ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

M-197

P4 - 8499

31.1.75

778/2-75 Л.А.Малов, В.О.Нестеренко, В.Г.Соловьев

О РОЛИ КОМПОНЕНТ КВАЗИЧАСТИЦА ПЛЮС ДВА ФОНОНА В ВОЛНОВЫХ ФУНКЦИЯХ НЕРОТАЦИОННЫХ НИЗКОЛЕЖАЩИХ СОСТОЯНИЙ ДЕФОРМИРОВАННЫХ ЯДЕР

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

P4 - 8499

Л.А.Малов, В.О.Нестеренко, В.Г.Соловьев

О РОЛИ КОМПОНЕНТ КВАЗИЧАСТИЦА ПЛЮС ДВА ФОНОНА В ВОЛНОВЫХ ФУНКЦИЯХ НЕРОТАЦИОННЫХ НИЗКОЛЕЖАЩИХ СОСТОЯНИЙ ДЕФОРМИРОВАННЫХ ЯДЕР

Направлено в Изв. АН СССР

Объздиненный вноилтур	
ORCONNA ETERORODENCE	
BHEAMOTERA	

Малов Л.А., Нестеренко В.О., Соловьев В.Г.

О роли компонент квазичастица плюс два фонона в волновых функциях неротационных низколежащих состояний деформированных ядер

P4 - 8499

Исследовано влияние включения в волновую функцию компонент квазичастица плюс два фонона на энергии и структуру состояний нечетных ядер и показано, что для состояний с энергией возбуждения ниже (0,7-1,0) МэВ для сильно деформированных ядер этими компонентами можно пренебречь. Можно не учитывать фононы с $\lambda > 3$ при вычислении характеристик состояний с энергией менее 1 МэВ. При изучении структуры неротационных состояний с энергией возбуждения более (1,0-1,5) МэВ в волновых функциях следует принимать во внимание компоненты квазичастица плюс два фонона.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Malov L.A., Nesterenko V.O., Soloviev V.G. P4 - 8499

On the Role of Components - Quasiparticle Plus Two Phonons - in the Wave Functions of the Nonrotational Low-Lying States of Deformed Nuclei

The influence of inclusion of components - quasiparticle plus two phonons - into the wave function on the energy and structure of odd-mass nuclei is studied. It is shown that these components can be neglected for the strongly deformed nucleus states with the excitation energy below (0.7-1.0) MeV. Phonons with $\lambda>3$ need not be taken into account when calculating the characteristics of the states with the excitation energy < 1 MeV. The above components must be taken into consideration in the wave functions when studying the structure of the nonrotational states of > (1.0-1.5) MeV excitation energy **Preprint. Joint Institute for Nuclear Research.**

Dubna, 1974

1. Вопрос о величине примесей многочастичных конфигураций в волновых функциях низколежащих состояний сложных ядер изучается как теоретически, так и экспериментально. Как известно /1,2/, в приближении Хартри-Фока-Боголюбова наилучший выбор параметров потенциала среднего поля соответствует представлению, в котором матрица плотности диагональна, а корреляционная функция приведена в каноническому виду. В этом представлении, например, основные состояния нечетных леформированных ядер должны быть чистыми одноквазичастичными состояниями . В работах /3,4/ привелены доводы, согласно которым в сильно деформированных ядрах условия диагональности матрицы плотности должны выполняться с довольно хорошей точностью. Первое изучение фрагментации одночастичных состояний 15/ и расчеты энергий и структуры низколежащих состояний нечетных деформированных ядер /см., напр., 16/ / показали, что сила одночастичного состояния, лежащего вблизи энергии Ферми, на /85-95/% сконцентрирована на одном ядерном уровне, и примеси компонент квазичастица плюс два фонона невелики. Эти исследования подтверждают положение о малости нелиагональных частей матрицы плотности.

Для изучения усложнения структуры состояний с ростом энергии возбуждения и для грубого описания структуры состояний с промежуточной энергией возбуждения в работе ^{/7/} сформулирована модель, основанная на учете взаимодействия квазичастиц с фононами. Эта модель является обобщением модели, с помощью которой вычисляются энергии и структура низколежащих неротационных состояний нечетных деформированных ядер /см., напр., ^{/6/} /. В настоящей работе используем вышеупомянутую модель для изучения роли компонент квазичастица плюс два фонона в волновых функциях неротационных состояний нечетных сильно деформированных ядер.

2. Гамильтониан, описывающий ядерные взаимодействия, возьмем в виде среднего поля, описываемого потенциалом Саксона-Вудса, взаимодействий, приводящих к парным корреляциям сверхпроволящего типа, и к мультиполь-мультипольным взаимодействиям. С таким же гамильтонианом проведены /6/ расчеты характеристик низколежащих состояний нечетных деформированных ядер. Расчеты выполнены в однофононном приближении, когда в волновой функции кроме одноквазичастичных членов содержатся члены квазичастица плюс один фонон. В нашей работе используются одночастичные энергии и волновые функции, выполненные с теми же параметрами потенциала Саксона-Вудса, при тех же параметрах равновесных деформаций, и взяты такие же константы взаимодействия, что и в расчетах $^{/6/}$. Однако, в отличие от $^{/6/}$ нами дополнительно приняты во внимание фононы мультипольности от $\lambda = 4$ до $\lambda = 7$ и для всех фононов учитывается пять первых корней, j = 1, ..., 5, а не два, как в $\frac{6}{6}$.

Волновую функцию нечетного деформированного ядра, описывающую состояние с фиксированным значением K^{π} , запишем в виде

$$\Psi_{i}(K^{\pi}) = C_{\nu_{0}}^{i} \frac{1}{\sqrt{2}} \sum_{\sigma} \{a_{\nu_{0}\sigma}^{+} + \sum_{g,\nu} D_{\nu_{0}\nu\sigma}^{gi} a_{\nu\sigma}^{+} Q_{g}^{+} + \sum_{g,g_{2}} \sum_{\nu} F_{\nu_{0}\nu\sigma}^{gg2i} a_{\nu\sigma}^{+} Q_{g}^{+} Q_{g}^{+} \} \Psi_{0} .$$
 /1/

Здесь Ψ_0 - волновая функция основного состояния четночетного ядра с A-1 , i - номер состояния, $a^+_{\nu\sigma}$, Q^+_g - операторы рождения квазичастицы и фонона, $g = \lambda \mu j$, $(1, \sigma)$ - квантовые числа, характеризующие одночастичное состояние, $\sigma = \pm 1$. Условие нормировки /1/ имеет следующий вид:

$$(C_{\nu_{0}}^{i})^{2} \{1 + \sum_{g\nu} (D_{\nu_{0}\nu}^{gi})^{2} + 2 \sum_{g,g_{2}\nu} (F_{\nu_{0}\nu}^{gg_{2}i})^{2} \} = 1.$$
 /2/

С помощью варнационного принципа в $^{/7/}$ получена система уравнений для определения энергий неротационных состояний $\eta_{\nu_0}^i$ и функций $C_{\nu_0}^i$, $D_{\nu_0\nu}^{g_1}$, $F_{\nu_0\nu}^{g_22i}$. В работе '8' сформулирован приближенный метод решения этих уравнений, согласно которому учтены все когерентные члены и полюсные некогерентные члены. Первые исследования фрагментации одночастичных состояний, выполненные с помощью этого приближенного метода, изложены в работе '9'.

Вышеупомянутый приближенный метод используется нами для выяснения влияния компонент $F_{\nu_0\nu}^{gg2}$ волновой функции /1/ на энергию и структуру низколежащих состояний. Анализ проводится на примере ядер ²³⁹U и ¹⁶¹ Cd.

3. Изучим, как изменятся энергии и структура низколежащих состояний, во-первых, от включения фононов с $\lambda = 4,5,6$ и 7 и корней ј = 3,4,5/для всех λ / при расчетах в однофононном приближении, во-вторых, при учете членов волновой функции квазичастица плюс два фонона. Результаты вычислений неротационных состояний ²³⁹U приведены в табл. 1-3, при этом результаты, полученные в однофононном приближении с $\lambda \mu = 20,22,30,30,31,32$ и j = 1,2, даны в табл. 1, с λ = 20,...,77 и j = 1,...,5 в табл. 2, в двухфононном приближении с $\lambda \mu = 20,...,77$ и j = 1,...5 - в *табл. 3.* Результаты расчетов неротационных состояний ¹⁶¹ Gd в однофононном приближении представлены в табл. 4, в двухфононном приближении - в табл. 5. В табл. 1-5 энергии состояний отсчитываются от энергии основных состояний η_{622} , и η_{523} ; в столбце "Структура" даны полученные из условия нормировки /2/ коэффициенты волновой функции /1/ $(C_{\nu_0}^i)^2$, $(C_{\nu_0}^i D_{\nu_0}^{gi})^2$ и $(C_{\nu}^{I_1} F_{i_0\nu^2}^{gg})^2$, определяющие величины компонент: одноквазичастичной, квазичастица плюс фонон и квазичастица

5

Энергии и структура низколежащих состояний в 239 для волновой функции (I) с $F_{2,7}^{32,4} = 0$ при учете фононов с $\lambda H = 20, \dots, 32$, j = I, 2; $\eta_{6224} = 530$ кэв

υ π	Энер	ллч чк эв										
K	OIL	расчет			Струн	rryj	pa					
5/2+	0	0	622†	94%	752†	+	Q, (30)	2%	6201	+	Q. (22)	т%
I/2+	133	40	6314	91%	63I <i>\</i>	+	$Q_{\perp}(20)$	2%	6334	+	Q,(22)	2%
					63I†	+	Q, (22)	I%			.1	
7/2*	173	120	624	93%	6221	+	Q_(22)	3%	7341	+	G.(31)	2%
7/2		I40	743†	93%	743†	· +	$Q_{1}(20)$	3%			1 ,	
9/2		450	734†	85%	624	+	Q,(3I)	5%	6221	+	$Q_{1}(32)$	3%
- (-	615	+	$\theta_{1}(30)$	2%				-,-
5/2		520	752†	49%	622f	' +	Ø₄(30)	31%	752†	+	Q, (20)	9%
o (ot					6334	+	0₄(30)	8%			-	
9/2		700	6I5‡	75%	615	+	$\mathcal{Q}_{i}(20)$	II%	7341	+	Û,(30)	7%
r (ot	<u></u>				613	+	$Q_{1}(22)$	4%			-	
1/2	680	710	61 3†	69%	743 †	+	Q,(30)	20%	624	+	0,(20)	4%
т /от	6F 0	-			734†	+	0,(3I)	3%				
1/2	659	770	7701	18%	63II	+	$Q_{t}(30)$	76%	5031	+	Q,(22)	2%
т /о†	<u>.</u>	000			50I†	+	Q1(22)	2%			-	
1/2	000	890	6201	46%	6221	+	(J ₁ (22)	42%	63II	+	$G_{1}(20)$	5%
2/ 2 ~		000			6 2 2#	+	Q1(22)	4 3			_	
5/2		900	7611	33%	743†	+	(22) (22)	32%	63I <i>l</i>	+	U ₁ (3I)	127
5/2+		TODO	0000		63I†	+	U ₁ (30)	6%			•	
J/ Z		1010	6334	0,25	622†	+	$U_{1}(20)$	98%	743†	+	$C_{i}(3I)$	I,83

плюс два фонона. Для каждого состояния выписано несколько наибольших компонент.

Из табл. 1-3 видно, что дополнительный учет фононов с $\lambda \mu = 33, 44, ..., 77 \, \text{и} \, \text{j} = 3,4,5 \, \text{в однофононном приближении}$ приводит к опусканию энергии $\eta_{622\uparrow}$ основного состояния ²³⁹U на 80 кэВ, а включение компонент квазичастица плюс два фонона - еще на 40 кэВ. В ¹⁶¹ Gd включение компонент квазичастица плюс два фонона приводит к опусканию энергии $\eta_{523\downarrow}$ основного состояния только на 3 кэВ. Из сравнения результатов, представленных в табл. 1 и 2, видно, что если наряду

6

Таблица	2
---------	---

Энергии и структура низколежащих состояний в $^{239}\mathcal{V}$ для волновой функции (I) с $\mathcal{F}_{\mathcal{V}\mathcal{V}}^{\mathcal{H}_{\mathcal{V}}} = 0$ при учете фононов с $\lambda \mu = 20, \dots, 77$, $j = 1, \dots, 5$; $\mathcal{V}_{6224} = 450$ кэв

KT	Энерг Опыт	кя,кэ В расчет			Структура			
5/2+	0	0	6221	93%	752t + Q (30)	2%	620† + Q, (22)	1%
7/2+	173	50	624	91%	622 + Q(22)	25	7341 + Q(3I)	1%
1/2+	I33	70	63Il	90%	6311 + Q(20)	2%	$633l + Q_{1}(22)$	2%
					$63I^{4} + Q_{4}(22)$	IS		
7/2-		160	743†	91%	$743^{\dagger} + Q(20)$	2%		
9/2+		46 0	615	76%	6151 + Q(20)	8%	$7341 + Q_{1}(30)$	3%
					$6131 + Q_1(22)$	3%	<u>,</u>	
9/2		470	734t.	84%	$624 + Q_{\ell}(3I)$	4%	$6221 + u_{4}^{\prime}(32)$	2%
					615 $i + Q_1(30)$	I%	<u>,</u>	
5/2-		560	752†	53%	$622^{\dagger} + \mathcal{Q}_{1}(30)$	25%	$752^{\dagger} + Q_{2}(20)$	9%
					$6331 + 0_{1}(30)$	8%	0	
7/2+	680	630	613†	80%	7431 + $Q_{4}(30)$	5%	$624l + 0'_{2}(20)$	3%
_ /_+					$734^{+} + Q_{1}(3I)$	3%		
I/2*	688	800	6201	59%	6221 + 6,(22)	237	7251 + (v ₄ (55)	5%
					6221 + 62(22)	4%		
1/2-	65 9	84 0	770†	25%	6311 + 64(30)	67%	503(+ 6 ¹ / ₂ (22)	3%
o /o r		-			$5011 + G'_{1}(22)$	2%	ant Curry	o.1
3/2		1030	761 1	3/3	7431 + 6(22)	29%	$6311 + 6^{2}(31)$	9%
E /0+		1100	000	0.01	6317 + 62(30)	.7%	RADA CLOT	- 10
5/2		1160	633∳	0,25	$6221 + 4_{1}(20)$	98%	$7431 + 6_{1}(31)$	1%

с фононами $\lambda \mu = 20, ..., 32$, j = 1,2 еще учесть фононы $\lambda \mu = 33, ..., 77$, j = 3,4,5, то это приводит к небольшому изменению энергий и уменьшению в пределах одного процента вклада основной компоненты для состояний, близких к одноквазичастичным. Энергия и структура сложных состояний могут измениться сильнее, что продемонстрировано на примере состояния с $K^{\pi} = 9/2^+$ в 239 U. В общем, влияние учета вышеуказанных фононов на большинство состояний невелико.

Необходимо отметить, что влияние фононов различных мультипольностей и значений ј на свойства низколежащих состояний неодинаково. Главную роль играет не величина фундаментального полюса, а степень коллектив-

ности фононов. Поэтому наибольшее влияние оказывают один-два нижайших фонона с $\lambda_{\mu} = 20,22,30,31$ и 32.

Таблица 3

Энергии и структура низколежащих состояний в $^{239}\mathcal{V}$ для волновой функции (I) при учете фононов с $\lambda \mu = 20, \dots, 77$, $j = 1, \dots, 5; \quad \gamma_{622t} = 410$ кзв

	Энерги	ья, кэ В			Структура				-
<i>K</i> ″	OILHT	расче	T		0 - pj j pa				
5/2+	0	0	622†	88%	7521 + Q(30)	3%	6201 + Q	22) 25	-
					6221 + Q(30)	+ Q,(3	0) 0,2%		
7/2+	17 3	50	624l	87%	6221 + $Q_{1}(22)$	3%	7341 + Q.(3I) 2%	
					6241 + Q(22)	+ 0,(2	2) 0,3%		
I/2 ⁺	133	70	63II	86%	631/ + $\hat{Q}_{\ell}(20)$	2%	6331 + Qz(22) 23	
					63Ii + Q(30)	-+Q(3	0,3%		
7/2-		I8 0	7431	8 8 %	7431 + Q (20)	3%	76It + Q((22) I%	
					$7611 + Q_{i}(20)$	+0.(2	2) 0,1%		
9/2+		280	615	6I3	6I5l + Q_(20)	I3%	6131 + 0,0	22) 5%	
					$6151 + Q_2(20)$	+ 9,(2	0) I%		
5/2		4 I0	752↑	37%	622↑ + Q₂(30)	29%	752t + Q2(20) II%	
			7521	$+ Q_{1}(30)$	$+ Q_{4}(30) = 3$	r 75	21 + C (20)	+0,(20)	I9
9/2		440	7341	73%	624; + Q ₁ (3I)	7%	615V + Q	30) 4%	
					7341 + G(3I)	$+Q_{i}(3$	I) 0,3%		
7/2+	68 0	580	6I3†	67%	7431 + Q2(30)	11%	624+ + Q.(20) 5%	
					613† + Q(22)	+ (2	2) 0,3%		
I/2 ⁻	659	600	770†	I2%	63I $i + \hat{\mathcal{Q}_{4}}(30)$	73%	503# + O.	22) 2%	
			633¥	+ 0,(22)	+ Q(30) 13	501	+Q(30)	+ Q(30) I	8
$I/2^{+}$	688	67 0	620†	45%	$6221 + \theta_1(22)$	27%	622¥ + (?,(22) 7%	
					6201 + $Q_{1}(22)$	+ 04(2	2) 2%	• .	
5/2+		940	633¥	0,02%	$622^{\dagger} + \hat{Q}_{\mu}(20)$	90%	752t + Q	(30) I%	
			7521	$+ \theta_{I}(20)$	+ Q(30) 3%	6201	+ 6.(20)	+Q(22) 1%	
3/2		9 7 0	76I [‡]	II%	63II + Q(3I)	27%	7431 + 0,0	22) 23%	
			63I†	+ (20)) + Q(30) I%	743†	+ (20)	+ Q(22) 1%	

Влияние компонент квазичастица плюс два фонона на энергии и структуру низколежащих состояний продемонстрировано в *табл. 2, 3* и 4,5. Вклад компонент квазичастица плюс два фонона в нормировку волновой функции не превышает 1% для состояний с энергией до 300-500 кэВ и 3% - для состояний с энергией до 1 МэВ.

Энергии и структура и	низколежащих со	стояний в 161Gd
для волновой функции	(I) c $\int_{V_{c}r'}^{a_{3}r'} =$	О при учете фононов
$c \lambda \mu = 20, \dots, 77,$	j = I,,5;	$\frac{1}{5234} = 890 \text{ Ky B}$

Табляна 4

	Энерги	ия, кэВ			Carto					
K	OILT	расче	Ť		οι p.	Julipa				
5/2-	0	0	523)	98%	5214	+ Q(22)	I%			
5/2+		90	6421	95%	642 1	$+ Q_{i}(20)$	2%	660 f	$+ \theta_{l}(22)$	2%
I/2	356	210	52Ił	91%	523J	$+ Q_{1}(22)$	4%	52I¥	$+ \partial_{\mu}(20)$	2%
3/2-	313	280	52I†	96%	52I†	+ Q_(20)	2%			
7/2+		370	633 1	95%	6331	$+ Q_{1}(20)$	3%			
3/2+		610	65I†	79%	65I†	$+ \hat{Q}(20)$	12%	660†	+ G(22)	5%
5/2-	809	630	512	88%	510†	+ 0_(22)	5%	52I i	+ 0 (22)	I%
I/2		I060	510	0,6%	523	$+ \hat{U}_{1}(22)$	95%			
9/2-		I060	514	0,2	523	+ 0,(22)	99,7%		_	
$I/2^+$		1250	660†	I5%	6421	+ 0,(22)	68%	65I†	+ (4(22)	10%
3/2-		I44 0	5124	0,3%	52I†	+ 0,(20)	9I%	52I¥	+ Q(22)	83
$3/2^{+}$		I540	65I !	0,2%	52I†	+ 0 ₄ (30)	97%	6331	+ 0/(22)	2%

Этого можно было ожидать, т.к. нижайшие фундаментальные полюса типа $\epsilon(\nu) + \omega_g + \omega_{g_2} / \epsilon(\nu)$, ω_g - энергии квазичастицы и фонона/ находятся при энергии 2-3 *МэВ*. Следует отметить, что при энергиях возбуждения 3 *МэВ* и более число полюсов типа $\epsilon(\nu) + \omega_g + \omega_{g_2}$ превышает число полюсов типа $\epsilon(\nu) + \omega_g$, и поэтому с ростом энергии возбуждения роль компонент квазичастица плюс два фонона сильно увеличивается. Исследования показали, что компоненты квазичастица плюс два фонона в волновой функции /1/ следует учитывать при изучении неротационных состояний нечетных сильно деформированных ядер с энергией более 1 *МэВ* вобласти редкоземельных элементов и с энергией более /O,5 - O,7/ *МэВ* в области актинидов.

Из сравнения *табл. 2,3* и 4,5 видно, что включение компонент квазичастица плюс два фонона приводит к небольшому увеличению фрагментации одночастичных состояний. Вклад одночастичной компоненты уменьшается

8

9

Таблица 5

Энергия и структура низколежащих состояний в IGI_{GL} для волновой функции (I) при учете фононов с $\lambda \mu = 20, \dots, 77$, $j = 1, \dots 5; \quad \eta 5234 = 887$ кэв

	Энерг	ия, кэВ		*****		0		
K	OINT,	расчет				Структу	pa	
5/2	0	0	523	97%	521	+ Q(22)	2%	
5/2+		8 0	642	93%	5231 660†	$+ Q_{1}^{(22)}$ + $Q_{1}^{(22)}$	$+ \frac{\partial_{4}(22)}{3\%} = 0.05\%$ $- \frac{\partial_{5}(22)}{6424} + \frac{\partial_{1}(20)}{6424}$	2%
0/2					660t	$+ Q_{1}(20)$	$+ Q_{1}(22) = 0,2\%$	
I/2	356	200	521	89%	5234	$+ \hat{Q_{t}}(22)$	$4\% 521 + G_{L}(20)$	2%
					5211	+ Q(22)	$+()_{i}(22) 0,1\%$	
3/2-	313	270	52I	94	5211	$+ G_{i}(20)$	2%	
					52I1	+ (22)	+ (l ₁ (22) 0,07%	
7/2+		360	633	94%	633 	+ (20)	45	
					633 1	$+ Q_{i}(20)$	$+ (l_{1}(20)) = 0,08\%$	
3/2+		510	65I	67%	65I†	$+ Q_{1}(20)$	18% 6601 + $Q_1(22)$	8%
					65It	+ Q(20)	$+ \theta_{i}(20)$ 1%	
5/2-	809	56 0	512	81 %	510†	+ 0,(22)	8% 521 + $Q_1(22)$	2%
					5124	+ 0(22)	+ (4(22) 2%	
I/2		960	510	I,7%	523ł	+ 0,(22)	90% 512t + $Q_{1}(22)$	3%
					52I¦	+ 0(22)	$+ \theta_{1}(22) = 3\%$	
9/2		960	514	0,2%	523+	+ (),(22)	96%	
					52I/	+ 0,(22)	$+()_{i}(22) = 3\%$	
$I/2^{+}$		1020	660	8%	642†	+ (),(22)	65% $651^{+}()(22)$	17%
					660f	+(),(20)	$+Q_{1}(20) 0,7\%$	
3/2	•	1280	512	0,1%	52I†	$+\dot{\theta}_{t}(20)$	95%	
					52I†	+ 0,(20)	$+ (l_{1}(20)) 2\%$	
3/2*	-	I390	65 I	0,0013	521ł	$+Q_{1}(30)$	94% 651 + $0(20)$	2%
-					52I†	$+ (l_{1}(20))$	+ (),(30) 0,9%	

на /1-5/% для состояний, близких к одноквазичастичным и на /10-15/% - для состояний сложной структуры. В отдельных случаях включение этих компонент приводит к значительному изменению энергии и структуры состояния. Это относится, например, к состояниям 239 U с K^{π}= 5/2⁻, 3/2⁻и 1/2⁻.

Наши исследования показали, что значительный вклад компонент квазичастица плюс два фонона в волновые

функции низколежащих состояний наблюдается в тех нечетных ядрах, когда в А-1 четно-четных ядрах имеются низколежащие сильно колективизированные однофононные состояния. На примере ¹⁶⁹Ег показано, что если константу квадруполь-квадрупольного взаимодействия к⁽²⁾ увеличить так, чтобы энергия первого $K^{\pi} = 2^+$ - состояния в 168 Er была меньше О,8 МэВ, то имеет место значительное увеличение вклада компонент $\nu_0 + Q_1(22) + Q_2(22)$ и сильное изменение структуры низколежащих состояний. Таким образом, там, где плохо работает квазибозонное приближение учет нижайших компонент волновой функции, представленной в виде ряда по числу фононов, может оказаться недостаточным. В таких случаях, которые относятся, в основном, к ядрам переходных областей, следует использовать другие приближения /см., напр., рабо- $Ty^{/10/}/.$

4. Изучим, как распределяется сила одночастичного состояния, лежащего вблизи энергии Ферми, по многим ядерным уровням. Предварительные результаты изучения фрагментации одночастичных состояний изложены в /9/. Типичная картина фрагментации одночастичного состояния показана ца рис. 1. На этом рисунке приведена величина (С 6221), являющаяся суммой квадратов одноквазичастичных компонент состояния 622^{+} для уровней 239 U с K^{π} = 5/2⁺, лежащих в энергетическом интервале О,2 МэВ. Одночастичное состояние 622⁺ соответствует уровню Ферми и поэтому является основным состоянием ²³⁹ U. Такая слабая фрагментация одночастичного состояния имеет место для всех состояний, лежащих вблизи поверхности Ферми. Около 90% силы одночастичного состояния сконцентрировано на самом низком уровне, /8-10/% силы распределено по уровням, лежащим от 1 МэВ до энергин связи нейтрона. и /1-2/% относятся к уровням, лежащим в квазинепрерывном спектре. Настоящие исследования фрагментации согласуются с первоначальными результатами, полученными в работе /5/.

Следует отметить, что, несмотря на то, что на самом нижнем уровне с данными К^{*n*} сконцентрировано около 90% одночастичного состояния, распределение силы имеет

11

длинный хвост. Например, в интервале О,2 МэВ около энергии связи нейтрона содержится порядка О,1% силы одночастичного состояния. Можно надеяться, что с помощью такого длинного хвоста удастся объяснить величины s -- и р -волновых нейтронных силовых функций в районе их минимумов.

5. На основе выполненных исследований можно сделать следующие выводы об описании низколежащих неротационных состояний нечетных деформированных ядер:

1/ однофононное приближение, использованное в /6 / и других работах, является достаточно хорошим для вычисления энергии и структуры состояний до энергии возбуждения 1 МэВ в сильно деформированных ядрах редкоземельной области и до энергии 0.5 - 0.7 МэВ в области актинилов:

2/ вклад компонент волновой функции квазичастица плюс два фонона следует учитывать при вычислении характеристик состояний с энергией более /1,0-1,5/ МэВ;

3/ влиянием фононов с $\lambda > 3$ и корней секулярных уравнений ј ≥ 3 для всех фононов на состояния с энергией менее 1 МэВ можно пренебречь.

Данные исследования иллюстрируют плодотворность единого подхода для описания низких, промежуточных и высоких возбужденных состояний сложных ядер, основные положения которого изложены в работе /11/

Литература

- 1. В.Г.Соловьев. Теория сложных ядер. Наука, М., 1971.
- 2. В.Г.Соловьев. Сб. "Структура ядра", стр. 77, Изд. ОИЯИ, Д-6465, Дубна, 1972.
- 3. В.Г. Соловьев. ЭЧАЯ 3, 770 /1972/.
- 4. В.Г.Соловьев. Нейтронная физика /вторая конференция по нейтронной физике/, ч. 1, 70 /1974/. 5. В.Г.Соловьев. Изв. АН СССР, сер. физ., 35, 666
- /1971/.
- 6. Ф.А.Гареев, С.П.Иванова, В.Г.Соловьев, С.И.Федотов. ЭЧАЯ 4, 357 /1973/: А.Л. Комов, Л.А. Малов, В.Г. Соловьев. Изв. АН СССР, сер. физ., 35, 1550 /1971/.

- 7. V.G.Soloviev, L.A.Malov. Nucl. Phys., A196, 433 (1972).
- 8. Л.А.Малов, В.Г.Соловьев. Преприни ОИЯИ, P4-7639, Дубна, 1973.
- 9. V.G.Soloviev. Preprint JINR, E4-8116, Dubna, 1974.
- 10. Р.В.Джолос. Сообщение ОИЯИ, Р4-7967, Дубна, 1974.
- 11. В.Г.Соловьев. Изв. АН СССР, сер. физ., 38, 1580 /1974/.

Рукопись поступила в издательский отдел 30 декабря 1974 года.