

10.53 23

P4-83-403

М.Гмитро, С.С.Камалов, Р.Мах*, М.Г.Сапожников

ЭФФЕКТЫ СХОДА ПИОНА С ЭНЕРГЕТИЧЕСКОЙ ПОВЕРХНОСТИ В УПРУГОМ РАССЕЯНИИ *π*-МЕЗОНОВ НА ЯДРАХ

Направлено в "ЯФ"

* Институт ядерной физики, Ржеж

1. ВВЕДЕНИЕ

Во многих работах исследовался вопрос о том, как различные способы продолжения пион-нуклонной матрицы рассеяния t_{лм} вне энергетической #N - поверхности сказываются на характеристиках *п*А рассеяния при промежуточных энергиях /см. ^{/1-3/} /. Было показано, что в случае упругого #А рассеяния изменения, возникающие при разных выборах $t_{\pi N}$ вне энергетической поверхности, в целом не слишком велики. Этот факт является косвенным указанием на то, что основные черты упругого лА рассеяния определяются такими процессами перерассеяния, в которых пион находится на энергетической поверхности. Однако роль этих эффектов в упругом #А рассеянии исследована довольно плохо, хотя в работах /4-6/ было замечено, что расчеты, выполненные с учетом только #А перерассеяния на энергетической поверхности, довольно хорошо воспроизводят экспериментальные данные, главным образом, в районе энергий $\Delta(3,3)-$ резонанса. Некоторые теоретические аспекты, имеющие отношение к этой проблеме, обсуждались в /7,8/.

Нами было предпринято систематическое исследование роли #А -порорассолния на энергетической поверхности, эффекты которого выделялись посредством учета в пион-ядерной функции Грина

$$G(E) = (E - K_{\pi} - H_{A} + i\epsilon)^{-1} = \frac{\mathcal{P}}{E - K_{\pi} - H_{A}} - i\pi\delta(E - K_{\pi} - H_{A}) / 1/$$

только второго слагаемого

 $G(E) \approx -i\pi\delta (E - K_{\pi} - H_{A})$

/К $_{\pi}$ - оператор кинетической энергии пиона, H $_{\rm A}$ - гамильтониан ядра, а символ ${\mathcal P}$ означает интегрирование в смысле главного значения/. Было проанализировано упругое рассеяние пионов на ядрах 3 He, 4 He, 12 C, 16 O 24 Mg в диапазоне энергий T $_{\pi}$ = 50-250 MэB. Расчеты проводились в рамках оптической модели /OM/ с потенциалом первого порядка U⁽¹⁾. В случае упругого 4 He рассеяния использовалась также OM с потенциалом второго порядка U⁽²⁾.Краткое описание формализма OM и процедуры построения потенциалов U⁽¹⁾ и U⁽²⁾ содержится в разделе 2. В разделе 3 проводится сравнение результатов вычислений в приближении /2/ с расчетами по OM с полной функцией Грина /1/. Показано, что расчеты в рамках приближения /2/, которое существенно упрощает рассмотрение за-

1

дачи лА рассеяния, довольно хорошо описывают экспериментальные данные. Особенно хорошее согласие с экспериментом получается для легчайших ядер. С ростом энергии налетающего пиона эффекты пион-ядерного перерассеяния со сходом с энергетической πА поверхности становятся все менее существенными. Обсуждение результатов и их анализ, проведенный в разделе 4, позволяют сделать вывод о том, что пион-ядерное перерассеяние на энергетической поверхности дает основной вклад в упругое *п*А рассеяние.

2. ОПТИЧЕСКАЯ МОДЕЛЬ С ПОТЕНЦИАЛАМИ ПЕРВОГО И ВТОРОГО ПОРЯДКОВ U (1) И U(2)

Подробное описание процедуры построения оптических потенциалов $U^{(1)}$ и $U^{(2)}$ содержится в работах $^{/9-11/}$. Поэтому здесь мы ограничимся лишь перечислением основных ингредиентов. входяших в состав $U^{(1)}$ и $U^{(2)}$.

В импульсном пространстве потенциал первого порядка для ядер с нулевым спином и изоспином / J = T = 0 / имеет вид

$$U^{(1)}(\vec{Q}',\vec{Q},E) = (A-S) < \vec{k}_{f} |t(\omega)|\vec{k}_{i} > \mathcal{F}_{00}(\vec{Q}'-\vec{Q}), \qquad /3/$$

где $f_{00}(\vec{q}'-\vec{q})$ - формфактор ядра, \vec{q}' и \vec{q} - импульсы пиона в системе центра масс пион-ядро /будем обозначать ее АСМ/, ω энергия пиона в системе центра масс #N /2CM/, при которой нообходимо вычислять пион-нуклонную t-матрицу, коэффициент S принимает значения 0 или 1. в зависимости от используемой схемы теории многократного рассеяния. В модели Ватсона $^{/12/}$ S = 0, формализму Кермана-МакМануса-Талера /18/ соответствует S = 1. Импульсы пиона \vec{k} , и \vec{k} , в системе 2СМ связаны с \vec{Q}' и \vec{Q} такими соотношениями

$$\vec{k}_{f} = \vec{Q}' - \frac{A-1}{2A} \frac{\mu}{M} (\vec{Q}' + \vec{Q}), \qquad (4/)$$

$$\vec{k}_{i} = \vec{Q} - \frac{A-1}{2A} \frac{\mu}{M} (\vec{Q}' + \vec{Q}),$$

где μ - приведенная масса πN, а M - масса нуклона. Энергия ω в системе 2CM связана с энергией Е в ACM следующим образом/11/:

$$\omega = E - \frac{1}{8M} \frac{\mu}{\Re} \frac{A-1}{A} \left(\vec{Q}' + \vec{Q} \right)^2 , \qquad (5/$$

где 🅅 - приведенная масса системы *п*А.

Выбор эффективных импульсов \vec{k} , и \vec{k} , в форме /4/, а также связь /5/ между Е и ω обусловлены нашим методом учета фермидвижения нуклонов и способом аппроксимации многочастичного оператора г, ответственного за рассеяние пиона на связанном нуклоне ядра. Как показано в /11/, соотношения /4/-/5/ обеспечивают галилеевскую инвариантность $U^{(1)}$ и дают минимальную ошибку при использовании приближения факторизации /3/.

В случае ядра ³ Не (J = T = 1/2) потенциал /3/ имеет более сложную структуру, которая подробно описана в /10/.

.

Как видно из /4/-/5/, оптический потенциал /3/ на энергетической πA поверхности (Q = Q' = $\sqrt{2ME}$ содержит матричные элементы πN t-матрицы как на энергетической πN поверхности, так и вне ее. Однако основная часть пион-нуклонных "off-shell" <u>э</u>ффектов, несомненно, появляется только при учете интеграла в смысле главного значения в /1/, в котором $U^{(1)}(\vec{Q}', \vec{Q}, E)$ входит при произвольных значениях Q' и Q.

Пион-нуклонная матрица $t_{\pi N}$ на энергетической поверхности вычислялась с помощью фаз πN рассеяния, взятых из работ $^{/14,15/}$. Вне энергетической поверхности предполагалось, что $t_{\pi N}$ сепарабельна и ее поведение определялось из решения обратной задачи *п*N рассеяния по методу /16/.

Информация о ядерных формфакторах ${\mathcal F}_{{
m on}}(ec{{
m q}'}-ec{{
m q}})$ бралась из данных по рассеянию электронов на ядрах. Кулоновские эффекты учитывались таким же способом, как и в работе /17/. В расчетах, проведенных в приближении /2/, рассматривались матричные элементы кулоновского потенциала только на энергетической #А поверхности.

При вычислении π^4 Не рассеяния, наряду с $U^{(1)}$, мы в некоторых случаях использовали и потенциал второго порядка U⁽²⁾, имеющий вид /9/.

$$\begin{aligned} U^{(2)} (\vec{q}', \vec{q}, E) &= (A - 1) (A - S) < \vec{q}' \ 0 \mid t(\omega_1) \ G(E) \ t(\omega_2)^{\dagger} \ 0 \ \vec{q}^{>} \ast \\ &* \ C_{00} (\vec{q}_1 \vec{q}_2) - (A - S)^2 < \vec{q}' \ 0 \mid t(\omega_1) \mid 0 \ \vec{q}'' > G_{00} (E) \ast \qquad /6/\\ &* < \vec{q}'' \ 0 \mid t(\omega_2) \mid 0 \ \vec{q} > \mathcal{F}_{00} \ (\vec{q}_1) \ \mathcal{F}_{00} \ (\vec{q}_2) ,\end{aligned}$$

где $\vec{q}_1 = \vec{Q}' - \vec{Q}''$, $\vec{q}_2 = \vec{Q}'' - \vec{Q}$, а $C_{00}(\vec{q}_1 \vec{q}_2)$ - фурье-образ от двухчастичной ядерной плотности

$$C_{00}(\vec{q_1}\vec{q_2}) = \langle 0 | \exp(-i\vec{q_1}\vec{r_1}) \exp(-i\vec{q_2}\vec{r_2}) | 0 \rangle .$$
 (7/

В наших расчетах мы учитывали только дальнодействующие корреляции, связанные с движением ядра как целого. В случае ⁴Не $C_{00}(\vec{q_1}\vec{q_2})$ вычислялась на основе модели гармонического осциллятоpa.

В стандартной ОМ потенциалы $U^{(1)}$ и $U^{(1)} + U^{(2)}$ используются для аппроксимации оптического потенциала U(E), с которым решается уравнение Липпмана-Швингера

$$T(E) = U(E) + U(E) G(E) PT(E)$$
, /8/

где \hat{P} - проекционный оператор на основное состояние ядра, $\hat{P}_{=}|0><0|$. Мы решали /8/ либо с полной функцией Грина G(E) /1/, либо, для выделения пион-ядерных перерассеяний на энергетической поверхности, учитывали только член с δ -функцией /2/. В таком случае интегральное уравнение /8/ сводится к алгебраическому уравнению:

$$T(E) = U(E) - i\pi U(E) \,\delta(E - K_{\pi} - H_{A}) \,\dot{P}T(E) \,.$$
 (9/

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ УПРУГОГО ЛА РАССЕЯНИЯ

На рис.1-5 сплошной линией показаны результаты расчетов упругого рассеяния π -мезонов на ядрах ⁸ Не, ⁴Не, ¹²С, ¹⁶О и ²⁴Mg, выполненных в приближении /2/ с потенциалом первого порядка /3/. Штриховые линии на рис.1-5 соответствуют решению /8/ с потенциалом U⁽¹⁾ и полной функцией Грина /1/.

Как видно из рис.1-5, расчеты в приближении /2/ довольно хорошо описывают экспериментальные данные. Для легких ядер ⁸Не и ⁴Не /см. рис.1-2/ особенно хорошее согласие получается при малых энергиях $T_{\pi} < 100$ МэВ. В этой области энергий учет перерассеяний только на энергетической поверхности приводит к уменьшению дифференциальных сечений на фактор ~2, по сравнению с результатами обычной ОМ. Правильно воспроизводится положение и глубина минимума в $d\sigma/d\Omega$.

В случае рассеяния π -мезонов на ядрах ¹² С, ¹⁶О и ²⁴ Мg при малых энергиях T_{π} ~50 МэВ расчеты по ОМ с U⁽¹⁾, не учитывающие истинного поглощения пионов, не дают, как известно, хорошего описания экспериментальных данных. Такая же ситуация имеет место и в приближении /2/. В области $\Delta(3,3)$ -резонанса согласие теоретических расчетов с экспериментальными данными значительно улучшается. Вычисления, выполненные в приближении /2/, правильно воспроизводят основные характеристики $d\sigma/d\Omega$.

На рис.6 показана зависимость полных σ_{tot} и полных упругих $\sigma_{e\ell}$ сечений πA рассеяния от атомного номера ядра A при фиксированной энергии пиона T $_{\pi}$ =165 МэВ. Видно, что с увеличением A разность между сечениями, рассчитанными в приближении /2/, и в расчете с полной функцией Грина, уменьшается. Это подтверждают и результаты, приведенные в табл.1, где такая же закономерность прослеживается и при других энергиях налетающего пиона

Рис.1. Дифференциальные сечения π^{-3} Не упругого рассеяния. Штриховыми линиями показаны результаты расчета по ОМ с U⁽¹⁾ /подход КМТ, S = 1/ и полной функцией Грина /1/. Сплошными линиями нанесены результаты вычислений в приближении /2/. Экспериментальные данные взяты из работы /22/.

Рис.2. Дифференциальные сечения π^{-4} Не упругого рассеяния. Обозначения кривых здесь и на рис.3-5 такие же, как и на рис.1. Экспериментальные данные – из работ ^{/23,24/}.

Рис.3. Дифференциальные сечения π^{+12} С упругого рассеяния. Расчеты сделаны в подходе Ватсона, S = 0. Экспериментальные данные – из работ /25,26/.

Рис.4. Дифференциальные сечения π^{+16} О упругого рассеяния. Подход Ватсона, S = 0. Экспериментальные данные – из работы /27/.

Рис.5. Дифференциальные сечения π^{+24} Mg упругого рассеяния. Подход Ватсона, S = 0. Экспериментальные данные – из работы ^{/28/}.

 T_{π} . Далее, из табл.1 видно, что разность между результатами полного и приближенного расчетов уменьшается с ростом T_{π} .

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Результаты, показанные на рис.1-5, а также в табл.1, имеют следующие характерные особенности:

1. Видно, что приближение /2/ удовлетворительно описывает экспериментальные данные в широкой области энергий и для всех рассматриваемых ядер. Степень воспроизведения экспериментальных данных, полученная в приближении /2/, и в ОМ с полной Функцией Грина /1/, примерно одинакова.

2. В случае рассеяния на легких ядрах вычисления в приближении /2/ систематически лучше согласуются с экспериментальными данными, нежели результаты полного расчета с полной функцией Грина /1/.

Рис.6. Зависимость полных σ_{tot} и полных упругих σ_{el} сечений πA -рассеяния от атомного номера A при $T_{\pi} = 165$ МэВ. Результаты полного расчета с U⁽¹⁾ обозначены 0, кресты X – расчет в приближении /2/. Экспсриментальные данные взяты из работы ^{/29/}. Прямые линии проведены только для удобства восприятия.

3. Расхождение между полным и приближенным расчетами наиболее велико в области малых энергий.

4. С увеличением энергии пиона результаты полного и приближенного расчетов мало чем отличаются друг от друга.

В целом, из сравнения между полным расчетом и приближением /2/ можно сделать вывод о том, что определяющий вклад в упругое *п*А рассеяние вносят те процессы перерассеяния, в которых пион находится на энергетической *п*А поверхности.

Однако, так как все расчеты были сделаны в ОМ с U⁽¹⁾, остается невыясненным, не является ли такое доминирование "on-shell" процессов всего лишь отражением тех приближений, которые используются при построении ОМ с U⁽¹⁾ /напомним, что основными приближениями в ОМ с U⁽¹⁾ являются приближение когерентного рассеяния и импульсное приближение/. Чтобы прояснить это обстоятельство, мы выполнили для π ⁴ Не-рассеяния расчеты по ОМ с потенциалом второго порядка U⁽²⁾ /см. соотношение /6//, в котором, как известно ^{/9,13/}, содержится поправка к импульсному и когерентному приближениям.

Относительная разность между результатами расчетов полных (Δ_{tot}) и упругих ($\Delta_{e\ell}$) сечений πA рассеяния в ОМ с полной функцией Грина /1/ – σ_1 , и в приближении /2/ – σ_2 , вычисленная при трех фиксированных энергиях T_{π}

$$\Delta = \frac{\sigma_1 - \sigma_2}{\sigma_1 + \sigma_2}$$

Т/МэВ/	Δ	³ He	⁴ He	¹² C	¹⁶ O	²⁴ Mg
50	$\frac{\Delta_{el}}{\Delta_{tot}}$	0,53 0,41	0,26 0,22	0,17 0,16	0,16 0,17	0,16 0,08
110	$\Delta_{e\ell} \Delta_{tot}$	0,23 0,16	0,16 0,13	0,12 0,10	0,04 0,09	0,07 0,08
180	$\Delta_{e\ell} \Delta_{tot}$	0,03 0,006	0 0	0,006 0,006	-0,04 -0,01	-0,06 -0,02

На рис.7 штриховыми линиями показаны результаты расчетов в ОМ с потенциалом $U^{(1)} + U^{(2)}$, когда в функции Грина, входящей в уравнение /6/ для $U^{(2)}$, оставлялся только член с δ -функцией. Как видно, результаты таких вычислений не сильно отличаются от вычислений с $U^{(1)} + U^{(2)}$ и полной функцией Грина /сплошные линии/. Это свидетельствует о том, что и в членах второго порядка пион-ядерные "off-shell" эффекты достаточно малы. Следовательно, можно ожидать, что вывод об определяющей роли *п*А перерассеяний на энергетической поверхности является достаточно общим, отнюдь не связанным с какими-то специфическими приближениями, использованными в ОМ с $U^{(1)}$.

То, что приближенный расчет во многих случаях работает лучше, чем полный, или, что то же самое, учет распространения пиона вне энергетической поверхности иногда ухудшает согласие с экспериментальными данными, может быть обусловлено двумя причинами.

Во-первых, сепарабельная форма пион-нуклонной "off-shell "амплитуды, которая используется практически во всех расчетах по ОМ, имеет свое теоретическое обоснование лишь в области $\Delta(3,3)$ – резонанса. Как видно из результатов табл.1, самое большое расхождение между полным и приближенным расчетами действительно возникает в области малых энергий / T_{π} < 100 МэВ/, где сход с энергетической π N поверхности, определяемый моделью сепарабельных π N -потенциалов, носит довольно условный характер.

Рис.7. Расчет дифференциальных сечений упругого π^{-4} Не рассеяния в ОМ с U⁽¹⁾ – штрих-пунктирные линии, с U⁽¹⁾ + U⁽²⁾ – сплошные линии, с U⁽¹⁾ + U⁽²⁾, но в функции Грина G(E), входящей в /6/, где оставлен только член с δ -функцией – штриховые линии.

Как показывают результаты табл.1, сама по себе величина "off—shell" эффектов меньше всего в области Δ(3.3) -резонанса.

Во-вторых, ОМ с U⁽¹⁾ не учитывает ряда важных эффектов, связанных с когерентным и импульсным приближениями. Между тем есть основания полагать, что в точной теории многократного рассеяния должно происходить значительное сокращение пион-ядерных "off-shell" эффектов, присущих ОМ с потенциалом U⁽¹⁾ и теми членами, которые возникают при учете потенциалов более # высоких порядков.

Для того, чтобы проверить это обстоятельство, мы выполнили расчеты π^{4} Не упругого рассеяния в ОМ с потенциалом второго порядка U⁽²⁾. При этом мы задавали π N формфактор $g_{\ell}(k)$, определяющий поведение парциальной $t_{\pi N}^{(2)}$ вне энергетической поверхности,

$$\mathbf{t}_{\pi N}^{(\ell)}(\mathbf{k}', \mathbf{k}, \omega(\mathbf{k}_{0})) = \frac{g_{\ell}(\mathbf{k}')g_{\ell}(\mathbf{k})}{g_{\ell}^{2}(\mathbf{k}_{0})} \mathbf{t}_{\pi N}^{(\ell)}(\mathbf{k}_{0}, \mathbf{k}_{0}, \omega(\mathbf{k}_{0}))$$

в виде

$$g_{\ell}(k) = \frac{k^{\ell}}{(1 + \lambda a^2 k^2)^2},$$
 /10/

где $a^2 = 0,056 \, \Phi M^2$. При выборе параметра $\lambda = 4$ поведение формфактора /10/ не сильно отличается от того, которое получается при решении обратной задачи *п*N-рассеяния по методу ^{/16/}, для доминирующей в *n*N-рассеянии P₃₃-волны. Меняя значение λ ,

Таблица 2

Зависимость сечений упругого π^{-4} Не рассеяния σ_{el} от различного продолжения $t_{\pi N}$ вне энергетической поверх-

ности;
$$\Delta = \delta^{(1)} / \delta^{(2)}$$
, где $\delta = \frac{\sigma(\lambda_1) - \sigma(\lambda_{1+1})}{\sigma(\lambda_1) + \sigma(\lambda_{1+1})}$

- относительное изменение сечений при варьировании λ , рассчитанное в ОМ с потенциалом $U^{(1)}(\delta^{(1)})$ и $U^{(1)} + U^{(2)} - (\delta^{(2)})$

T (N -B)		Cel (mo)					
5	<u> </u>	, 2	U ⁽¹⁾	U ⁽¹⁾ +U ⁽²⁾	Δ		
51	I	2	54,I	39,3			
. •	2	4	48,0	38,7	7,8		
	3	6	45,I	38,2	4,8		
75	I	2	98,8	81,6			
	2	4	85,1	77,4	2,8		
	3	6	77,9	74,4	2,2		
I45	I	2	186,9	224,5			
	2	4	168,7	202,0	0 ,97		
	3	6	158,9	190,4	1,0		

можно исследовать чувствительность сечений π ⁴He-рассеяния к поведению $t_{\pi N}$ вне энергетической поверхности.

Как видно из табл.2, добавление $U^{(2)}$ существенно уменьшает чувствительность сечений к "off-shell" эффектам, особенно при малых энергиях. В области $\Delta(3,3)$ -резонанса роль "off-shell" эффектов, по-видимому, вообще мала /см. табл.1/. Такая взаимная компенсация "off-shell" членов от U⁽¹⁾ и более высоких порядков позволяет понять, почему результаты, полученные в приближении /2/, в котором нет ни "off-shell" эффектов от U⁽¹⁾, ни поправок более высоких порядков к оптическому потенциалу, довольно хорошо воспроизводят экспериментальные данные. Известно /12,13/, что коррекции к U⁽¹⁾ обратно пропорциональны А, поэтому из изложенного выше становится понятным, почему расхождение между приближенным и полным расчетами наиболее существенно в случае легчайших ядер /см. рис.6 и табл.1/.

Дополнительным аргументом в пользу упомянутого выше сокращения "off-shell" эффектов могут служить результаты работы ^{/7/}, в которой модель Глаубера выводится из теории многократного рассеяния. В этой работе показано, что в глауберовском пределе "off-shell" члены, возникающие при перерассеяниях вплоть до A -кратного, полностью сокращаются со всеми членами высшей кратности. Результаты работ ^{/19-20/}, где *п*А -упругое рассеяние анализировалось в рамках модели Глаубера, демонстрируют хорошее согласие с экспериментальными данными уже при $T_{\pi} \sim 150$ -200 МэВ. При более низких энергиях модель Глаубера, в буквальном смысле, оказывается неприменимой, однако можно ожидать, что некоторое частичное сокращение "off-shell" эффектов остается в силе.

Таким образом, результаты, полученные в настоящей работе, свидетельствуют о доминирующей роли в упругом #А рассеянии тех процессов, когда в промежуточном состоянии пион находится на энергетической #А поверхности.

В заключение отметим, что приближение /2/, которое сильно упрощает задачу #А рассеяния и в то же время удовлетворительно описывает экспериментальные данные по упругому рассеянию пионов для широкого круга ядер, может быть использовано при решении других, более сложных проблем пион-ядерной физики. Например, оказывается, что использование приближения /2/ особенно полезно при построении искаженной пион-ядерной волновой функции для расчетов неупругих #А реакций ^{/21/}.

Авторы приносят глубокую благодарность М.Х.Ханхасаеву и В.Б.Беляеву за исключительно полезные обсуждения данной проблемы. Мы благодарим также Я.Квасила за помощь в вычислениях.

ЛИТЕРАТУРА

- 1. Hüfner J. Phys.Rep., 1975, 21C, p. 1.
- 2. Landau R., Thomas A. Phys.Rep., 1980, 58C, p. 123.
- 3. Ernst D.J., Miller G.A. Phys.Rev., 1975, v. C12, p. 1962.
- 4. Charlton L.A., Eisenberg J.M. Ann. Phys., 1971, 63, p. 286.
- 5. Gibbs W. Phys.Rev., 1971, C23, p. 1127.
- 6. Gibbs W. Phys.Rev., 1972, C5, p. 755.
- 7. Eisenberg J. Ann. Phys., 1972, 71, p. 542.

- 8. Eisenberg J. Nucl. Phys., 1982, A389, p. 595.
- 9. Mach R., Sapozhnikov M.G. JINR, E4-82-189, Dubna, 1982.
- 10. Falomkin I.V. et al. Nuovo Cim., 1980, 57A, p. 111.
- 11. Mach R. JINR, E2-12932, E2-12957, 1979.
- 12. Watson K.M., Goldberger M.L. Collision theory. J.Wiley, N.Y., 1964.
- 13. Kerman A.K., McManus H., Thaler R. Ann.Phys., 1959, 8, p. 551.
- 14. Herndon D. et al. UCRL report-20030, 1970.
- 15. Rowe C., Salomon M., Landau R. Phys.Rev., 1978, C18, p. 584.
- 16. Londergan J., McVoy K., Moniz E. Ann. Phys., 1974, 86, p. 147.
- 17. Vincent C., Phatak S. Phys.Rev., 1974, C10, p. 391.
- 18. Feshbach H., Gal A., Hüfner J. Ann. Phys., 1971, 66, p. 20.
- 19. Mach R., Sapozhnikov M.G., Shcherbakov Yu.A. Cz.J.Phys., 1976, B26, p. 1248.
- 20. Sparrow D.A. Phys.Lett., 1975, 58B, p. 309.
- 21. Eramzhyan R.A. et al. J.Phys.G., 1983, 9, p. 605.
- 22. Albu M. et al. preprint INFN, LNF-82/27 (R), Frascati, 1982.
- 23. Binon F. et al. Nucl. Phys., 1978, A298, p. 499.
- 24. Crowe K. et al. Phys.Rev., 1969, 180, p. 1349.
- 25. Barbini R. et al. Lett.Nuovo Cim., 1975, 13, p. 673.
- 26. Piffaretti J. et al. Phys.Lett., 1977, 71B, p. 324.
- 27. Ingram C.H.A. et al. Preprint SIN, PR-78-001, 1978.
- 28. Widner C.A. et al. Phys.Lett., 1978, 78B, p. 26.
- 29. Ashery D. et al. Phys.Rev., 1981, C23, p. 2173.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря∼ женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1930 /2 тома/	8	ρ.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
42-81-5 43	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
q10,11 - 81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.
д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике, Дубна, 1982.	5	р.	00	к.

Рукопись поступила в издательский отдел 13 июня 1983 года. Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ

ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ

ИССЛЕДОВАНИЙ

Индекс	Тематика	
1	Экспериментальная физика высоких энергий	
· · · · · · · · · · · · · · · · · · ·	Теоретическая физика высоких энергий	
2.	Экспериментальная нейтронная физика	
у. Ц	Теоретическая физика низких энергий	
5.	Математика	
6.	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	
8.	Криогеника	
9.	Ускорители	
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
12.	Химия	
13.	Техника физического эксперимента	
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	. Дозиметрия и физика защиты	
17.	. Теория конденсированного состояния	
18.	. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
19	. Биофизика	

Гмитро М. и др. P4-83-403 Эффекты схода пиона с энергетической поверхности в упругом рассеянии *п*-мезонов на ядрах

В оптической модели с потенциалом первого порядка рассмотрено упругое рассеяние пионов на ядрах ³ He, ⁴ He, ¹² C, ¹⁶ O и ²⁴Mg при энергиях $T_{\pi} = 50-250$ МэВ. Изучена роль эффектов «А перерассеяния как на энергетической поверхности, так и вне ее. Показано, что определяющий вклад в упругое «А рассеяние вносят процессы, когда пион в промежуточном состоянии находится на энергетической поверхности.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Gmitro M. et al. P4-83-403 Off-Energy-Shell Effects in the Elastic Pion-Nucleus Scattering

The elastic scattering of pions on ³ He, ⁴He, ¹²C, ¹⁶O, and ²⁴Mg has been considered using the optical model with first order potential for the energy range $T_{\pi} = 50-250$ MeV. The on-shell and off-shell pion rescattering is investigated with the following result: The main contribution to the elastic *mA* scattering is obtained from the processes with on-shell pion in the intermediate state.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.