

1444 83

С.Г.Кадменский, В.П.Маркушев, Ю.П.Попов, В.И.Фурман

НЕСОХРАНЕНИЕ К В НЕЙТРОННЫХ РЕЗОНАНСАХ И СПИНОВАЯ ЗАВИСИМОСТЬ НЕЙТРОННОЙ СИЛОВОЙ ФУНКЦИИ В ДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в журнал "Ядерная физика"

1982

1. Для основных и низколежащих возбужденных состояний аксиально-симметричных деформированных ядер проекция K спина J на ось симметрии ядра является хорошим квантовым числом^{/1/}. При энергиях возбуждения порядка энергии связи нейтрона $B_n / B_n \simeq$ ≈ 8 мэВ/ форма ядра, по-видимому, меняется мало^{/2/}, так что, в принципе, квантовое число K могло бы сохраняться. Однако анализ экспериментальных данных приводит^{/3-5/} к противоположному заключению.

При взаимодействии s-нейтрона с ядром-мишенью, имеющим спин $I_0 \neq 0$ и четность π , образуются компаунд-состояния с характеристиками $J_s^{\pi} = (I_0 + 1/2)^{\pi}$ и $J_s^{\pi} = (I_0 - 1/2)^{\pi}$. В работе^{/3/} был проведен анализ функций распределения расстояний между нейтронными резонансами /HP/ для нескольких деформированных ядер в трансурановой области. Если бы величина К была интегралом движения, то можно было бы ожидать трех распределений, соответствующих следующим значениям JK : $J_5 J_5$, $J_5 J_c$ и $J_c J_c$. Анализ ^{/3/} показал наличие только двух групп распределений вигнеровского типа ^{/6/}, что указывает на отсутствие каких-либо сохраняющихся квантовых чисел для HP кроме полного спина четности. В работе^{/4/} были изучены интенсивности *у*-переходов из HP

В работе⁷⁴⁷ были изучены интенсивности *у*-переходов из HP с J^{*π*} = 13/2⁻ и 15/2⁻ в ядре ¹⁷⁷Lu на низколежащие состояния с хорошо определенными значениями K^{*π*} = 1/2⁻, 5/2⁻, 7/2⁻, 11/2⁻ и 15/2⁻. Сравнение приведенных интенсивностей *у*-переходов с $\Delta K =$ = 0+7 не выявило заметного запрета по ΔK , что свидетельствует о сильном смешивании проекций K в HP.

Недавний эксперимент $^{/5/}$ по "ускорению" тепловых нейтронов изомерным ядром $^{180\,\text{m}}\text{Hf}$, в котором нейтрон захватывался ядроммишенью в состоянии J"K = 8", 8, формировал HP с J " = 15/2", 17/2" и затем испускался, оставляя ядро ^{180}Hf в основном состоянии, продемонстрировал отсутствие запрета по K ($\Delta K \leq 8$) в нейтронном канале распада.

Ниже будут проанализированы дополнительные экспериментальные данные с целью уточнения характера смешивания по К в НР деформированных ядер.

2. Среднее расстояние $\bar{D}_J \pi_{|K|}$ между уровнями с квантовыми числами $J^{\pi} |K|$, согласно статистической теории, записывается в виде $^{/1/}$

$$D_{J^{\pi}|K|}(E, J) = D_{|K|^{\pi}}((E - E_{Bpau}, (K, J)), K), /1/$$

$$\overline{D}_{|K|\pi}(E,K) = \sqrt{2\pi} \sigma_3 \exp((K^2/2\sigma_3^2) D_{BHYTP}(E).$$
 /2/

При этом среднее расстояние между компаунд-уровнями с фиксированными J $^{\pi}$ и произвольным K выражается формулой

$$\bar{D}_{J\pi} = \left[\sum_{|K|} (\bar{D}_{J\pi|K|})^{-1}\right]^{-1}$$
/3/

6

В формулах /1/-/3/ Е - энергия возбуждения компаунд-состояния.

$$E_{\text{вращ.}}(K,J) = \frac{\hbar^2}{2g} [J(J+1)-K^2], a \sigma_3^2 = \hbar^2/Tg_3, где g_3 \mu g$$
 суть

эффективные моменты инерции относительно оси симметрии ядра и перпендикулярной к ней оси, Т - температура. При условиях К << σ₃, Е_{вращ} << Т формула /1/ переходит в

$$\bar{D}_{J}\pi|_{K}| = \bar{D}_{|K|\pi} = \sqrt{2\pi} \sigma_{3} D_{BHYTP}.$$
 (E), /4/

а величина $\tilde{\mathbf{D}}_{\mathbf{J}}\pi$ определяется соотношением

$$\overline{D}_{J^{\pi}} = \overline{D}_{|\mathbf{K}|_{\pi}} / r(\mathbf{J}), \qquad (5)$$

нде фактор r(J), равный числу возможных значений К при данных J[#], имеет следующий вид, несколько уточненный нами по сравнению с выражением /4.63г/ из работы /1/:

Поскольку в основном состоянии ядра-мишени проекция $K_0 = I_0$ и величина К в процессе захвата нейтрона сохраняется $^{/1/}$, то sнейтронные резонансы возбуждаются через компоненты с $K = J_{>}$ и $J_{<}$ для компаунд-состояний $J_{>}^{\pi}$ и через компоненты с $K = J_{<}$ для HP с $J_{<}^{\pi}$. Тогда в условиях сохранения проекции К в HP отношение

между наблюдаемыми величинами $\overline{D}_{exp}^{J > \pi}$ и $\overline{D}_{exp}^{J < \pi}$ равно $\overline{D}_{exp}^{J < \pi} / \overline{D}_{exp}^{J > \pi} = 2.$ /7/

В противоположном предельном случае равномерного смешивания по К в НР можно ожидать $^{/7/}$, что величина $\bar{D}_{J}\pi$ практически не из-менится по сравнению с формулой /5/ ввиду сохранения числа ба-

зисных состояний. Поэтому для отношения наблюдаемых величин

$$\bar{D}_{exp}^{J_{c}\pi}$$
 и $\bar{D}_{exp}^{J_{c}\pi}$ из формул /4/ и /5/ получим
 $\bar{D}_{exp}^{J_{c}\pi}/\bar{D}_{exp}^{J_{c}\pi} = r(J_{c})/r(J_{c}).$ /8/

В таблице приведены результаты анализа наиболее надежно опре-

деленных экспериментальных значений ${}^{/8/} \overline{D}_{exp}^{J < \pi}$ и $\overline{D}_{exp}^{J > \pi} / N$ - полное число известных в-нейтронных резонансов/. Величины χ^2 определялись на основе гипотез ${}^{/8/} - \chi_1^2$ и ${}^{/7/} - \chi_{11}^2$. Видно, что гипотеза ${}^{/8/}$ согласуется с экспериментальными данными, тогда как гипотеза ${}^{/7/}$ может быть отброшена на уровне достоверности лучше 95%.

3. Рассмотрим информацию о характере смешивания по К, которую можно получить из исследования спиновой зависимости силовой функции в-нейтронов в деформированных ядрах. Для расчета нейтронных ширин компаунд-состояний воспользуемся интегральной формулой ^{/9/}, описывающей ширину распада подбарьерного квазистационарного состояния. При условии $k_{\rm B}R_{\rm A}$ <1, справедливом для резонансных нейтронов, имеем ^{/9/}:

$$\Gamma_{n0}^{J\pi\lambda} = 2\pi |\langle \Psi_{J\pi}^{\lambda} | \Psi_{nA}^{\mu} | \Psi_{nA}^{\mu} | \Psi_{I_0}^{M} | \langle \Psi_{I_0}^{\lambda} \rangle |^2, \qquad (9)$$

где V_{nA} - потенциал взаимодействия нейтрона с ядром-мишенью, $\Psi_{J\pi M}^{\lambda}$ - волновая функция НР λ (J \neq 0),

$$\Psi_{J\pi M}^{\lambda} = \sum_{|K|} b_{|K|}^{J\pi\lambda} \sqrt{\frac{2J+1}{16\pi^2}} \left[D_{MK}^{J} \chi_{|K|}^{\lambda} + (-) D_{M-K}^{J} \chi_{|\overline{K}|}^{\lambda} \right].$$
 /10/

В формуле /10/ D_{MK}^{J} - обобщенная сферическая функция, $\chi_{|K|}^{\lambda}$ внутренняя функция HP и $\chi_{|K|}^{\lambda}$ - обращенная к ней во времени. Величины $b_{|K|}^{J\pi\lambda}$ - коэффициенты смешивания по проекции К. Входящая в формулу /9/ функция в -нейтронного канала $\Psi_{I_0}^{JM}$ определяется выражением

$$\Psi_{l_001/2}^{JM} = \tilde{j}_0(k_n r) \sum_m C_{l_01/2M_0m}^{JM} \sqrt{\frac{2l_0+1}{16\pi^2}} \left[D_{M_0l_0}^{I_0} X_{l_0} + D_{M_0-l_0}^{I_0} X_{\overline{l_0}} \right] \times \phi_{1/20m},$$

где $\tilde{j}_0(\mathbf{k}_n \mathbf{r})$ - сферическая функция Бесселя с $\ell_n = 0$, нормированная на δ -функцию по энергии, $\phi_{1/20\,m}$ - спин-угловая функция нейтрона в лабораторной системе координат, а χ_{I_0} - внутренняя волновая функция ядра-мишени с $K_0 = I_0 \neq 0$. Таблица

Сост. ядро	$J_{>,}^{\tilde{n}}, J_{<}^{\tilde{n}}$	Ð _{ey} , (3β) N _{J,} ï	$ \begin{array}{c} \overline{\mathfrak{D}}_{exp}^{J_{\mathcal{L}}\mathcal{R}} (\mathfrak{s} B) \\ \mathcal{N}_{J_{\mathcal{L}}} \overline{\mathfrak{r}} \end{array} $	N	Dexp Dexp Dexp	χ_{I}^{2}	X ² <u>I</u>
¹⁵⁸ Gd	2-,1-	9,5±0,9 29	13 ,3±1, 5 I8	54	I,4±0,28	0,127	4,6
160 TB	2+,1+	- 37	- 28	72 -	1,32±0,26	0 ,4 64	6,6
162 Dy	3+,2+	4,7±1,6 23	5,9±0,7 2I	54	1,26±0,25	0 ,0 8	8,4
I64 Dy	37,27	14,0±1,6 29	16 ,7± 2 18	52	I,19±0,24	0,35	11,6
166 Ho	4-,3-	 30	 25	63	I,2 <u>+</u> 0,24	0,04	11,1
168 Еч	4+,3+	7,5±0,6 39	9,3±1,0 23	62	I,24±0,25	0,02	9,4
170 	1+.0+	- 59	- 20	86 ·	2,95±0,6	2,6	2,F
174 YB	37,27	14,0±1,3 33	20±2,0 2I	60	1,43±0,28	0,12	3,97
178 Hf	47,37	- 48	- 50	98	0 .96± 0,19	2,28	29,3
180 Hf	5+,4+	- I8	- I7	3 8	1,06±0,21	0,29	19,7
196 Pt	1-,0-	- 27	- I0	40	2,7±0,54	I,68	I,68
²³⁶ U	4-,3-	0,809±0,07 -	. 0.95±0,08 ~	4 3I	1,18±0,18	0,16	20,6
$\sum_{i} \chi_{i}^{2}$						8,6	129,6

Выделим во внутренней волновой функции НР $\chi^{\lambda}_{|\mathbf{K}|}$ компоненту, связанную с внутренней волновой функцией основного состояния ядра-мишени $\chi_{\mathbf{I}_{\mathbf{A}}}$ и одночастичным нейтронным резонансным состоя-HUEM $\varphi_{01/2}^{t}$

$$\sum_{t} \mathbf{x}^{t} \chi_{I_{0}} \phi_{0}^{t} \frac{1}{2^{\delta}} |\mathbf{K}|, I_{0} \pm \frac{1}{2}.$$
 (12/

Суммирование по t в формуле /12/ учитывает существование двух резонансных состояний с К = 1/2 в окрестности максимума силовой функции в деформированных ядрах. Тогда, переходя для спин-угловой функции нейтрона $\phi_{1/20m}(\Omega_{\vec{r_n}},\sigma_n)$ в /11/ во внутреннюю систе-му координат и подставляя /10/-/12/ в формулу /9/, получим

$$\Gamma_{n0}^{J\pi\lambda} = |\sum_{t} \sum_{|K|} C_{J1/2|K|I_0-|K|}^{I_0I_0} (\Gamma_{01/2}^{t})^{1/2} x^{t} b_{|K|}^{J\pi\lambda} |^2.$$
 (13/

Здесь $\Gamma_{0\,1/2}^t$ - одночастичная нейтронная ширина распада состояния $\varphi_{0\,1/2}^t$. Усредняя ширину $\Gamma_{n0}^{J\,\pi\lambda}$ /13/по большому числу НР с данными J^{π} и учитывая статистические свойства коэффициентов $b_{|K|}^{J\,\pi\lambda}$ и x^t

$$\mathbf{b}_{[\mathbf{K}]}^{\mathbf{J}\pi\lambda} \mathbf{b}_{[\mathbf{K}']}^{\mathbf{J}\pi\lambda} = |\mathbf{b}_{[\mathbf{K}]}^{\mathbf{J}\pi}|^2 \delta_{|\mathbf{K}|} |\mathbf{K}'|, \qquad \mathbf{x}^{\mathsf{t}} \mathbf{x}^{\mathsf{t}'} = (\mathbf{x}^{\mathsf{t}})^2 \delta_{\mathsf{t}},$$

найдем

$$\overline{\Gamma_{n0}^{J\pi}} = \sum_{t} \sum_{|K|} \left(C \frac{I_0 I_0}{J 1/2 |K| I_0 - |K|} \right)^2 \left| \overline{b} \frac{J\pi}{|K|} \right|^2 (\overline{x^t})^2 \Gamma_{01/2}^t, \qquad /14/$$

Согласно / 1/. имеем

$$(\overline{\mathbf{x}^{t}})^{2}_{t} = \frac{1}{2\pi} \frac{\Gamma_{+}^{t} D |\mathbf{K}| \pi}{(E_{n} - E_{0}^{t} \gamma_{2})^{2} + (\Gamma_{+}^{t})^{2} / 4},$$
(15/

где $\mathbf{E}_{0\,1/2}^{t}$ и Γ_{\bullet}^{t} - энергия и "спрэдовая" ширина одночастичного со-стояния $\mathbf{\phi}_{0\,1/2}^{t}$. Используя стандартное определение s-нейтронной силовой функции $S_{n0}^{J^{\pi}} = \overline{\Gamma_{n0}}^{J^{\pi}} / \sqrt{E_n} \overline{D}_{J^{\pi}}$ и формулы /14/, /15/ и /5/, получим

$$S_{n0}^{J>\pi} = \left\{ \frac{2J_{>}}{2J_{>}+1} \mid \overline{b_{J>}^{J>\pi}} \mid^{2} + \frac{1}{2J_{>}^{*}+1} \mid \overline{b_{J<}^{J>\pi}} \mid^{2} \right\} r(J_{>}) S_{n0},$$

$$S_{n0}^{J_{<}n} = |\overline{b_{J_{<}}^{J_{<}n}|^{2}} r (J_{<}) S_{n0},$$
 /16/

где

$$S_{n0} = \frac{1}{2\pi} \sum_{t} \frac{\Gamma_{\downarrow}^{t} \Gamma_{01/2}^{t}}{\left(E_{n} - E_{01/2}^{t}\right)^{2} + \left(\Gamma_{\downarrow}^{t}\right)^{2} / 4 \sqrt{E_{n}}}.$$
 /17/

Анализ экспериментальных силовых функций для s -нейтронов в деформированных ядрах приводит к выводу / 10,11/ о том, что величина S $_{n0}^{J\pi}$ не зависит от J. Этот факт позволяет получить из формулы /16/ среднее значение коэффициентов $|b_{|K|}^{J\pi}|^2$

$$\left| \frac{b}{|K|}^{J^{\pi}} \right|^{2} = 1/r(J),$$
 /18/

совпадающее с величинами $|b_{|K|}^{J''}|^2$ полученными ранее в работе $^{/12/}$ в пределе сильного кориолисова смешивания. Поскольку величина r(J) определяет число всевозможных значений К при данном значении спина J HP, то результат /18/ физически означает полную равновероятность всех проекций К в волновой функции HP.

С этом случае $\tilde{S}_{n0}^{J''} = \tilde{s}_{n0}$, причем силовая функция S_{n0} может быть последовательно вычислена на основе оптической модели с несферическим потенциалом. Таким образом, только при выполнении условия /18/ можно аргументировать применение оптической модели для описания нейтронных силовых функций в деформированных ядрах.

Авторы благодарят В.П.Алфименкова, Л.Б.Пикельнера и Э.И.Шарапова за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Бор 0., Моттельсон Б. Структура атомного ядра. "Мир", М., 1971, т.1,2.
- 2. Бунатян Г.Г. ЯФ, 1977, 27, с.979.
- 3. Moor M.S. et al. Phys.Rev., 1978, C18, p.1323.
- Aldea L. et al. Proc. of Int.Conf.Nucl.Phys., Münich. New York, 1973, p.660.
- 5. Kondurov I. et al. Phys.Lett., 1981, B106, p.383.
- 6. Wigner E.P. Ann.Mat., 1958, 67, p.325; 1955, 62, p.548.
- 7. Вдовин А.И. и др. ЭЧАЯ, 1976, 7, с.952.
- Neutron Cross Sections. (Ed. by S.F.Mughabghab et al.). Academic Press, N.Y., 1981, vol.1, part A.

- 9. Кадменский С.Г., Фурман В.И. ЭЧАЯ, 1975, 6, с.469.
- 10. Алфименков В.П. и др. ЭЧАЯ, 1980, 11, с.411.
- 11. Алфименков В.П. и др. ОИЯИ, РЗ-81-404, Дубна, 1981.
- 12. Кадменский С.Г. и др. ЯФ, 1981, 35, с.300.

Рукопись поступила в издательский отдел 31 декабря 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на 38М и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
A2-01-543	іруды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
A 10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	ĸ.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиуна по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Кадменский С.Г. и др. P4-82-934 Несохранение К в нейтронных резонансах и спиновая зависимость нейтронной силовой функции в деформированных ядрах

На основе теоретического анализа средних расстояний между компаунд-состояниями с данными J^{π} ряда деформированных ядер, а также с использованием других существующих экспериментальных данных, получен вывод о том, что проекция К полного спина нейтронного резонанса не является хорошим квантовым числом. Получены формулы для нейтронных силовых функций s -резонансов с фиксированными J^{π} в деформированных ядрах и из сравнения с соответствующими экспериментальными величинами сделано заключение о равновероятности всех проекций К в волновой функции нейтронного резонанса.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Kadmensky S.G. et al. P4-82-934 K-Nonconservation in Neutron Resonances and Spin Dependence of Neutron Strength Functions of the Deformed Nuclei

On the basis of theoretical treatment of level spacing the compound-nucleus states with fixed J^{π} for some deformed nuclei and using another suitable experimental data it is obtained that the projection of the neutron resonance spin on the nuclear axis K is not good quantum number. The new formulae for spin dependent s-wave neutron strength functions of the deformed nuclei are obtained. A comparison of experimental neutron strength functions and theoretical ones leads to the conclusion that all projections K enter the wave function of a neutron resonance with the equal weigths.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

=