

Объединенный институт ядерных исследований дубна

2506/8

P4-83-131/5-83

Х.-У.Егер! М.Кирхбах, Э.Труглик²

ПЛОТНОСТЬ АКСИАЛЬНОГО ЗАРЯДА В ИЗОВЕКТОРНОМ ПЕРЕХОДЕ $\Delta T=1, 0+ = 0$ В ЯДРАХ С A=16

Направлено в журнал "Письма в ЖЭТФ"

¹ Центральный институт ядерных исследований АН ГДР, Россендорф.

²Институт ядерной физики АН ЧССР, Ржеж.

1983

В реакциях мюонного захвата и бета-распада между ${}^{16}O(0_1^+, T=0)$ и ${}^{16}N(0_1^-, T=1)$ отношение парциальной скорости мюонного захвата $\Lambda_{\mu}(0^+ \to 0^-)$ к парциальной скорости бета-распада $\Lambda_{\beta}(0^- \to 0^+)$ определяется величиной отношения индуцированного псевдоскалярного формфактора g_p к аксиальному формфактору g_A нуклона. Как впервые было отмечено И.С.Шапиро и Л.Д.Блохинцевым 71/, этот чисто аксиальный переход является подходящим объектом для экспериментальной проверки предсказания алгебры токов, где $g_p/g_A \sim 7$ -8. В импульсном приближении (IA), где ядерный ток описывается суммой вкладов отдельных нуклонов /одночастичным током/, одинаковый уровень точности описания Λ_{μ} и Λ_{β} для всех известных моделей ядер с A = 16 удается получить при $g_p/g_A \sim 13$ -20.

В настоящей работе показывается, что сильное расхождение с предсказанием алгебры токов можно устранить при помощи учета вклада обменного мезонного тока. Переход 0⁺ ↔ 0⁻чувствителен к временной компоненте /плотности заряда/ аксиально-векторного изовекторного обменного тока, поскольку она того же порядка O(1/M). как и одночастичный ток^{/2/}. Обменные поправки рассматривались несколькими авторами, однако их роль не была выяснена до конца, так как применялись сильно упрощенные модели ядерной структуры ^{/3/} /примеси 2p-2h учитывались только в волновой функции состояния 0⁺, причем полный спектр 2[±]ω-возбуждений заменялся только двумя компонентами/,а в операторе обменного тока рассматривался только дальнодействующий однопионный обмен ^{/3-5/}. В результате возникала сильная зависимость обменных поправок от моделей ядерной структуры.

В данной работе мы совершенствуем как модель оператора, так и описание ядерной структуры. Мы строим оператор в S-матричном подходе и сохраняем представление об обменном токе как о двухчастичном операторе однобозонного обмена ^{/5/}. Мы включаем короткодействующий обмен векторными ρ - и A₁- мезонами, используя для этой цели минимальный кирально-инвариантный феноменологический лагранжиан модели жестких пионов ^{/6,7/}. С целью улучшения описания ядерной структуры мы применяем многочастичные волновые функции модели оболочек со смешиванием конфигураций ^{/8/}. Таким образом, состояние 0⁺ содержит все возможные возбуждения двух частиц в 1s-(2p-1f)пространстве. Состояние 0⁻ включает в себя две самые сильные /около 1% каждая/ 2p-2b-компоненты. Мы при этом учитываем также нуклон-нуклонные корреляции на коротких расстояниях при помощи корреляционной функции Миллера и Спенсера ^{/9/}

ODDEBAGEALLIAN HACTATY ADDINAL HACTACASDON BUBJANCTETA

1

$$f(r = r_i - r_j) = 1 - \exp(-\alpha r^2)(1 - \beta r^2)$$

Здесь $a = 1, 1 \phi^{-2}$, $\beta = 0.68 \phi^{-2}$.

Парциальные скорости перехода пропорциональны квадрату матричного элемента аксиального слабого тока ((, , β) между начальным и конечным состояниями ядра

 $\Lambda_{(\mu,\beta)} (0_1^+ \stackrel{\sim}{\leftarrow} 0_1^-) - |<0_1^-| J^{(\mu,\beta^*)} |0_1^+>|^2$

/подробные выражения даны в /10//. Для того, чтобы получить представление о порядке эффекта, рассмотрим ту упрощенную картину ядерной структуры, в которой основное состояние 160 является замкнутой 1p-оболочкой и 0 содержит только одну конфигурацию |(2s 1/4)¹ (1р 1/4)⁻¹ I = M = 0, T=1, Тэ=-▷ /см. таблицу/. Видно, что учет обменного тока приводит к сильному уменьшению отношения $\Lambda_{\mu}/\Lambda_{B}$ по сравнению с импульсным приближением и тем самым достигается согласие с экспериментом. Однако абсолютные величины парциальных скоростей перехода в этом случае слишком завышены. Это является следствием обрезания базиса.

Применяя многочастичные волновые функции модели оболочек со смешиванием конфигураций для вычисления матричных элементов двухчастичного оператора в мюонном захвате и бета-распаде, мы находим, что они меньше соответствующих значений из расчета без смешивания конфигураций на множитель $R = a_0 \beta_0$. Здесь a_0 и β_0 - веса главных компонент $|0p - 0h > \varkappa |(2s_{\frac{1}{2}})^1 (1p_{\frac{1}{2}})^{-1} >$ состояний 0^+_1 и $0^-_1 / a_0 = 0,89$, $\beta_0 = 0,95/$ /см. таблицу/. Это результат того, что разброс 2p - 2h -примесей по всем возможным $2h\omega$ -возбуждениям для 0⁺ -состояния и по двум сильнейшим 3h w -возбуждениям для 0, -состояния приводит к деструктивной интерференции малых вкладов. Таким образом, мезонный обменный ток ощущает наличие 2p-2h -примесей в ядерных состояниях системы с A = 16 лишь по изменению весов главных компонент. Учет корреляций на коротких расстояниях приводит к подавлению ядерных матричных элементов обменного тока на 10%, Λ_{μ} и Λ_{B} изменяются при этом лишь на 3% и 6%.

Итак, показано, что учет мезонного обменного тока при реалистическом описании корреляционных эффектов ядерной структуры приводит к сильному возрастанию плотности ядерного аксиального заряда по сравнению с импульсным приближением. Тем самым проведенный нами теоретический анализ экспериментальных данных указывает на величину отношения g_n/g_A ~ 10, что близко к предсказанию алгебры токов.

Авторы выражают благодарность Л.Д.Блохинцеву, С.Б.Герасимову и В.М.Дубовику за интересные обсуждения.

Парциальные скорост см. $B/4//; \Lambda_{3KGII} =$ Символом $J_4^{\mu}\mu^{\mu}$ 0бс аксиально-векторног	и перехода. Экспер /1570+100/ с ⁻¹ , Л означена временная о изовекторного то	иментальные значени уксп. = /0,41+0,06/ Компонента двухчаст ка.	и / сводку экс с ⁻¹ , $(\Lambda_{\mu}/\Lambda_{\beta})$ ичного /обмени	периментальных д 1) ^{3ксп} = 3800+80. 80 ^{3ксп} , оператора	aHHbX
	Мронный захва	T		Бета-распад	
$g_p/g_A = 10.5$.	dea 2p-2h	c 2p–2h	de3 2p-2h	ରି ଅ	-2h
$<0_1^{-1} J_{IA}^{(\mu,\beta,*)} 0_1^+>$	-0,2902	-0,2246	-0,109	8	-0,0729
$\Lambda^{IA}_{(\mu,\beta)}$ (c ⁻¹)	2169	1300	0,40		0,18
	deaf cf	deaf cf	dea f c	J Ges f	0 <i>f</i>
<0_10_(mq_1A)(10+>	-0,0986 -0,0896	-0,0812 -0,0731	-0,II44 -0,	,1044 -0,0945	-0,0860
$\Lambda_{(\mu,\beta)}(e^{-1})$	3000 3000	I890 I827	I,02 C) <mark>,96</mark> 0,53	0,50
и оператора	Импульсное приближение	$J^4_{(A_1\rho\pi)}$ dea f	c f of	as f cf	
		0e3	2p-2h	c 2p-2h	
$\Lambda_{\mu}/\Lambda_{\beta}$	5422	3029	3125 35	320 3676	er de Streiß Stell

B

Таблица

ЛИТЕРАТУРА

- 1. Шапиро И.С., Блохинцев Л.Д. ЖЭТФ, 1960, 39, с.1112.
- Kubodera K., Delorme J., Rho M. Phys.Rev.Lett., 1978, 40, p.755.
- 3. Guichon P., Samour C. Phys.Lett., 1979, 828, p.28.
- 4. Towner I.S., Khanna F.C. Nucl. Phys., 1981, A372, p.331.
- 5. Chemtob M., Rho M. Nucl. Phys., 1971, A163, p.1.
- 6. Ogievetsky V.I., Zupnik B.M. Nucl. Phys., 1970, B24, p.612.
- 7. Ivanov E.A., Truhlik E. Nucl. Phys., 1979, A316, p.437.
- 8. Eramzhyan R.A. et al. Nucl. Phys., 1977, A290, p.294.
- 9. Miller G.A., Spencer J.E. Ann. Phys., 1976, 100, p.562.
- Jäger H.-U., Kirchbach M., Truhlik E. JINR, E4-82-772, Dubna, 1982.

импульсного приближения (g_p/g_A ~ 13-20). Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Егер Х.-У., Кирхбах М., Труглик Э.

 $\Delta T = 1, 0^{+} = 0^{-}$ в ядрах с A = 16

Препринт Объединенного института ядерных исследований. Дубна 1983

P4-83-131

Jäger H.-U., Kirchbach M., Truhlik E. P4-83-131 Axial Charge Density in Isovector Transition $\Delta T = 1, 0^{+} \neq 0^{-}$ in A = 16 Nuclei

Плотность аксиального заряда в изовекторном переходе

Анализ данных о плотности аксиального заряда с учетом

обменного мезонного тока показывает, что для отношения инду-

формфактору g_A нуклона получается величина $g_p/g_A \sim 10$. Тем самым устраняется сильное расхождение между предсказанием алгебры токов ($g_p/g_A \sim 7-8$) и ядерно-физическим определением на основе

цированного псевдоскалярного формфактора gp к аксиальному

Theoretical analysis of the nuclear weak axial charge density data, performed making allowance for mesonic exchange corrections, predicts for the ratio of the pseudoscalar coupling constant g_p to the axial form factor g_A of the nucleon the value g_p/g_A -10. So, the discrepancy between the current algebra estimate $(g_p/g_A ~ -7-8)$ and the nuclear physics determination based on the impulse approximation $(g_p/g_A ~ 13-20)$ is clarified.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Рукопись поступила в издательский отдел 2 марта 1983 года.

Перевод О.С.Виноградовой.

4