

объединенный институт ядерных исследований дубна

1702/84

P4-84-28

В.Б.Беляев, О.И.Картавцев *

КОНЕЧНОМЕРНАЯ АППРОКСИМАЦИЯ ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАТОРА В ЗАДАЧАХ КВАНТОВОЙ МЕХАНИКИ

Направлено в "Journal of Computational Physics"

^{*}Ташкентский государственный университет

Решение квантовомеханических задач, описываемых уравнением Шредингера или уравнениями фаддеева в конфигурационном пространстве, за редкими исключениями может быть получено лишь численно. При этом наибольшую трудность представляет аппроксимация входящего в уравнения дифференциального оператора. Конечноразностные приближения, которые обычно применяются при решении дифференциальных уравнений, приводят к громоздким вычислениям и не используют имеющуюся a priori информацию о свойствах решения.

Будем строить такую аппроксимацию дифференциального оператора, которая обеспечит совпадение приближенного и точного оператора на некотором конечном наборе функций $|\chi_{\bf i}>$. Для этого потребуем, чтобы приближенный оператор ${\bf T}$ обладал следующим свойством:

$$\tilde{\mathbf{T}}\mathbf{T}^{-1}|\chi_{i}\rangle = |\chi_{i}\rangle. \tag{1}$$

Рассмотрим для определенности уравнение Шредингера:

$$(\mathbf{T} + \mathbf{V} - \mathbf{E}) | \psi \rangle = 0, \tag{2}$$

где ${\bf T}$ - дифференциальный оператор кинетической энергии, ${\bf V}$ - оператор умножения на функцию потенциальной энергии, ${\bf E}$ - энергия. Легко показать, что при удачном выборе набора $|\chi_i>$, а именно, если решение $/2/|\psi>$ может быть представлено в виде:

$$|\psi\rangle = (E - V)^{-1} \sum_{i=1}^{N} C_{i} |\chi_{i}\rangle,$$
 /3/

 $|\psi>$ удовлетворяет также приближенному уравнению:

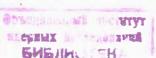
$$(\tilde{\mathbf{T}} + \mathbf{V} - \mathbf{E}) | \psi \rangle = \mathbf{0}. \tag{4}$$

Таким образом, каждое решение /2/ есть решение /4/, но обратное утверждение неверно,и уравнение /4/ может иметь лишние решения, которые необходимо отбросить.

Решение уравнения /4/ будет иметь вид /3/, причем коэффициенты С; удовлетворяют системе уравнений:

$$\sum_{i=1}^{N} C_{i} < \chi_{j} | T^{-1} - (E - V)^{-1} | \chi_{i} > = 0,$$
 /5/

полученной проектированием /4/ на функции $\, {
m T}^{-1} \mid \chi_{\, {
m i}} \! > \! , \,$



Граничные условия, которым удовлетворяет решение /2/, вводятся для уравнения /4/ с помощью такого выбора функций $|\chi_i\rangle$, который бы обеспечил правильное поведение $|\psi\rangle$. Это легко сделать, поскольку $|\psi\rangle$ и $|\chi_i\rangle$ связаны соотношением /3/.

Из /3/ следует также, что для любого \mathbf{x}_0 такого, что $\mathbf{E} - \mathbf{V}(\mathbf{x}_0)$

=0, должно быть $\sum\limits_{i=1}^{N} C_{i} \; \chi_{i} \; (\mathbf{x_{0}}) = 0$. Это условие обеспечивает схо-

димость выражения /5/ в точке хо.

Успешное применение описываемой аппроксимации, как всегда, зависит от того, насколько удачным является набор функций $|\chi_i>$. Соотношение /3/, связывающее $|\psi>$ и $|\chi_i>$, позволяет выбрать набор $|\chi_i>$, обеспечивающий выполнение известных а priori свойств решения $|\psi>$. Так, например, волновая функция \mathbf{n} -го возбужденного состояния должна иметь \mathbf{n} нулей, и естественно поэтому выбирать функции $|\chi_i>$ также имеющие \mathbf{n} нулей.

Для того, чтобы сделать однозначным выбор набора $|\chi_i>$, необходимо наложить кокое-либо условие близости приближенного решения к точному. Такое условие не только фиксирует наилучший набор $|\chi_i>$, но и отбирает единственное решение /4/ для данного набора функций $|\chi_i>$. Функционалы, минимум которых обеспечивает близость T и \tilde{T} на решении /4/ $|\psi>$, имеют вид:

$$\mathbf{F}_{\mathbf{n}} = |\langle \psi | (\mathbf{T} - \widehat{\mathbf{T}})^{\mathbf{n}} | \psi \rangle|, \tag{6}$$

$$\Phi_{n} = \sum_{i=1}^{N} \left| \langle \psi_{i} \mid (T - T)^{n} \mid \psi \rangle \right|^{2}, \qquad (7)$$

где $|\psi_{i}\rangle = (E - V)^{-1} |\chi_{i}\rangle$.

Можно предложить и более тонкие способы отбирать правильное решение. Например, в том случае, когда с хорошей точностью получено решение /2/ для одного значения энергии Е, решение для другой энергии Е' может отбираться с помощью условия ортогональности:

$$|\langle \psi_{\mathbf{E}} | \psi_{\mathbf{E}'} \rangle| = \min. \tag{8}$$

Далее будем рассматривать одномерное уравнение Шредингера, возникающее после отделения угловой зависимости в случае сферически симметричного потенциала $V(|\vec{r}|)$.

Тогда

$$T_{\ell} = -\frac{d}{dx^2} + \frac{\ell(\ell+1)}{x^2}.$$
 /9/

Ядро обратного оператора \mathbf{T}_{ℓ}^{-1} есть

$$g_{\ell}(x, x') = \frac{1}{2\ell + 1} \cdot \frac{x_{\ell}^{\ell + 1}}{x_{\ell}^{\ell}}.$$
 /10/

При решении задачи на собственные значения вычисление интегралов, входящих в /5/, не вызывает затруднений, поскольку функции $|\chi_i>$ должны экспоненциально затухать на бесконечности.

В задаче рассеяния асимптотика имеет вид $<\mathbf{x}\mid\psi>$ $\sin(\mathbf{k}\mathbf{x}+\delta\varrho)$, $\mathbf{k}^2=\mathbf{E}$,и необходимо доопределить способ вычисления интегралов на бесконечности. В теории рассеяния таким предписанием является введение бесконечно малого затухания, причем затухание полагается равным нулю лишь после вычисления всех интегралов.

В качестве иллюстрации получим выражение для фазы рассеяния δ_ℓ при больших энергиях $\mathbf{k}^2 >> V(\mathbf{x})$, когда $\delta_\ell << 1$ и должно работать приближение Борна. Ограничимся одной функцией $<\mathbf{x}\mid \chi_\ell>=$ = $\mathbf{x}\mathbf{j}_\ell(\mathbf{k}\mathbf{x}+\delta_\ell)$, которая имеет правильное поведение в нуле и на бесконечности. Перепишем /5/ в виде:

$$\langle \chi_{\ell} | T_{\ell}^{-1} - k^{-2} | \chi_{\ell} \rangle = k^{-2} \langle \chi_{\ell} | V(k^{-2} - V)^{-1} | \chi_{\ell} \rangle.$$
 /11/

Вычислим интеграл:

$$\int_{0}^{\infty} dy g_{\ell}(x, y) y j_{\ell}(y + \delta_{\ell}) = \frac{1}{2\ell + 1} \left[x^{-\ell} \int_{0}^{x} dy y^{\ell+2} j_{\ell}(y + \delta_{\ell}) + \frac{1}{2\ell + 1} \right]$$

$$+ x^{\ell+1} \int_{x}^{\infty} dy \ y^{1-\ell} j_{\ell}(y + \delta_{\ell})] = x j_{\ell}(x + \delta_{\ell}) - \frac{\ell+2}{x^{\ell}} \delta_{\ell} \int_{0}^{x} \frac{dy \ y^{\ell}}{(y + \delta_{\ell})^{2}} j_{\ell}(y + \delta_{\ell}) \times /12/$$

$$\times \left[2\ell y + \delta \varrho \left(\ell+1\right)\right] - \left(\ell-1\right) x^{\ell+1} \quad \delta \varrho \int\limits_{x}^{\infty} \mathrm{d}y \, j \, \varrho (y + \delta \varrho) \, \frac{2(\ell+1)y + \ell \delta \varrho}{y^{\ell+1} \left(y + \delta \varrho\right)^2} \ .$$

Здесь мы дважды воспользовались соотношениями

$$\frac{d}{dz} [z^{n+1} j_n(z)] = z^{n+1} j_{n-1}(z),$$

$$\frac{d}{dz} [j_n(z) z^{-n}] = -j_{n+1}(z) z^{-n}.$$
/13/

При интегрировании по частям в /12/ возникает величина $\lim_{y\to\infty} y^{1-\ell}$ ј $\ell-1$ ($y+\delta_\ell$). В случае $\ell=0$ эта осциллирующая величина

должна быть положена равной нулю в соответствии с соглашением о бесконечно малом затухании. Подставляя /12/ в /1/, имеем

$$\frac{\delta_{\ell}}{2\ell+1} \int_{0}^{\infty} dx \, x j_{\ell} (x + \delta_{\ell}) \left[\frac{\ell+2}{x^{\ell}} \int_{0}^{x} \frac{dy \, y^{\ell}}{(y + \delta_{\ell})^{2}} j_{\ell} (y + \delta_{\ell}) \left[2\ell y + \delta_{\ell} (\ell+1) \right] + \frac{\delta_{\ell}}{2\ell+1} \int_{0}^{\infty} dx \, x j_{\ell} (x + \delta_{\ell}) \left[\frac{\ell+2}{x^{\ell}} \int_{0}^{x} \frac{dy \, y^{\ell}}{(y + \delta_{\ell})^{2}} j_{\ell} (y + \delta_{\ell}) \left[2\ell y + \delta_{\ell} (\ell+1) \right] + \frac{\delta_{\ell}}{2\ell+1} \int_{0}^{\infty} dx \, x j_{\ell} (x + \delta_{\ell}) \left[\frac{\ell+2}{x^{\ell}} \int_{0}^{x} \frac{dy \, y^{\ell}}{(y + \delta_{\ell})^{2}} j_{\ell} (y + \delta_{\ell}) \left[2\ell y + \delta_{\ell} (\ell+1) \right] + \frac{\delta_{\ell}}{2\ell+1} \int_{0}^{\infty} dx \, x j_{\ell} (x + \delta_{\ell}) \left[\frac{\ell+2}{x^{\ell}} \int_{0}^{x} \frac{dy \, y^{\ell}}{(y + \delta_{\ell})^{2}} j_{\ell} (y + \delta_{\ell}) \left[2\ell y + \delta_{\ell} (\ell+1) \right] \right] dx$$

$+(\ell-1)x^{\ell+1}\int_{x}^{\infty}dy j_{\ell}(y+1)$	$\delta_{\ell}) = \frac{2(\ell+1)y + \ell \delta_{\ell}}{\ell+1}$	$=-k^3\int_{\ell}^{\infty}dx x^2j_{\ell}^2$	$(kx + \delta_{\ell}) \frac{V(x)}{\sqrt{14/4}}$
x	$y^{\ell+1} (y + \delta_{\ell})^2$	0	$k^2 - V(x)$

При малых $\delta \ell \sim V/k^2$ в случае $\ell \geq 1$ получим, разлагая подынтегральное выражение /14/ в ряд по $\delta \ell$:

$$\frac{2\delta_{\ell}}{2\ell+1} \int_{0}^{\infty} dx \, x j_{\ell}(x) \left[\frac{\ell(\ell+2)}{x\ell} \int_{0}^{x} dy \, y^{\ell-1} \, j_{\ell}(y) + (\ell^{2}-1) \int_{x}^{\infty} \frac{dy \, j_{\ell}(y)}{y^{\ell+2}} \right] = -k \int_{0}^{\infty} dx (x j_{\ell}(kx))^{2} V(x).$$

Меняя порядок интегрирования в левой части /15/, получим борновское приближение для фазы:

$$\delta_{\ell} = -k \int_{0}^{\infty} dx \left(x j_{\ell}(kx)\right)^{2} V(x).$$
 /16/

В случае $\ell=0$ также получается /16/, но разлагать по δ необходимо после интегрирования /14/.

Приведем результаты расчета для задачи на собственные значения и задачи рассеяния для уравнения

$$\left(\frac{d^2}{dx^2} + \frac{e^{-\mu x}}{x} + E\right) |\psi\rangle = 0.$$
 /17/

Здесь в предельном случае $\mu=0$ /кулоновский потенциал/ уравнение /17/ решается точно. Выбирая функции $|\chi>$ вида

$$\langle \mathbf{x} | \chi \rangle = (1 - \kappa^2 \mathbf{x}) P(\mathbf{x}) e^{-\kappa \mathbf{x}},$$
 /18/

где $\kappa^2=-{\bf E}$, ${\bf P}({\bf x})$ - полином, получим набор решений, среди которых содержится и точное. В частности, для $<{\bf x}\mid\chi>=(1-\kappa^2{\bf x})\,{\rm e}^{-\kappa{\bf x}}$ получается два решения с $\kappa_1=1/2$ и $\kappa_2=2/3$. Первое из них является точным,и функционал на нем обращается в нуль, т.е. $<\psi\mid {\bf T}-\ddot{\bf T}\mid\psi>=0$.

При $\mu \neq 0$ численный расчет был проведен с набором функций $\langle \mathbf{x} | \chi_i \rangle = (\mathrm{e}^{-\mu \mathbf{x}} - \kappa^2 \mathbf{x}) \mathrm{e}^{-\alpha_i \, \mathbf{x}}$. Результаты приведены в табл.1. Для отбора решений использовалось условие минимума величины

$$\Delta = \left[\frac{\langle \psi \mid (\mathbf{T} - \widetilde{\mathbf{T}}) \mid \psi \rangle}{\langle \psi \mid \mathbf{T} \mid \psi \rangle} \right]^{2}.$$

Из табл. 1 видно, что не слишком малые значения энергии связи получаются с высокой точностью при использовании всего двух функций $|\chi_1>$. Аналогичная ситуация возникает при описании энергии возбужденного состояния.

Величина Δ , определяющая погрешность используемой аппроксимации, во всех случаях, кроме специально отмеченных, не превышает

μ	κ <mark>2</mark> 0 R	κ ² ₀	κ <mark>2</mark> 1R	κ <mark>2</mark>
.001	.24900	.24900	.06150	.06154
.0025	.24750	.24751	.060025	.06006
.005	.245025	.24503	.05765	.05767
.007143	.242925	.24293	.05565	.05568
.OI	.240225	.24015	.053075	.05310
.0125	.237725	.23773	.05090	.05088
.01667	.233750	.23374	.047375	.04738
.025	.22590	.22590	.040875	.04096
.03333	.218275	.21827	.0350	.0350I
.05	.203525	.20353	.024965	.02496
.071429	.18560	.18561	.014985	.01498
·I	.16340	.16340	.00605	.00607 ^{XX}
.I25	.145450	.14546	.001698	.00171 ^{XXX}
.16667	·II8425	·II8440		
.25	.07405	.07407 ^X		
.357143	.033775	.03377 ^X		
.5	.005143	.00515 ^X		

 $[\]kappa_{0R}^2$, κ_{1R}^2 — энергии связи основного и возбужденного состояний, полученные в $^{/1/}$, κ_0^2 , κ_1^2 — результаты расчета, представленного в настоящей работе.

 $^{^{\}mathbf{x}}$ результат получен с использованием набора 4-х функций $|\chi_{i}>$.

 $^{^{}xx}$ 5 функций $|\chi_i\rangle$; $\Delta = 5 \cdot 10^{-6}$; xxx 5 функций $|\chi_i\rangle$; $\Delta = 1,66 \cdot 10^{-4}$.

 10^{-6} . Значение энергии не зависит от параметров функций $|\chi_i>$ при таких малых $\Delta<10^{-6}$.

В задаче рассеяния в набор $|\chi_i>$ включается функция, обеспечивающая правильную асимптотику: $\langle \mathbf{x}\,|\,\chi_i>=\sin(\mathbf{k}\mathbf{x}+\delta)$. Остальные функции имеют вид: $\langle \mathbf{x}\,|\,\chi_i>=\mathrm{e}^{-\alpha_i\,\,\mathbf{x}}$. Вычисления производились для значения $\mu=0$,401696, что соответствует потенциалу, описывающему $^3\mathrm{S}_1$ -фазу NN-рассеяния. Значения фаз, полученные с использованием 4 -х функций $|\chi_i>$, приведены в табл.2.Для отбора решения использовался функционал Φ_1 . Для длины рассеяния получено значение $\mathbf{a}=5$,06 $\mathbf{\phi}$. Точное значение \mathbf{a} / \mathbf{p} / равно 5,47 $\mathbf{\phi}$ /.

Приведенные результаты показывают, что предлагаемый метод может быть эффективнее конечноразностной схемы при решении некоторых задач квантовой механики. Эффективность метода тем выше, чем большей информацией о свойствах решения мы обладаем. При переходе к многомерным задачам квантовой механики, т.е. к проблеме нескольких тел, имеющаяся информация о решении может привести к выигрышу в трудоемкости вычислений по сравнению с конечноразностными методами, сложность которых быстро возрастает с увеличением размерности.

Применимость изложенного метода не ограничивается описанными выше примерами. Аппроксимация такого сорта может быть применена к более сложным краевым задачам с более сложными дифференциаль-

Таблица 2

E /MəB/	δ	δ ⁽¹⁾	δ (2)
176	.7604	.7289	.7770
152	.7928	.7701	.8080
I 04	.8810	.9064	0.9080
72	.9725	1.0055	I.0I04
4 8	1.0803	1.1191	I.1548
24	1.2818	I.2448	1.2432
13	1.5053	I.4872	I.4728

 $[\]delta$ - фаза рассеяния,, вычисленная в $^{/2/}$;

ными операторами. Разбиение полного оператора на аппроксимируемую и неаппроксимируемую часть также произвольно и диктуется лишь соображениями вычислительного характера.

ЛИТЕРАТУРА

- Rogers F., Graboske H.C., Harwood D. Bound Eigenstates of the Static Screened Coulomb potential. Phys.Rev., 1970, A1, No 6, p. 1577.
- 2. Afnan I., Read F. Aust. Phys., 1973, 26, p. 449.

 $[\]delta^{(1,2)}$ - фазы, полученные в настоящей работе с разной точностью поиска минимума функционала Φ_1 .

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 p.	40	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3 p.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p.	00	к.
д2-81-543	Труды VI Международного совещания по проблемам кван~ товой теории поля. Алушта, 1981	2 p.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 p.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 p.	40	к.
д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р.	30	к.
Д3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p.	00	к.
Д2,4-83-179	Труды XУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4 p.	80	к.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частнц. Протвино, 1982 /2 тома/	11 p.	40	к.
д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 p.	50	к.
д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.	5 !	5 к
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 p.	. 00	к,

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного ииститута ядерных исследований

Беляев В.Б., Картавцев О.И. Р4-84-28 Конечномерная аппроксимация дифференциального оператора в задачах квантовоц механики

Дифференциальный оператор второго порядка антроксимируется приближенным оператором, совпадающим с точным на некотором конечном числе функций. Приближенный оператор представляет собой линейную комбинацию интегральных операторов. На основе этой аппроксимации решается задача рассеяния и задача на связанные состояния для уравнения Предингера.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Belyaev V.B., Kartavtsev O.I. Finite-Dimensional Approximation

P4-84-28

A second-order differential operator is approximated by an approximate operator that coincides with the exact one on some finite number of functions. The approximate operator is a linear combination of integral operators. This approximation is used to solve the scattering and the bound-state problem for the Schrödinger equation.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984