}(t) \rangle \right)$$

Временная эволюция матричных элементов $\langle a_{j_{\rho}}^{+}(t)a_{i_{\tau}}(t) \rangle \times \langle a_{i_{\tau}}^{+}(t)a_{j_{\rho}}(t) \rangle$ определяется уравнениями движения для одночастичной матрицы плотности с гамильтонианом /5,6/

$$\begin{split} H &= H_{o} + \delta \hat{\mathcal{V}}, \quad H_{o} = \sum_{j_{p}} E_{j_{p}} a_{j_{p}}^{+} a_{j_{p}} + \sum_{i_{T}} E_{i_{T}} a_{i_{T}}^{+} a_{i_{T}}, \\ \delta \hat{\mathcal{V}} &= 2 \int d^{3} \vec{x} \, \mathcal{G}_{o} \left(\vec{x} \right) \, F_{a \phi \phi} \left(\vec{x} \right) \, \hat{\mathcal{G}}'(\vec{x}) \quad , \\ \hat{\mathcal{G}}'(\vec{x}) &= \sum_{i_{T}, j_{p}} \Psi_{j_{p}}^{*} \left(\vec{x} \right) \, \Psi_{i_{T}}(\vec{x}) \, \alpha_{j_{p}}^{+} a_{i_{T}} + h. c. \end{split}$$

Из уравнений движения для одночастичных операторов следует

$$g'(\vec{x},t) = 2 \sum_{j_{p},i_{T}} \frac{n_{j_{p}} - n_{i_{T}}}{E_{j_{p}} - E_{i_{T}}} \left(\Psi_{j_{p}}^{*}(\vec{x}) \Psi_{i_{T}}(\vec{x}) \left(1 - e_{X} \rho \left(\frac{i}{\hbar} \left(E_{j_{p}} - E_{i_{T}} \right) t \right) \right) \right) x$$
$$x \int d^{3} \vec{y} \, g_{o}(\vec{y}) \, F_{\mathfrak{z} \varphi \varphi}(\vec{y}) \, \Psi_{i_{T}}^{*}(\vec{y}) \, \Psi_{j_{p}}(\vec{y}) + c.c. \right) \,, \tag{7}$$

где $h_{j_{P}}$, $n_{i_{T}}$ — числа заполнения одночастичных состояний в возбужденных ядрах. Подставляя (7) в (6), находим

При $\vec{x} = \vec{y}$, благодаря тому, что основной вилад в сумму по j_p , i_T дают состояния, близкие к поверхности Ферми, для которых $|\Psi_{j_p}(\vec{x})| \approx \frac{\mathcal{P}_p(\vec{x})}{R_p}$, $|\Psi_{i_T}(\vec{x})|^2 \approx \frac{\mathcal{P}_T(\vec{x})}{R_T}$, эту сумму можно анпроксимировать следующим образом:

$$\sum_{j_{\rho},i_{\tau}} \frac{n_{j_{\rho}} - n_{i_{\tau}}}{E_{j_{\rho}} - E_{i_{\tau}}} \left(1 - \cos\left(\frac{t}{f} \left(E_{j_{\rho}} - E_{i_{\tau}}\right)\right) \right) \Psi_{j_{\rho}}^{*}(\vec{x}) \Psi_{j_{\rho}}(\vec{x}) \Psi_{i_{\tau}}(\vec{x}) \Psi_{i_{\tau}}(\vec{x}) \approx \\ \approx \frac{g_{\rho}(\vec{x}) g_{\tau}(\vec{x})}{h_{\rho} \cdot h_{\tau}} \sum_{j_{\rho},i_{\tau}} \frac{n_{j_{\rho}} - n_{i_{\tau}}}{E_{j_{\rho}} - E_{i_{\tau}}} \left(1 - \cos\left(\frac{t}{f_{\tau}} \left(E_{j_{\rho}} - E_{i_{\tau}}\right)\right) \right) \right)$$

Здесь Ар, Ат - массовые числа взаимодействующих ядер.

При значениях |x-y|, превышающих межнуклонное расстояние z_o , сумма быстро убывает из-за некогерентности слагаемых. Учитывая это убывание с помощью фактора $exp(-\frac{(x-y)^2}{z_*})$, а также симметричность суммы относительно перестановки $x \neq y$ в общем случае аппроксимируем сумму по j_p , i_T в (8) выражением.

$$\frac{1}{A_{p}A_{T}} \int_{P} \left(\frac{x+x'}{2}\right) \int_{T} \left(\frac{x+x'}{2}\right) exp\left(-\frac{(x-x')^{2}}{\zeta_{o}^{2}}\right) \sum_{j_{p}, i_{T}} \frac{n_{j_{p}} - n_{i_{T}}}{E_{j_{p}} - E_{i_{T}}} \left(1 - \cos\left(\frac{t}{h}(E_{j_{p}} - E_{i_{T}})\right)\right)$$

Подставляя этот результат в (8), мы получаем для δV выражение, которое и использовалось в расчетах.

Расчет величины δV при различных значениях расстояния между ядрами выполнен для четырех пар взаимодействующих ядер: $^{132}Xe + ^{203}Bi$, $^{132}Xe + ^{196}Au$, $^{206}Pb + ^{208}Pb$ и $^{40}Az + ^{208}Pb$. Нлотности ρ_{P} и ρ_{T} задавались следующими выражениями:

4

5

 $\beta_{\tau}(\vec{x}) = \beta_{oo} \left(1 + exp\left(\frac{|\vec{x}| - R_{\tau}}{\alpha} \right) \right)^{-1}, \quad \beta_{p}(\vec{x}) = \beta_{oo} \left(1 + exp\left(\frac{|\vec{x} - \vec{R}| - R_{p}}{\alpha} \right) \right)^{-1},$

где \vec{R} – расстояние между центрами ядер. Из (8) видно, что, кроме зависимости от \vec{R} , δU явно зависит от времени. Поэтому для того, чтобы знать величину δU в разных точках траектории, необходимо рассчитать траекторию для каждой из рассматриваемых реакций. Такой расчет был выполнен с помощью программы, описанной в ^{/8/}. Оказалось, что результать расчета плавно зависят от ℓ (начального углового момента), незначительно изменялась при изменения ℓ на 20. Поэтому на рисунках I и 2 результать для каждой пары ядер приведены только для одного значения ℓ , характерного для глубоконеупругих столкновений. Из рисунков видно, что изменения ядерной составляющей потенциала взаимодействия ядер, обусловленные многонуклонными передачами, могут достигать 20%. Знак поправки соответствует усилению притяжения.

Литература

- I. Брагин В.Н., Жуков М.В. ЭЧАЯ, I984, т. 15, с. 725.
- 2. Swiatecki W.J. Physics Scripta, 1981, v. 24, p. 113.
- Broglia R.A., Pollarolo G. and Winter A., Nucl. Phys., 1981, A361, p. 307.
- Stancu Fl. and Brink D.M. Phys. Rev., 1982, C25, p. 2450.
- 4. Brink D.M. and Stancu Fl. Phys. Rev., 1984, C30, p. 1904.
- 5. Джолос Р.В., Насиров А.К. ЯФ, 1984, т. 40, с. 721.
- 6. Джолос Р.В., Насиров А.К. ЯФ, 1985, т. 42, с. 175.
- Мигдал А.Б. Теория конечных ферми-систем и свойства атомных япер. "Наука". М., 1983.
- Schmidt R., Teichert J. JINR, E4-30-527, E4-80-735, Dubna, 1980.

Рукопись поступила в издательский отдел

22 апреля 1986 года.

6

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Індек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких, энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов Фундаментальных физических исследований в смежных областях науки й техники
19.	Биофизика
	· · · · · · · · · · · · · · · · · · ·

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги.

если они не были заказаны ранее.

д17-81 -758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-тсхиических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р. 55 к.
Д2,13- 8 3-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Международного симпозиуна по ядерной электронике. Братислава, чехословакия, 1903.	4 p. 50 ĸ.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30
д 1,2 -84-599	Труды VII Неждународного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ
Д17-84-850	Труды Ш Международного симпозиуна по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 M
д10,11-84-818	Труды V Международного совещания по про- Блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 p. 50
	Труды IX Всесоюзного совещания по ускорит ежн заряженных частиц. Дубна, 1984 /2 тона/	13 p.50 ĸ
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 p. 75

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Джолос Р.В., Насиров А.К. Учет влияния обмена нуклонами на потенциал взаимодействия ядер

Исследовано влияние процесса многонуклонных передач на величину потенциала взаимодействия ядер. Изменение потенциала взаимодействия определяется изменением плотности распределения ядерного вещества. Расчет изменения плотности выполнен в рамках одночастичной модели ядра, учитывающей изменение во времени среднего поля двойной ядерной системы. Расчет выполнен для четырех пар взаимодействующих ядер (132 Xe + 209 Bi, 132 Xe + 196 Au, 208 Pb + 208 Pb, 40 Ar + 208 Pb) при различных эначениях расстояния между ядрами R: от R = R_{int} до R = R_{int} - 3 фм. Показано, что изменения ядерной составляющей потенциала взаимодействия могут достигать 20% и ведут к усилению притяжения.

P4-86-255

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод авторов

Jolos R.V., Nasirov A.K. P4-86-255 On the Influence of Multinucleon Transfer on the Interaction Potential of Nuclei The influence of the multinucleon transfer on the interaction potential of the nuclei has been studied. A change of the interaction potential is determined by the change of the nuclear matter density distribution. The density changes were calculated in the framework of the nuclear onebody model taking into account a change in time of the dinuclear system mean field. The calculation has been made for four pairs of colliding nuclei $(^{132}Xe + ^{209}Bi,$ 132 Xe + 196 Au, 208 Pb + 208 Pb, 40 Au + 208 Pb) for various values of the distance between nuclei R: $R = R_{int}$ before $R = R_{int} - 3$ fm. It is shown that the nuclear part changes of the interaction potential could reach 20% and lead to the increase in the attraction. The investigation has been performed at the Laboratory of Theoretical Physics, JINR. Preprint of the Joint Institute for Nuclear Research. Dubna 1986