

Объединенный институт ядерных исследований дубна

P4-85-374

1985

Л.А.Малов, Д.Г.Яковлев*

РАСЧЕТ

НЕЙТРОННЫХ s -ВОЛНОВЫХ СИЛОВЫХ ФУНКЦИЙ ЧЕТНЫХ ИЗОТОПОВ ГАФНИЯ И ВОЛЬФРАМА

Направлено в "Изв.АН СССР, сер.физ."

* Московский государственный университет им.М.В.Ломоносова

введение

Нейтронные силовые функции относятся к числу важных характеристик атомных ядер при энергиях возбуждения, близких к энергии связи нейтрона B_n и выше ее. Их значения позволяют получить непосредственную информацию о величинах малоквазичастичных компонент волновых функций возбужденных состояний ядер.

Теоретическое описание нейтронных силовых функций /HCФ/ Sp /l - орбитальный момент нейтрона/ до последнего времени проводилось в основном феноменологически с использованием оптической модели ядра^{/1/}. Несмотря на довольно большое число подгоночных параметров при этом объяснялось лишь общее поведение HCФ в зависимости от атомного веса A и не удавалось описать поведение этих величин в области минимума и детальное изменение их величины при переходе от одного ядра к другому.

Существенный прогресс в этом направлении был сделан на основе квазичастично-фононной модели ядра /КФМЯ/^{2,3} Исследование фрагментации малоквазичастичных компонент волновых функций возбужденных состояний ядер, проводимое в рамках этой модели^{/3,4/} позволяет рассчитать спектроскопические факторы для сечений реакций передачи нуклона и НСФ. Без использования свободных параметров в этих работах было получено достаточно хорошее описание НСФ при энергии связи нейтрона для нечетных сферических и деформированных ядер.

Подобный же подход применим к исследованию НСФ в четночетных ядрах. В этом случае необходимо рассчитать фрагментацию однофононных или двухквазичастичных компонент волновых функций. Расчеты, проведенные для сферических ядер^{/5/}, с хорошей точностью воспроизводят экспериментальные данные для ряда ядер и в целом правильно передают поведение S₀ и S₁ в зависимости от A.

Исследование НСФ в четно-четных ядрах позволяет получить дополнительную, по сравнению с нечетными ядрами, важную информацию о спиновой зависимости НСФ. Интерес к этому вопросу проявляется со стороны теоретиков и экспериментаторов уже в течение многих лет⁷⁶⁻⁹⁷ и объясняется принципиальной важностью его решения для понимания некоторых аспектов структуры ядра и механизма ядерных реакций.

Для описания спиновой зависимости сечения взаимодействия нейтронов с ядрами Фешбах^{/10/} предложил ввести в оптический

потенциал спин-спиновый член вида – V_{вs} ($\vec{I}_0 \cdot \vec{s}$)/ I₀, где I₀и в –

Desire and a strength

спины ядра-мишени и нейтрона. Экспериментальное обнаружение указанной спиновой зависимости свидетельствовало бы о силе этого взаимодействия или о роли входных состояний, действующих на каждый спин компаунд-ядра. Микроскопическое рассмотрение данного эффекта позволило бы обнаружить структурные особенности распределения силы одночастичных состояний и проанализировать структуру нейтронных резонансов.

Статистический анализ экспериментальных данных по S₀^J / J спин компаунд-ядра/ показал, что для подавляющего числа ядер эти величины для обоих значений J = I n ± 1/2 совпадают, и отклонения от этого являются чисто случайными /7/. Как правило, отличие провляется в ядрах, в которых усреднение проводилось по малому числу резонансов, и поэтому точность определения НСФ для них была невелика. В дальнейшем для экспериментального исследования указанного эффекта были проведены более тонкие эксперименты по пропусканию поляризованных нейтронов через поляризованную ядерную мищень /8/, что позволило непосредственно определять с хорошей точностью разницу силовых функций разного спина для ряда ядер редкоземельной области. Эта разница оказалась малой величиной, лежащей в пределах экспериментальных ошибок.

Расчеты НСФ в четно-четных сферических ядрах 151 подтвердили вывод о слабой спиновой зависимости НСФ.

В настоящей работе проведены аналогичные исследования НСФ в деформированных четно-четных ядрах и их спиновой зависимости.

1. ОСНОВНЫЕ ФОРМУЛЫ ДЛЯ РАСЧЕТА НСФ В РАМКАХ КФМЯ

Рассмотрим случай захвата нейтрона с орбитальным моментом в нечетным А -деформированным ядром /с нечетным числом нейтронов/. Волновую функцию основного состояния ядра-мишени с моментом I, , его проекцией на ось симметрии К, и четностью л, запишем в виде:

$$\Psi \left(I_0^{\pi_0} \mathbb{K}_0 \right) = \frac{1}{\sqrt{2}} \sum_{\sigma} \left\{ \sum_{\rho} C_{\rho} a_{\rho\sigma}^+ \sum_{\nu g} D_{\nu g} a_{\nu\sigma}^+ Q_g^+ \right\} \Psi_0 \quad . \tag{1}$$

Здесь $a_{
hor}^+$ - оператор рождения квазичастицы с квантовыми чис-/ лами ра , $\Theta_{
m g}^+$ - оператор рождения фонона /набор квантовых чисел g определяет мультипольность фонона, его проекцию и порядковый номер фонона каждой мультипольности/. Спектроскопический фактор сечения реакции передачи одного нейтрона /типа (d,p) или (n, y) / на нечетном деформированном ядре, волновая функция основного состояния которого /1/ приведена выше, при возбуждении одно-фононного состояния $Q^+_{\lambda\mu i} \Psi_0$ с моментом $\vec{J} = \vec{I}_0 + \vec{j} = \vec{I} + \vec{\ell} + \vec{s}$, его проекцией на ось симметрии $K = \mu$ и четностью $\pi = (-1)^{\lambda}$ имеет вид /11/:

$$B_{\ell}^{JK}(i) = \sum_{j} |(I_0 K_0 j K - K_0 | J K) \sum_{q\rho} C_{\rho} a_{\ell j}^{q | K - K_0 |} u_q \Psi_{\rho q}^{\lambda \mu i}|^2.$$
 /2/

Здесь $a_{\ell j}^{q,k}$ – амплитуда разложения волновой функции одноква-зичастичного состояния q по сферическому базису, u_q – коэффициенты преобразования Боголюбова, і - номер состояния с данным набором квантовых характеристик $J^{\pi}K$, Ψ_{00}^{g} - фононные амплитуды, определяемые из решения секулярного уравнения:

$$\mathfrak{F}(\omega) = 1 - (\kappa_0^{(\lambda)} + \kappa_1^{(\lambda)}) (\mathbb{X}_g^{(n)} + \mathbb{X}_g^{(p)}) + 4 \kappa_0^{(\lambda)} \kappa_1^{(\lambda)} \mathbb{X}_g^{(n)} \mathbb{X}_g^{(p)} = 0.$$
 /3/

Здесь $\kappa_0^{(\lambda)}$ и $\kappa_1^{(\lambda)}$ - изоскалярная и изовекторная константы мультипольного взаимодействия, явный вид величин Xg дан в $^{/2/}.$ Нейтронная силовая функция для данных значений JK компаунд-

ядра в канале *l*-волны определяется следующим образом:

$$\mathbf{S}_{\ell}^{\mathbf{JK}} = \frac{\overline{\Gamma}_{n}^{\ell} \left(\mathbf{JK} \right)}{\mathbf{D} \left(\mathbf{JK} \right)} .$$
 (4/

Здесь Γ_n^{ℓ} (JK) - средняя нейтронная приведенная ширина, D(JK) - среднее расстояние между уровнями с данными значениями $J^{\pi}K$. Экспериментально чаще находится суммарная силовая функция для состояний с различными JK:

$$S_{\ell} = \sum_{JK} g(J) S_{\ell}^{JK}$$
, /5/
где $g(J) = \frac{2J+1}{(2s+1)(2I_0+1)(2\ell+1)}$ - статистический вес.

Пользуясь определением /4/, можно записать НСФ в КФМЯ через спектроскопический фактор /2/:

$$S_{\ell}^{JK} = \Gamma_{s.p.}^{\ell} \frac{1}{\Delta E} \sum_{i \Delta E} B_{\ell}^{JK}(i), \qquad /6/$$

где $\Gamma_{\rm B,p.}^{\ell}$ - приведенная одночастичная ширина /12/, ΔE - энергетический интервал усреднения.

Используя метод силовой функции /8/, при вычислении /6/ можно избавиться от необходимости нахождения характеристик каждого резонанса і. Тогда для НСФ при энергии связи нейтрона для состояний с определенным значением К получим

$$\mathbf{S}_{\ell}^{\mathbf{K}} = \Gamma_{\mathbf{s},\mathbf{p}}^{\ell} \cdot \frac{1}{\Delta \mathbf{E}} \sum_{i,\mathbf{j}} \Delta \mathbf{E} \left[\mathbf{B}_{\ell}^{\mathbf{J}\mathbf{K}}(i) = \Gamma_{\mathbf{s},\mathbf{p}}^{\ell} \mathbf{b}_{\ell}^{\mathbf{K}}(\omega) \right]_{\omega = \mathbf{B}_{n}}, \qquad /7/$$

$$b_{\ell}^{K}(\omega) = \frac{1}{\pi} \operatorname{Im} \sum_{j} \left\{ \frac{2(\kappa_{0}^{(\lambda)} + \kappa_{1}^{(\lambda)} - 4\kappa_{0}^{(\lambda)}\kappa_{1}^{(\lambda)}\overline{x}_{\lambda K}^{(p)}(z))}{\Im(z)} \times \right.$$

$$\times \left(\sum_{\rho q} \frac{C_{\rho a \ell j}^{q | \mathbf{K} - \mathbf{K}_{0} |} \mathbf{u}_{q} t_{\rho q}^{\rho | \mathbf{u}_{\rho q}}}{\epsilon_{\rho q} - \mathbf{z}}\right)^{2} + \frac{1}{8}$$

+
$$\sum_{\rho q} \frac{(C_{\rho} a_{\ell_j}^{q} | K - K_0] u_q f_{\rho q}^{(\lambda K)} u_{\rho q})^2}{\epsilon_{\rho q} - z} \}_{z=\omega + i\Delta/2}$$

где $f_{pq}^{(\lambda K)}$ - матричный элемент мультипольного взаимодействия, ϵ_{pq} - энергии двухквазичастичных состояний, $u_{pq} = u_{p}v_{q} + u_{q}v_{p}$, Δ - интервал усреднения. Выражения для S_{ℓ} и S_{ℓ} имеют вид, подобный /7/, и их приводить здесь не будем.

При выводе /8/ мы пренебрегали фрагментацией однофононных уровней по состояниям сложной структуры $^{/13'}$. Если учет взаимодействия с более сложными конфигурациями не приведет к заметному перераспределению силы однофононных состояний за пределы интервала усреднения Δ , то численные результаты расчета HCФ не будут зависеть от сложности конечных состояний, поскольку проводится усреднение по выбранному энергетическому интервалу.

2. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Гамильтониан модели был взят в виде аксиально-симметричного потенциала Вудса-Саксона, описывающего среднее поле деформированного ядра, парных и мультипольных остаточных сил /2,3,11/. Расчеты проведены со схемой одночастичных уровней и константами остаточных взаимодействий, использованными в работе /12/ при расчете НСФ в нечетных ядрах в области А ~ 180. Радиальная зависимость мультипольных сил взята в виде <u>dV</u>, где V - центральная часть одночастичного потенциала Вудса-Саксона. Таким образом, результаты расчетов НСФ четно-четных ядер области А ~ 180, представленные в настоящей работе, получены без единого свободного параметра, что определяет их однозначность и тем самым увеличивает важность полученных теоретических результатов.

Были рассчитаны s - волновые нейтронные силовые функции для ^{178, 180}Нf и ^{182, 184} W.

На рисунке представлено поведение силовой функции $b_0^K(\omega)$ для ¹⁷⁸Нf в зависимости от энергии возбуждения, рассчитанной по формуле /8/ для двух значений K =K₀ ± 1/2. Параметр усреднения Δ был выбран равным 0,4 МэВ. Из рисунка видно, что различие кривых незначительно – это характерно и для других рассмотренных нами ядер.

Такой результат в приближении хаотических фаз (RPA) выглядит естественным, поскольку форма кривых /8/ в этом приближении определяется в основном распределением двухквазичастичных по-люсов $\epsilon_{\rho q}$. совпадающих для обоих случаев К =К $_0 \pm 1./2$, хотя матричные элементы f $^{(\lambda K)}$ в /8/ для разных значений К, вообще говоря, различаются.

Фрагментация силы двухквазичастичных состояний в приближении RPA оказывается не очень сильной, что характеризуется существованием выделенных сильных пиков у кривых $b_0^K(\omega)$. Это приводит к значительной зависимости результатов от положения одночастичных уровней. Остается неисследованным вопрос о допол-

Таблица

Компаунд- ядро	В, ,мэв	S'. · 10 4		V	S, - S.
		эксп.	расчет	K.	S.
178 _{Hf}	7,62	2,5±0,2	I,9	3	0,05
			2,0	4	
180 _{Hf}	7,33	I,7 <u>+</u> 0,2	1,0	4	0,10
			1,2	5	
¹⁸² W	7,99	-	2,5	4	0,08
			2,7	5	
¹⁸⁴ W	7,42	I,7±0,3	1,2	0	0,08
			I,3	I	

нительной фрагментации, обусловленной влиянием более сложных конфигураций.

Результаты расчетов величин $S_0^K = S_0^{K_0 \pm 1/2} = S_0^{\pm}$ для перечисленных ядер представлены в таблице, здесь же даны экспериментальные данные, взятые из работы ^{/14/}.В таблице также приводится величина $a = (S_0^+ - S_0^-)/S_0$, которая может характеризовать спиновый эффект. Экспериментальные исследования этой величины, проведенные для ряда редкоземельных ядер ^{/8/}, показывают, что ее значение не превышает 10% и находится в пределах погрешности измерений, что в целом согласуется с нашими результатами. В работе ^{/15/} подробно рассмотрен случай ядра ¹⁷⁸ Hf, где уровни

В работе^{/15/} подробно рассмотрен случай ядра "Иf, где уровни разделены на два множества с J = 4 и J = 3, и получено $S_0^{J=4} / S_0^{J=3} = 0,73\pm0,20$, что не согласуется с нашими результатами /как видно из таблицы, эта величина несколько больше единицы/. Необходимо, однако, отметить противоречивость экспериментальных результатов, полученных в различных исследовательских группах. Так, измеренная в работе ^{/16/} указанная величина равна 1,5±0,7. По-видимому, этот случай требует дополнительного исследования.

Как видно из результатов настоящей работы, представленных в таблице, и ^{/11/}, в целом в рамках КФМЯ получено неплохое описание в -волновых НСФ для четных и нечетных изотопов гафния и вольфрама. Что касается спинового эффекта в четно-четных ядрах, то расчеты показывают, что величины в -волновых НСФ для разных значений J и K компаунд-ядра весьма близки. Этот результат вполне соответствует имеющимся экспериментальным данным. Отклонения от данной закономерности, обусловленные структурными особенностями, могут проявляться для отдельных изотопов.

ЗАКЛЮЧЕНИЕ

Расчеты НСФ деформированных ядер, проводимые в рамках микроскопического подхода, демонстрируют широкие возможности КФМЯ и ее преимущества перед другими моделями /в частности, перед оптической/. Представляет интерес расширить эти исследования на другие области деформации, включив в рассмотрение ядра трансурановой области, где в последние годы появились новые экспериментальные данные, свидетельствующие о наличии промежуточной структуры в сечении захвата нейтрона при средних энергиях возбуждения и касающиеся спинового эффекта /17/. Стоит также включить в рассмотрение случай ℓ≠0 и проанализировать влияние на S_ℓ учета более сложных конфигураций в волновых функциях высоковозбужденных состояний.

В заключение выражаем благодарность за обсуждение рассмотренных здесь вопросов В.В.Воронову, Л.Б.Пикельнеру и В.Г.Соловьеву.

ЛИТЕРАТУРА

- Немировский П.Е. Современные модели атомного ядра. Атомиздат, М., 1960; Ходгсон П.Е. Оптическая модель упругого рассеяния. Пер. с англ., Атомиздат, М., 1966.
- 2. Соловьев В.Г. ЭЧАЯ, 1972, т.3, с.770; т.9, с.580 /860/.
- 3. Malov L.A., Soloviev V.G. Nucl. Phys., 1976, vol.A270, p.87.
- Dambasuren D. et al. J.Phys.G: Nucl.Phys., 1976, vol.2, p.25.
- Боронов В.В., Соловьев В.Г., Стоянова О. Яф, 1980, т.31, с.327;

Воронов В.В., Соловьев В.Г. ЭЧАЯ, 1983, т.14, с.1380.

- Малэцки Х. и др. ЯФ, 1970, т.11, с.111;
 Fischer T.R. et al. Nucl.Phys.A, 1969, vol.130, p.609;
 Kobayashi S. et al.Progr.Theor.Phys. 1968, vol.40, p.1451.
- 7. Lason L. et al. Acta Phys.Pol., 1977, vol.B8, p.1009.
- Алфименков В.П., Пикельнер Л.Б., Шарапов Э.И. ЭЧАЯ, 1980, т.11, с.411.
- 9. Кадменский С.Г. и др. ЯФ, 1984, т.39, с.7.
- 10. Feshbach M. Nuclear Spectroscopy, N. Y., 1960, p.1046.
- 11. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- 12. Малов Л.А., Яковлев Д.Г. ОИЯИ, Р4-85-270, Дубна, 1985.
- Кырчев Г., Малов Л.А. Изв.АН СССР, сер.физ., 1979, т.43, с.107, Китипова В., Малов Л.А., Ширикова Н.Ю.Изв.АН СССР, сер.физ., 1981, т.45, с.1923.

- 14. Mughabghab S.F. Neutron Cross Sections, vol.1, Neutron Resonance Parameters and Thermal Cross Sections. Part B: Z = 61-100, Academic Press, N.Y., 1984.
- 15. Liou H.I. et al. Phys.Rev., 1975, vol.C11, p.2022.
- Coceva C. et al. Statistical Properties of Nuclei, ed.by Garg J.B., N. Y., Plenum Press, 1972, p.447.
- 17. Moore M.S. et al. Phys.Rev., 1984, vol.C30, p.214; 1978, vol.C18, p.1328; Perez R.B. et al. Phys.Rev., 1978, vol.C20,, p.528; Garrison J.D. Annals Physics, 1977, vol.104, p.19.

Рукопись поступила в издательский отдел 21 мая 1985 года Малов Л.А., Яковлев Д.Г. Расчет нейтронных 8-волновых силовых функций четных изотопов гафния и вольфрама

Рассчитаны нейтронные силовые функции S_о при энергии связи нейтрона для ряда четно-четных ядер из области A - 180, исследована их спиновая зависимость. Расчеты выполнены в рамках квазичастично-фононной модели ядра с потенциалом среднего поля Вудса-Саксона и остаточным мультипольным взаимодействием с радиальной зависимостью вида $\partial V/\partial t$. Результаты расчета сравниваются с экспериментальными данными.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

P4-85-374

Препринт Объединенного института ядерных исследований. Дубна 1985

Перевод О.С.Виноградовой

Malov L.A., Yakovlev D.G. P4-85-374 Calculation of Neutron s-Wave Strength Functions of Even Hafnium and Wolfram Isotopes

The neutron strength functions S_o at the neutron binding energy are calculated for some doubly even nuclei from the region A - 180 and their spin dependence is analysed. The calculations have been performed within the quasiparticle-phonon nuclear model with the Saxon-Woods potential of an average field and the residual multipole interaction with radial dependence of the form $\partial V \partial r$. The results of calculations of S_o are compared with experimental data.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.