

СООБЩЕНИЯ Объединенного института ядерных иссяедований дубна

P4-84-695

Я.Квасил, М.М.Чариев,* Б.Чориев*

ОБ ОКТУПОЛЬНЫХ СОСТОЯНИЯХ В ЯДРАХ ¹⁵⁸ Dy и ¹⁶⁸ Er

Институт ядерной физики АН УзССР

ВВЕДЕНИЕ

В /1/ исследовались характеристики низколежащих состояний отрицательной четности в ¹⁵⁸Dy и ¹⁶⁸ Er в рамках приближения случайной фазы /ПСФ/, основанного на модели принудительного вращения /МПВ/. Было показано, что МПВ+ПСФ позволяет хорошо описывать экспериментальный спектр, однако вычисленные значения В(1) -фактора грубо воспроизводят экспериментальные данные. В /1/ остаточные дальнодействующие взаимодействия были взяты в виде сумм диполь-дипольного, октуполь-октупольного и дипольоктупольного членов. Такой вид остаточных взаимодействий вытекает из рассуждений о восстановлении трансляционной симметрии полного гамильтониана, нарушенной деформированным средним полем нуклонов /см., напр., ^{/2/}/. Через диполь-октупольный член в остаточных взаимодействиях к низколежащим состояниям октупольного типа примешиваются дипольные компоненты, которые сильно влияют на B(E1). Поэтому для дальнейшего исследования дипольных переходов необходимо анализировать влияние диполь-октупольного взаимодействия на решения ПСФ уравнений.

С этой целью в данной работе проведены вычисления энергий низколежащих состояний в ядрах ¹⁵⁸Dy и ¹⁶⁸Er,в случае, когда остаточное дальнодействующее взаимодействие представлено в чистом октуполь-октупольном виде, т.е. без диполь-дипольных и дипольоктупольных членов. Сравнение результатов такого вычисления с результатами^{/1/} позволяет выяснить природу состояний отрицательной четности. В работе также проводится анализ силовых констант остаточных взаимодействий.

1. ОПИСАНИЕ МОДЕЛИ

Способ вычисления в рамках подхода МПВ+ПСФ детально описан в $^{/1,3/}$, поэтому коротко напомним основные идеи. МПВ+ПСФ метод стартует из кренкинг-гамильтониана

$$\mathbf{H}' = \mathbf{H} - \sum_{r} \lambda_{r} \, \hat{\mathbf{N}}_{r} - \Omega \, \hat{\mathbf{I}}_{\mathbf{X}} \, .$$

Полный ядерный гамильтониан H в лабораторной системе состоит из среднего деформированного поля ${\rm H}_{\rm gv}$ и остаточных взаимодействий ${\rm H}_{\rm RES}$

 $H = H_{av} + H_{RES} ,$

121

1

где, в отличие от работы ^{/1/}, остаточное взаимодействие отрицательной четности имеет вид

$$H_{RES} = -\frac{1}{2} \sum_{\mu=-3}^{3} \kappa_{3\mu} \hat{\mathcal{L}}_{3\mu}^{+} \hat{\mathcal{L}}_{3\mu} , \quad \hat{\mathcal{L}}_{\lambda\mu} \equiv r^{\lambda} \mathcal{Y}_{\lambda\mu}. \qquad (3)$$

В /3/ и дальше будет использовано обозначение, введенное в ^{/1/}. Известно /см., напр., ^{/1,3-6/} /, что МПВ+ПСФ подход состоит из двух этапов.

На первом этапе решается задача Хартри-Фока-Боголюбова /ХФБ/ в кренкинг-модели /см. ^{/7-11/} /. Способ решения этой задачи для конкретных ядер ¹⁵⁸ Dy и ¹⁶⁸Er детально описан в ^{/1,8}, где также приведены параметры среднего поля и взаимодействия спаривания для обоих изучаемых в данной работе ядер. Решая задачу ХФБ, получаем одноквазичастичный спектр и соответствующие состояния. Квазичастичный вакуум $|\Omega\rangle$ при данной частоте вращения Ω характеризует состояния ядра на ираст-линии с данным Ω /т.е. с данным моментом I/.

На втором этапе получаются структура и энергия фононов, характеризующих вибрационные состояния вблизи ираст-линии,с помощью ПСФ.С этой целью вводятся двухквазичастичные бозонные операторы $b_{kl}^+ = a_k^+ a_l^+$, $b_{kl}^+ = ia_k^+ a_l^+$, $b_{kl}^+ = ia_k^+ a_l^+$ /см. /1,3-6//. Все одночастичные операторы, участвующие в гамильтониане и операторах переходов, можно выразить в виде разложений по степеням этих бозонов. Ограничиваясь членами до первого порядка по бозонам, в этих разложениях часть кренкинг-гамильтониана, ответственную за вибрационные возбуждения отрицательной четности, можно выразить в виде *

$$H' = H_{(+)} + H_{(-)}$$
, /4/

где

$$H_{(+)} = \sum_{ij} (E_i + E_j) b_{ij}^+ b_{ij}^- - \sum_{\mu=1}^3 \frac{\kappa_{3\mu}}{2} O_{\mu}^{(1)} (+) O_{\mu}^{(1)} (+), \qquad /5a/$$

$$H_{(-)} = \frac{1}{2} \sum_{ij} \{ (E_i + E_j) b_{ij}^+ b_{ij} + (E_{\overline{1}} + E_{\overline{1}}) b_{\overline{1j}}^+ b_{\overline{1j}} \} - \sum_{\mu=0}^{3} \frac{\kappa_{3\mu}}{2} O_{\mu}^{(1)}(-) O_{\mu}^{(1)}(-).$$

$$/56/$$

$$B_{\mu}/52/\mu / (56/ O_{\mu}^{(1)}(+)) = DEECTABLENT HACTS OF EDATORES. EVALUATE HEX$$

В /5а/ и /5б/ $O_{\mu}^{(1)}(\pm)$ представляют часть операторов, линейных по бозонам:

$$\hat{O}_{0}(-) = \hat{\mathcal{L}}_{30} ,$$

$$\hat{O}_{1}(-) = \frac{1}{\sqrt{2}} (\hat{\mathcal{L}}_{31} - \hat{\mathcal{L}}_{3-1}) , \qquad \hat{O}_{1}(+) = \frac{1}{\sqrt{2}} (\hat{\mathcal{L}}_{31} + \hat{\mathcal{L}}_{3-1}) ,$$

$$\hat{O}_{2}(-) = \frac{1}{\sqrt{2}} (\hat{\mathcal{L}}_{32} - \hat{\mathcal{L}}_{3-2}) , \qquad \hat{O}_{2}(+) = \frac{1}{\sqrt{2}} (\hat{\mathcal{L}}_{32} + \hat{\mathcal{L}}_{3-2}) ,$$

$$\hat{O}_{3}(-) = \frac{1}{\sqrt{2}} (\hat{\mathcal{L}}_{33} - \hat{\mathcal{L}}_{3-3}) , \qquad \hat{O}_{3}(+) = \frac{1}{\sqrt{2}} (\hat{\mathcal{L}}_{33} + \hat{\mathcal{L}}_{3-3}) .$$

Конкретный вид величин $O_{\mu}^{(1)}(\pm)$ приведен в^{/1/}. Индексы /+/ в /4/, /5/ и /6/ отвечают симметрии двухквазичастичных бозонов, входящих в данное выражение, относительно поворота вокруг оси X на угол π .

$$R_{x}(\pi) b_{ij}^{+} R_{x}^{-1}(\pi) = b_{ij}^{+}$$
, $R_{x}(\pi) b_{ij}^{+} R_{x}^{-1}(\pi) = -b_{ij}^{+}$, $R_{x}(\pi) b_{ij}^{+} R_{x}^{-1}(\pi) = -b_{ij}^{+}$.
Решая уравнения движения /7/

$$[H', \mathcal{P}_{\lambda}] = i\omega_{\lambda} X_{\lambda}, [H', X_{\lambda}] = -i\mathcal{P}_{\lambda}, [X_{\lambda}, \mathcal{P}_{\lambda'}] = i\delta_{\lambda\lambda'}$$
 /8/

в рамках ПСФ, можно получить структуру и энергии вибрационных состояний вблизи ираст-линии. В /8/ X_{λ} , \mathscr{P}_{λ} и ω_{λ} - обобщенная координата, обобщенный импульс и энергия вибрационного состояния λ , соответственно. В общем случае величины X_{λ} и \mathscr{P}_{λ} можно искать в виде линейной комбинации большого числа двухквазичастичных бозонов. Поскольку обе части - /5а/ и /5б/ гамильтониана Н' взаимно коммутируют, уравнения /8/ можно решать отдельно для каждой части.

а/ Обобщенные координаты X_λ и импульсы \mathcal{P}_λ для гамильтониана $H_{(+)}$ ищем в виде

$$X_{\lambda} = \sum_{ik} X_{ik}^{(\lambda)} (b_{i\overline{k}}^{+} + b_{i\overline{k}}^{-}), \quad \mathcal{P}_{\lambda} = i \sum_{ik} \mathcal{P}_{ik}^{(\lambda)} (b_{i\overline{k}}^{+} - b_{i\overline{k}}^{-}). \quad /9/$$

Стандартным образом в ПСФ /см., напр., $^{/1,3-5/}$ / получаем для коэффициентов $X_{ik}^{(\lambda)}$ и $\mathcal{P}_{ik}^{(\lambda)}$ однородную систему уравнений, из условия разрешимости которой вытекает секулярное уравнение для энергий

$$\omega_{\lambda}(\Omega)$$
 однофононных состояний $Q_{\lambda}^{+} |\Omega\rangle = \frac{1}{\sqrt{2}} (\sqrt{\omega_{\lambda}} X_{\lambda} - \frac{i}{\sqrt{\omega_{\lambda}}} g_{\lambda}) |\Omega\rangle / \mu H$

декс λ нумерует все решения ПСФ-уравнений с гамильтонианом $\mathrm{H}_{(+)}/$ в виде

$$\begin{vmatrix} S_{11}^{(+)} - \frac{1}{2\kappa_{31}} & \omega_{\lambda} U_{12}^{(+)} & \omega_{\lambda} U_{13}^{(+)} \\ \omega_{\lambda} U_{21}^{(+)} & S_{22}^{(+)} - \frac{1}{2\kappa_{32}} & \omega_{\lambda} U_{23}^{(+)} \\ \omega_{\lambda} U_{31}^{(+)} & \omega_{\lambda} U_{32}^{(+)} & S_{33}^{(+)} - \frac{1}{2\kappa_{33}} \end{vmatrix} = 0, \qquad /10/2$$

^{*} Часть кренкинг-гамильтониана, ответственная за возбуждения коллективных состояний положительной четности, была рассмотрена в /3/.

где

$$\mathbf{S}_{ad}^{(+)} = \sum_{ik} \frac{\mathbf{E}_{ik} \mathbf{a}_{ik} \mathbf{d}_{ik}}{\mathbf{E}_{ik}^{2} - \omega_{\lambda}^{2}}, \quad \mathbf{U}_{ad}^{(+)} = \sum_{ik} \frac{\mathbf{a}_{ik} \mathbf{d}_{ik}}{\mathbf{E}_{ik}^{2} - \omega_{\lambda}^{2}}, \quad /11/$$

a_{ik}, d_{ik} представляют квазичастичные матричные элементы f_{1k}^{1+} , f_{1k}^{2+} , f_{3+}^{3+} операторов $\hat{O}_{\mu}(+) / \mu = 1, 2, 3 / / см.$ выражение /8/ $\mathbf{B}^{ik} / \mathbf{1} / / .$ б/ Обобщенные координаты X_{λ} и импульсы \mathcal{P}_{λ} в случае $\mathbf{H}_{(-)}$ ищем в виде линейной комбинации двухквазичастичных бозонов

$$X_{\lambda} = \sum_{ik} \{X_{ik}^{(\lambda)}(b_{ik}^{+} + b_{ik}) + \widetilde{X}_{ik}^{(\lambda)}(b_{\overline{1k}}^{+} + b_{\overline{1k}})\},$$

$$\mathcal{P}_{\lambda} = i \sum_{ik} \{\mathcal{P}_{ik}^{(\lambda)}(b_{ik}^{+} - b_{ik}) + \widetilde{\mathcal{P}}_{ik}^{(\lambda)}(b_{\overline{1k}}^{+} - b_{\overline{1k}})\},$$
(12)

где опять получаем для $X_{ik}^{(\lambda)}, \tilde{X}_{ik}^{(\lambda)}, \mathcal{P}_{ik}^{(\lambda)}$ и $\tilde{\mathcal{P}}_{ik}^{(\lambda)}$ систему уравнений с условием разрешимости в виде секулярного уравнения

$$\begin{vmatrix} S_{00}^{(-)} - \frac{1}{\kappa_{30}} & \omega_{\lambda} U_{10}^{(-)} & \omega_{\lambda} U_{20}^{(-)} & \omega_{\lambda} U_{30}^{(-)} \\ \omega_{\lambda} U_{01}^{(-)} & S_{11}^{(-)} - \frac{1}{\kappa_{31}} & \omega_{\lambda} U_{21}^{(-)} & \omega_{\lambda} U_{31}^{(-)} \\ \omega_{\lambda} U_{02}^{(-)} & \omega_{\lambda} U_{12}^{(-)} & S_{22}^{(-)} - \frac{1}{\kappa_{32}} & \omega_{\lambda} U_{32}^{(-)} \\ \omega_{\lambda} U_{03}^{(+)} & \omega_{\lambda} U_{13}^{(-)} & \omega_{\lambda} U_{23}^{(-)} & S_{33}^{(-)} - \frac{1}{\kappa_{33}} \end{vmatrix} = 0, \qquad (13)$$

где

$$\mathbf{S}_{ad}^{(-)} = \sum_{ik} \left\{ \frac{\mathbf{E}_{ik} \mathbf{a}_{ik} \mathbf{d}_{ik}}{\mathbf{E}_{ik}^{2} - \omega_{\lambda}^{2}} + \frac{\mathbf{E}_{T\bar{k}} \mathbf{a}_{ik} \mathbf{d}_{ik}}{\mathbf{E}_{T\bar{k}}^{2} - \omega_{\lambda}^{2}} \right\}, \quad \mathbf{U}_{ad}^{(-)} = \sum_{ik} \left\{ \frac{\mathbf{a}_{ik} \mathbf{d}_{ik}}{\mathbf{E}_{ik}^{2} - \omega_{\lambda}^{2}} + \frac{\mathbf{a}_{ik} \mathbf{d}_{ik}}{\mathbf{E}_{T\bar{k}}^{2} - \omega_{\lambda}^{2}} \right\}, \quad /14/$$

 a_{ik} , d_{ik} - квазичастичные матричные элементы операторов \hat{O}_{μ} (--) / μ = 0,1,2,3/ /см. выражение /8/ в ^{/1/}/.

Из симметрии волновой функции ядра в кренкинг-модели относительно поворота R $_{\bf x}({\it m})$ вытекает /см., напр., /1/ /, что для получения энергий ω_{λ} и структуры однофононных состояний Q^+_{|} $\Omega>$ отрицательной четности /т.е. коэффициентов X $^{(\lambda)}_{(\lambda)}$, $\mathcal{P}^{(\lambda)}_{(\lambda)}$ / при четных значениях полного момента I надо решать секулярное уравнение /10/ и соответствующую ему систему уравнений для X $^{(\lambda)}_{ik}$ и $\mathcal{P}^{(\lambda)}_{ik}$. При нечетных значениях полного момента I решаем секулярное уравнение /13/ и соответствующую систему уравнений для X $^{(\lambda)}_{ik}$, $\tilde{X}^{(\lambda)}_{ik}$, $\mathcal{P}^{(\lambda)}_{ik}$ и $\mathcal{P}^{(\lambda)}_{ik}$ /т.е. при четных значениях I работает часть H $_{(+)}$ гамильтониана /4/, для нечетных значений I - часть H $_{(-)}/.$

2. ЧИСЛЕННЫЕ РАСЧЕТЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты вычислений энергетических спектров в рамках МПВ + ПСФ подхода без учета диполь-дипольных /д.-д./ и диполь-октупольных /д.-о./ остаточных взаимодействий /вариант II / сравниваются с результатами работы^{/1/},где д.-д. и д.-о. силы были учтены /вариант I/.

В табл.1 дано сравнение силовых констант $\kappa_{3\mu}/\mu = 0,1,2,3/$ варианта 1 /столбец I/ и II /столбец II /, полученными из требования воспроизведения экспериментальных энергий состояний IK $\frac{\pi}{\nu} = 10^{-}_{0}, 21^{-}_{1}, 22^{-}_{1}$ и 33 $^{-}_{1}$ для ¹⁵⁸Dy и ¹⁶⁸Er.

Из таблицы видно, что константы κ_{32} и κ_{33} в обоих случаях совпадают. Из-за отсутствия д.-д. и д.-о. силы констант κ_{30} и κ_{31} изменились по сравнению с/1/. Константа κ_{30} в варианте I примерно в 2,5 раза больше, чем κ_{30} в варианте II и, наоборот, константа κ_{31} в варианте I приблизительно в 2 раза меньше, чем κ_{31} в варианте II.

В табл.2 и 3 сравниваются экспериментальные значения энергий с теоретическими значениями, полученных в вариантах I и II для ¹⁵⁸ Dy и ¹⁶⁸ Er соответственно. Из табл.2 видно, что все низколежащие полосы в ¹⁵⁸ Dy можно энергетически описать в рамках МПВ + ПСФ подхода с учетом только октуполь-октупольных остаточных взаимодействий. Единственный вопрос в случае ¹⁵⁸ Dy возникает в связи с состояниями $IK_{\nu}^{\pi} = 11\frac{1}{1}$ и $51\frac{1}{1}$, которые в настоящем расчете сдвинуты в область энергий выше, чем в 2,5 МэВ, и поэтому в таблице не приведены. Как видно из табл.3, для ¹⁶⁸ Er также получено энергетическое описание почти всех вращательных низколежащих полос при использовании только октуполь-октупольных остаточных сил. Как и для ¹⁵⁸ Dy,в случае чисто октуполь-октупольных остаточных сил энергия состояний полосы $K_{11}^{\pi} = 4\frac{1}{1}$ сдвинута в область энергий выше 2,5 МэВ по сравнению с экспериментальными данными. Поэтому эти значения не приведены в табл.3. Отметим, что энергетический сдвиг вверх наблюдался в данной полосе уже в работе /1/. Пренебрежение д.-д. и д.-о. силами увеличивает этот сдвиг. Имеющийся факт свидетельствует о том,

Таблица 1

Сравнение силовых констант $\kappa_{3\mu}$ в ¹⁵⁸ Dy и ¹⁶⁸ Er

ĸ	во, <u>МэВ</u> Фм	к10 -4	к ₃₁ , <u>М</u>	$\frac{\mathbf{B}}{\mathbf{M}^{6}} \times 10^{-4}$	к ₃₂ , <u>Мэ</u> Фм	$\frac{B}{6}$ x10 ⁻⁴	к ₃₃ , <u>Мэ</u> Ф	Bx10-4
	I	II	I	II	I	II	I	II
¹⁵⁸ Dy	0,278	0,117	0,076	0,158	0,294	0,294	0,722	0,718
¹⁶⁸ Er	0,265	0,111	0,063	0,136	0,218	0,218	0,427	0,427

Таблица 2

~		
D		
158		
щ	1	
Й	1	
HH	ł	
TO		
00		
0		
Chill		
жаı		
Ле		
KO		
БИН		
й	1	
ГИ		
ſep		
ЭH	$\sim $	
XX	m	
CK	бW	
erie.	m	
TH	~	
obe		
Te		
И		
X		
PHE		
aur		
TH		
Ψ.		
M		
ерим		
сперим		
эксперим		
че эксперим		
ение эксперим		
внение эксперим		
равнение эксперим		

	∎-doe⊥	•	•	2,42I	(B)
K [#] = 3 ₁	reop-I	B	8	2,417	(B)
	эксп.	•	•	2,4IO	8	8
	reop -1	•	I,372	795, I	I ,509	I,566
$K_{\mu}^{\pi}=2_{4}^{-}$	reop-I	•	I,372	I ,357	I,5I7	I,506
	эксп.		I,372	1,397	I,5I9	I,528
	⊺eop-II	Q)	I054 I	2,060	I,588	6)
$K_{v}^{T} = 1_{1}^{T}$	Teop-I	1,443	I,50I	I,512	I,6I0	I,648
	JKCII.	I,442	I,50I	I,5I4	I,6I8	I,635
	теор-П	1,607	ŀ	2,109	8	2,190
$K_{v}^{\pi} = 0_{2}^{-}$	reop-I	I,806	1	2,068	1	I,905
	akcn.a)	I,608	1	I,672		1,819
K ⁵ =0, ⁺	(upact)	•	660*0	1	0,318	ł
Otaz		н	2	e	4	5

a) 6)

 экспериментальные энергии взяты из работ/12,18/,
 сдвинутый уровень в область энергий выше 2,5 МэВ, в случае учета октуполь-октупольных сил при любых значениях к ₃и, , уровень лежит выше, чем 2,5 МэВ.

1 B) Таблица 3

.

Сравнение экспериментальных и теоретических значений энергий низколежащих состояний в ¹⁶⁸ Ег (в МэВ)

-			10000 (A) (A)				111000	Action of the	240210	1993
	Teop- <u>ii</u>	I,786	•	1,907	I	1,992	1	B)	B)	
×, = ,	Teop-I	I,76I	1	1,907	1	1,992	1	(a	B)	
	эксп.	I,786	•	I,9I3	1	2 ,185	1	1	ł	
	Teop- <u>H</u>	ł	1	I	1	1	I,785	I,83I	I,899	
K [#] =6;	Teop-I	I	1	1	1	I	I,785	I,847	I ,899	
	эксп.	1	1	1	1	1	I,773	I	1	
	Teop-II	I	I ,569	I ,633	I,674	I,933	I,963	(g	B)	
K <mark>#</mark> =2.	Teop-I	1	I ,569	I ,649	I ,673	166 ' 1	I,963	B)	B)	
	Эксп.	1	I ,569	I ,633	1,7I9	I,820	049, I	1	I	
	теор-й	9	1	I,542	I,6I5	1,779	I,580	2,065	2,042	
K [#] = 3,	теор- <u>Т</u>	1	8	I,543	I,6I5	I,895	I,569	2,236	2,042	
	JKCU.	1	I	I,542	I,6I5	I,707	I,820	I,950	1	
	Teop-II	۵)	I,402	(9	I,60I	1,777	I,75I	I,965	1,944	
К ≓ "=1	Teop-I	I,359	I,403	I,436	I ,60I	I,682	I?75I	I ,959	I,952	
	akcn.	I ,358	I,403	I64,I	I,542	I,574	I,760	i	I	
K [#] _=0, ⁺	(upaet)	ı	670,0	I	0,264	I	0,548	1	0,928	
೧೯	z z	н	2	e	4	ŝ	9	2	œ	
The Conception of the In-	Local Contraction	100200-00220-00								

7

3 /продолжение/ Габлица

x=4-	1-doa	1	1	1	156 '	r)	,883	
	reop-I Tu	1	1	1	I 950 I	r)	I,883 I	
¥	эксп.	1	I	1	2,059	2 ,148	1	
	Teop- <u>ii</u>	-	1	2 , I06	2,050	r)	2,334	
K ^x =3 ₃	Teop-I	I	1	2,117	2,077	r)	2,46I	
	ЭКСП.	1	t	1,999	2,089	2,200	1	
	теор-іі	I,923	I,88I	2,087	2,315	2,032	2,393	
$\zeta_{v}^{\mathrm{H}} = 1_{2}^{-}$	Teop-I	I,923	I,88I	2,069	2,344	2 ,05I	2 , 2I6	
	эксп.	I,936	I,972	2,022	2,097	2,129	I	
	Teop- <u>II</u>	1	I	1	416 ' I	r)	2 ,I 75	
$K_{v}^{\pi} = 4_{2}^{-}$	Teop-I	I	I	1	416 ' I	r)	2,120	
	эксп.	I	1	-	1,905	2,00I	2 , II8	
	Teop-II	1	1	I,86I	I,858	I96,1	2 , I08	
$K_{v}^{TE} = 3_{2}^{-}$	Teop-I	1	-	I,86I	I ,858	1	2,038	
	aken.	I	1	I,828	I,892	I,983	2 ,09 8	
K=0+	(upact)	1	0,079	1	0,264	1	0,548	
053z		H	2	ß	4	5	9	

5 M9B, работы /14/ 2 взяты из табл.2, области энергии X экспериментальные - см. примечание сдвинутый уровень a) - 3 6),B) r) - 0

H

И

H

вариантов

случае

m

Bhille

энергий

щ

что полоса $K_{1}^{\pi} = 4_{1}^{\pi}$, вероятно, обусловлена д.-д. и д.-о. взаимодействиями и их связью с вращением. Однако окончательное заключение о природе этой полосы требует дальнейшего анализа /напр., учет гексадекапольных членов в остаточных взаимодействиях и т.д./. Кроме полосы $K_{\nu}^{\pi} = 4\frac{1}{1}$ в случае ¹⁶⁸ Er /как и у ¹⁵⁸ Dy/ возникает вопрос о состояниях $IK_{\nu}^{\pi} = 11\overline{1}$ и $31\overline{1}$, которые при учете только октуполь-октупольного остаточного взаимодействия также сдвинуты выше 2,5 МэВ.Следовательно, можно ожидать большого влияния д.-д. и д.-о. взаимодействий на эти состояния.

ЗАКЛЮЧЕНИЕ

Анализ энергетического спектра в рамках МПВ+ПСФ подхода с учетом только октуполь-октупольных остаточных взаимодействий показывает, что:

1/ в 158 Dy все низколежащие полосы отрицательной четности имеют октупольный характер. Только в случае $K_{\nu}^{\pi} = 1_{1}^{-}$ полосы можно ожидать больших дипольных примесей в состояниях этой полосы, поскольку в пренебрежении д.-д. и д.-о. силами некоторые состояния /в частности, состояния с нечетными угловыми моментами/ значительно сдвинуты вверх по энергии;

2/ в ¹⁶⁸ Ег все низколежащие полосы отрицательной четности, за исключением полосы $K_{12}^{\pi} = 4\frac{1}{1}$, имеют октупольный характер /т.е. можно описать их энергию в рамках МПВ+ПСФ подхода с учетом октуполь-октупольных остаточных сил/. Поскольку в пренебрежении д.-д. и д.-о. силами $K_{\nu}^{\pi} = 4_1^-$ полоса в спектре сильно сдвинута вверх по сравнению с экспериментом и результатами работы /1/, можно считать, что данная полоса обусловлена д.-д. и д.-о. остаточными взаимодействиями. По этой причине как у ¹⁵⁸ Dy,так и у 168 Ег. можно ожидать в состояниях полосы К^{π} = 1 – большие дипольные примеси.

Для дальнейшего анализа B(E1) -факторов необходимо изучить влияние д.-д. и д.-о. сил непосредственно на B(E1) /не только на энергии полос/. Кроме того, надо также включить в анализ и гексадекапольные степени свободы, чтобы окончательно решить вопрос о структуре фононов, описывающих полосы с $K_{\nu}^{''} \ge 4$. Все эти задачи являются предметом нашего дальнейшего исследования.

ЛИТЕРАТУРА

- 1. Квасил Я. и др. ОИЯИ. Р4-84-488, Дубна, 1984.
- 2. Pyatov N.I., Salamov D.I. Nucleonica, 1977, v. 22, p. 127.
- 3. Квасил Я. и др. Изв. АН СССР, сер.физ., 1984, т. 48, с.844.
- 4. Marshalek E.R. Nucl. Phys., 1977, A275, p. 416.
- 5. Михайлов И.Н., Янссен Д. Изв. АН СССР, сер.физ., 1977, т.41, c. 1576.

- 6. Egido J.L. et al. Nucl. Phys., 1980, A341, p. 229.
- 7. Banerjee B., Mang H.J., Ring P. Nucl.Phys., 1973, A215, p. 366.
- 8. Bhargava P.C. Nucl. Phys., 1973, A207, p. 258.
- 9. Faessler A. et al. Nucl. Phys., 1976, A256, p. 106.
- 10. Goodman A.L. Nucl. Phys., 1976, A265, p. 113.
- 11. Dudek J., Werner T. J.Phys., 1978, G4, p. 1543.
- 12. Бегжанов Р.Б., Беленький В.М. Гамма-спектроскопия атомных ядер, "Фан", Ташкент, 1980.
- 13. Anderson D.L. et al. Phys.Rev., 1978, C18, p. 383.
- 14. Davidson W.F. et al. J.Phys., 1981, G7, p. 455.

СООБЩЕНИЯ, КРАТКИЕ СООБЩЕНИЯ, ПРЕПРИНТЫ И СБОРНИКИ ТРУДОВ КОНФЕРЕНЦИЙ, ИЗДАВАЕМЫЕ ОБЪЕДИНЕННЫМ ИНСТИТУТОМ ЯДЕРНЫХ ИССЛЕ-ДОВАНИЙ, ЯВЛЯЮТСЯ ОФИЦИАЛЬНЫМИ ПУБЛИКАЦИЯМИ.

Ссылки на СООБЩЕНИЯ и ПРЕПРИНТЫ ОИЯИ должны содержать следующие элементы:

- фамилии и инициалы авторов,
- сокращенное название Института /ОИЯИ/ и индекс публикации,
- место издания /Дубна/,
- год издания,
- номер страницы /при необходимости/.

Пример:

1. Переушин В.Н. и др. ОИЯИ, P2-84-649, Дубна, 1984.

Ссылки на конкретную СТАТЬЮ, помещенную в сборнике, должны содержать:

- фамилии и инициалы авторов,
- заглавие сборника, перед которым приводятся сокращенные слова: "В кн."
- сокращенное название Института /ОИЯИ/ и индекс издания,
- место издания /Дубна/,
- год издания,
- номер страницы.

Пример:

Колпаков И.Ф. В кн. X1 Международний симпозиум по ядерной электронике, ОИЯИ, Д13-84-53, Дубна, 1984, с.26.

Савин И.А., Смирнов Г.И. В сб. "Краткие сообщения ОИЯИ", № 2-84, Дубна, 1984, с.3.

Принимается подписка на препринты и сообщения Объединенного института ядерных исследований.

Установлена следующая стоимость подписки на 12 месяцев на издания ОИЯИ, включая пересылку, по отдельным тематическим категориям:

ИНДЕКС	ТЕМАТИКА І	lена на	под	писі	GN
1.	Экспериментальная физика высоких энергий	10	p.	80	коп.
2.	Теоретическая физика высоких энергий	17	p.	80	коп.
3.	Экспериментальная нейтронная физика	4	p.	80	коп.
4.	Теоретическая физика низких энергий	8	p.	80	коп.
5.	Математика	4	р.	80	коп.
6.	Ядерная спектроскопия и радиохимия	4	P.	80	коп.
7.	Физика тажелых ионов	2	p.	85	коп.
8.	Криогеника	2	р.	85	коп.
9.	Ускорители	7	p.	80	коп.
10.	Автоматизация обработки экспериментальных данных	7	р.	80	коп.
11.	Вычислительная математика и техника	6	р.	80	коп.
12.	Химия	1	р.	70	коп.
13.	Техника физического эксперимента	8	р.	80	коп.
14.	Исследования твердых тел и жидкостей ядерными методами	1	р.	70	коп.
15.	Экспериментальная физика ядерных реакций при мизких энергиях	1	р.	50	коп,
16.	Дозиметрия и физика защиты	1	p.	90	коп.
17.	Теория конденсированного состояния	6	р.	80	коп.
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	2	p.	35	коп.
19.	Биофизика	1	р.	20	коп.

Подписка может быть оформлена с любого месяца текущего года.

По всем вопросам оформления подписки следует обращаться в издательский отдел ОИЯИ по адресу: 101000 Москва, Главпочтампт, п/я 79.

Квасил Я., Чариев М.М., Чориев Б. Об октупольных состояниях в ядрах ¹⁵⁸ Dy и ¹⁶⁸ Er

P4-84-695

Исследованы характеристики низколежащих состояний отрицательной четности в ядрах ¹⁵⁸ Dy и ¹⁶⁸ Er в рамках приближения случайной фазы, основанного на модели принудительного вращения. В качестве остаточного взаимодействия используются октуполь-октупольные силы. Вычисленные энергии уровней сравниваются с экспериментальными значениями, а также значениями энергий, полученными при учете сил диполь-дипольного, октуполь-октупольного и диполь-октупольного типа. Результаты расчета применяемой модели позволяют выяснить природу низколежащих состояний отрицательной четности.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Kvasil J., Chariev M.M., Choriev B. About Octupole States in ¹⁵⁸Dy and ¹⁶⁸Er P4-84-695

The properties of negative parity low-lying states in ¹⁵⁸ Dy and ¹⁶⁸Er in the RPA based on the cranking model are investigated. Octupole-octupole forces have been used as a residual interaction. Calculated energy levels are compared with the experimental ones, and also with the energy values obtained with making allowance for dipole-dipole, octupole-octupole and dipole-octupole type forces. The results of calculation by the used model permit to understand the nature of negative parity low-lying states.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984