

ОБЪЕДИНЕННЫЙ Институт Ядерных Исследований

дубна

1478 83

В.М.Вахтель, С.Г.Кадменский, И.А.Ломаченков, В.И.Фурман

ОБЛЕГЧЕННЫЙ И ПОЛУОБЛЕГЧЕННЫЙ **4** -РАСПАД ЯДЕР С N = 125 И ЭФФЕКТЫ СПАРИВАНИЯ

Направлено в журнал "Ядерная физика"

1. Общепринято, что куперовское спаривание нуклонов в атомных ядрах определяет важные черты ядерной структуры и ядерных реакций ^{/1/}. Однако при теоретическом описании эффектов спаривания, как в сверхтекучих ^{/1,2/}, так и в околомагических ^{/3/} ядрах, возникает проблема логарифмической расходимости при расширении используемого одночастичного базиса. В вариантах теории с постоянным спариванием ^{/1/} или с эффективными δ -силами в канале частица-частица ^{/2,3/} логарифмическая расходимость устраняется принудительным обрезанием одночастичного базиса с подстройкой константы взаимодействия под экспериментальную энергию спаривания. При этом константа взаимодействия оказывается зависящей от размерности базиса.

Естественный путь устранения логарифмической расходимости состоит в использовании эффективного взаимодействия в канале частица-частица с конечным радиусом действия го. В работах 4-6/ величина го соответствовала радиусу пустотных нуклон-нуклонных сил го = 1,5 Фм, что приводило к эффективному обрезанию оболочечного базиса при энергиях возбуждения $|\epsilon_i - \epsilon_F| \leq \Delta E_{ma} \neq 100$ МэВ. Заметим, что широкий круг ядерных явлений, малочувствительных к конкретной процедуре обрезания базиса, удовлетворительно описывается / 1, 2/ на основе моделей с постоянным спариванием и с эффективными δ -силами. В то же время такие процессы, как α -распад или реакции двухнуклонной передачи, в ряде случаев прямо зависят от размерности используемого базиса/4/. Это происходит тогда, когда ширины и сечения исследуемых процессов определяются когерентным сложением вкладов отдельных компонент в волновой функции двух выделяемых нуклонов 11. Поскольку неоднозначности теоретической интерпретации реакций двухнуклонной передачи не позволяют надежно извлечь абсолютные величины интересующих нас эффектов, ограничимся рассмотрением «-распада с целью получения феноменологической информации о размерности оболочечного базиса, определяющего куперовское спаривание.

2. Ширина а-перехода из состояния родительского ядра $\Psi^{J_i \pi_i}$ в состояние дочернего ядра $\Psi^{J_f \pi_f}$ с использованием не-R-матричного варианта теории а-распада^{/7/} записывается в виде

$$\Gamma_{\alpha} = 2\pi \sum_{L} |\langle \hat{A} \{ F_{L} u_{LJ_{f}}^{J_{i}M_{i}} | V_{\alpha A} \} | \Psi^{J_{i}\pi_{i}M_{i}} \rangle|^{2}, \qquad /1/$$

где $u_{LJ_f}^{J_iM_i}$ – функция канала, F_L – регулярная кулоновская функция, нормированная на δ -функцию по энергии, V_{aA} – потенциал взаимодействия дочернего ядра A и *а*-частицы, вылетающей с орбитальным моментом L /Â – оператор антисимметризации/. Как показано в ряде работ^{/7,8/}, относительные вероятности *а*-переходов удовлетворительно воспроизводятся без использования свободных подгоночных параметров типа радиуса канала, если волновые

функции $\Psi^{J_i \pi_i}$ и $\Psi^{J_f \pi_f}$ рассчитываются на основе оболочечной модели ядра с учетом остаточных взаимодействий. При этом формула /1/ может быть записана в форме

$$\Gamma_{\alpha}^{\text{Teop}} = 2\pi \sum_{L} \left| \sum_{P_{\alpha}N_{\alpha}} C_{P_{\alpha}} C_{N_{\alpha}} M_{P_{\alpha}N_{\alpha}L} \right|^{2}, \qquad (2/$$

где М_{Ра^Nа}L - амплитуда а-ширины^{/8/}, причем вылетающая а-частица формируется в состоянии

$$\mathbf{P}_{\alpha} \mathbf{N}_{\alpha} \mathbf{L} = \left[\left[\mathbf{n}_{1} \ell_{1} \mathbf{j}_{1}, \mathbf{n}_{2} \ell_{2} \mathbf{j}_{2} \right]_{j_{12}} \left[\mathbf{n}_{3} \ell_{3} \mathbf{j}_{3}, \mathbf{n}_{4} \ell_{4} \mathbf{j}_{4} \right]_{j_{34}} \right]_{\mathbf{L}} .$$
 (3)

Здесь индексы 1,2 относятся к протонам, а 3,4 - к нейтронам. Коэффициенты $C_{P_{\alpha}}$ и $C_{N_{\alpha}}$ полностью определяются структурой начальных и конечных состояний ядер. Как отмечено впервые в работах ^{/9,10/}, для так называемого об-

Как отмечено впервые в работах^{79,107}, для так называемого облегченного а-распада реализуется важный для целей нашего исследования случай когерентного формирования а-частицы из различных нейтронных и протонных пар с $\mathbf{j}_{12} = \mathbf{j}_{34} = \mathbf{0}$, находящихся на размытой спариванием поверхности Ферми. Механизм облегченного а-распада проиллюстрируем на основе формализма сверхтекучей модели ядра^{/1/}. В этом случае коэффициенты $C_{\mathbf{P}_{a}}(\mathbf{N}_{a})$ имеют следующий вид^{/11/}:

$$C_{P_{\alpha}} = \delta_{j_{P_{\alpha}}0}(-)^{\ell_{1}}\Omega_{j_{1}}^{1/2}u_{j_{1}}^{p}v_{j_{1}}^{p}v_{j_{1}}^{p}\prod_{j\neq j_{1}}(u_{j}^{p}u_{j}^{p}u_{j}^{p}+v_{j}^{p}v_{j}^{p})^{\Omega_{j}} - z - \text{четное},$$

$$\begin{split} \mathbf{C}_{\mathbf{P}_{a}} &= i \, \delta_{j_{\mathbf{P}_{a}} 0} \, \delta_{j_{1} j_{2}} \, \delta_{j_{\mathbf{P}_{f}} j_{\mathbf{P}_{i}}} (-)^{\ell_{1}} \, \Omega_{j_{1}}^{j_{2}'} \, u_{j_{1}}^{\mathbf{P}_{f}} \, v_{j_{1}}^{\mathbf{P}_{i}} - (\mathbf{1} + \delta_{j_{1} j_{2}})^{j_{2}'} \delta_{j_{1} j_{\mathbf{P}_{i}}} \delta_{j_{2}' j_{\mathbf{P}_{f}}} \times \\ & \times (-)^{\ell_{\mathbf{P}_{f}}} \, \sqrt{(2j_{\mathbf{P}_{f}} + 1)/2\Omega_{j_{1}}} \, u_{j_{\mathbf{P}_{i}}}^{\mathbf{P}_{f}} \, v_{j_{\mathbf{P}_{f}}}^{\mathbf{P}_{i}} \, i_{j_{\mathbf{P}_{j}}}^{\mathbf{\Pi}} (u_{j}^{\mathbf{P}_{f}} \, u_{j}^{\mathbf{P}_{i}} + v_{j}^{\mathbf{P}_{f}} \, v_{j}^{\mathbf{P}_{i}})^{\Omega_{j}} \, z_{-} \, \text{нечетное}, \end{split}$$

где $\Omega = (2j+1)/2$, а u^{P_i} и v^{P_f} - козффициенты преобразования Ω ть составляется с 3БИЕЛЬНОГЕ КА Боголюбова для протонных систем начального (i) и конечного (f) ядер. Для облегченного α -перехода (L=0) суммирование в формуле /2/ оказывается когерентным благодаря появлению фазы $^{/8/}$

 $(-1)^{\ell_1 + \ell_3}$ в амплитуде $M_{P_a N_a L}$, что приводит к увеличению ширины $\Gamma_a^{\text{теор.}}$ по сравнению с шириной $\Gamma_a^{\text{обол.}}$, рассчитанной в простой оболочечной модели, когда $C_{P_a} = C_{N_a} = 0$ для одночастичных состоя-

ний, не совпадающих с соответствующим уровнем Ферми начального ядра. Эффект усиления облегченных *а*-переходов, схематически рассмотренный выше для ядер с развитой сверхтекучестью, сохраняется $^{/4,7/}$ и для околомагических ядер. При этом величины $\Gamma_{a}^{\text{теор.}}$ рассчитываются с волновыми функциями $^{/4,12/}$, полученными при помощи диагонализационной процедуры.

Для количественного анализа удобно ввести теоретический коэффициент усиления^{/7/}

$$K = \Gamma_a^{\text{Teop.}} / \Gamma_a^{\text{obol.}} \simeq K_P K_N .$$
 (5)

Погрешность приближенной факторизации вкладов от протонной и нейтронной систем в формуле /5/ была исследована в работах /4,7/ и составляет не более 30%.

Если в процессе *a*-перехода изменяется спин протонной /нейтронной/ системы $j_{P_i(N_i)} \neq j_{P_f(N_f)}$, то, как следует из формул /4/

и /2/, отмеченный выше эффект усиления для данной системы исчезает, т.е. соответствующий $K_{P(N)} = 1.$ Такой α -переход будем называть полуоблегченным или облегченным только по нейтронной /протонной/ системе.

Для дальнейшего важно отметить, что ранее на основе не-Rматричного подхода была установлена возможность воспроизведения относительных *а*-ширин, когда в исследованных ядрах наблюдались *а*-переходы только одного типа - облегченные⁷⁷ или необлегченные^{77,8,137}. Эти результаты дают основание считать, что и в ситуации, когда для данного ядра наблюдаются *а*-переходы разного типа, например, облегченные и полуоблегченные, с достаточной точностью будет справедливо соотношение

$$(\Gamma_{\alpha}^{\rm o5.n}/\Gamma_{\alpha}^{\rm n.o5.n})_{\rm 9KC} = (\Gamma_{\alpha}^{\rm o5.n}/\Gamma_{\alpha}^{\rm n.o5.n})_{\rm Teop} .$$
 /6/

Отсюда, используя определение /5/, можно получить значения феноменологических коэффициентов усиления $K_{N(P)}^{\Phi}$. Чтобы уменьшить неопределенности в величинах $K_{N(P)}^{\Phi}$, ограни-

Чтобы уменьшить неопределенности в величинах К $N_{(P)}$, ограничимся в данной работе рассмотрением околомагических ядер с N=125, для которых хорошо установлена^{/14/} одноквазичастичная структура основных и нижайших возбужденных состояний. Правомерность описанной процедуры извлечения К $N_{(P)}^{\Phi}$ может быть проверена путем сопоставления значений $K_{N(P)}^{\Phi}$, полученных из разных пар $a \neg ne-$ реходов для данного родительского ядра, а также из анализа a - переходов в соседних изотонах /изотопах/.

3. Рассмотрим четно-нечетные ядра 209 Po , 211 Rn и 213 Ra c N = 125, в которых обнаружены/ $^{14,15/}$ как облегченные, так и полуоблегченные α -переходы и имеется информация о спинах и четностях начальных и конечных состояний. Поскольку основные и нижайшие возбужденные состояния родительских и дочерних ядер являются практически одноквазичастичными по нейтронной системе, то исследуемые полуоблегченные α -переходы должны быть усилены только по протонной системе. Тогда из соотношений /6/ и /5/ имеем:

$$K_{N}^{\phi} = (\Gamma_{\alpha}^{0\delta\pi} / \Gamma_{\alpha}^{\Pi.0\delta\pi})_{3KC} / (\Gamma_{\alpha}^{0\delta\pi} / \Gamma_{\alpha}^{\Pi.0\delta\pi})_{0\delta0\pi}, \qquad /7/$$

где α -ширины (Γ_{α}) обол. рассчитываются с конфигурациями начальных и конечных состояний, приведенными в табл.1 / P_f - число протонов/. При получении /7/ принималось, что в соответствии с аппроксимацией /5/ значения протонного коэффициента усиления ($K_p > 1$) одинаковы для α -переходов на различные конечные состояния.

Как видно из таблицы, феноменологические коэффициенты усиления K_N^{Φ} с точностью до 20% постоянны для *а* -переходов на различные состояния данного дочернего ядра. Это означает, что соотношение /6/ справедливо в пределах точности факторизации /5/.Близость /в пределах той же точности/ величин K_N^{Φ} , полученных для разных ядер, позволяет оценить погрешность абсолютных значений K_N^{Φ} . Таким образом, значение K_N^{Φ} , усредненное по ядрам с N = 125, составляет K_N^{Φ} = 3,3+0,3.

4. В нечетно-нечетных ядрах 212 Fr и 210 At с N = 125 известно $^{15/}$ 17 *а*-переходов. Такая богатая структура *а*-спектров обусловлена высокой плотностью уровней возбуждения дочерних ядер 208 At и 206 Bi, в которых NP-взаимодействие формирует следующие нижайшие мультиплеты:

$$\{1\}_{J^{\pi}} = [P(1h_{9/2})N(2f_{5/2})]_{2^{+}+7^{+}},$$

$$\{2\}_{J^{\pi}} = [P(1h_{9/2})N(3p_{1/2})]_{4^{+},5^{+}},$$

$$\{3\}_{I^{\pi}} = [P(1h_{9/2})N(3p_{3/2})]_{2^{+}+6^{+}},$$

$$\{3\}_{I^{\pi}} = [P(1h_{9/2})N(3p_{3/2})]_{2^{+}+6^{+}},$$

С помощью полученного выше нейтронного коэффициента усиления и используя соотношения /5-7/, попытаемся теоретически воспроизвести относительные вероятности а-переходов в этих ядрах, имея в виду, что все а-переходы являются облегченными по протонной системе.

_
_
· · · ·
<u> </u>
_

•		Υ. Υ	ağırıypa	THE POLICE	BRECKEX A	цер			
Конфитуреция	213 _{Ra} (4	(* 3P (3P / *)	2]8-	211Bu [(14.	(x4 (3 Px)) (1 x	1 14-	209 _{Po} [[14	hg2) 2 (3P42.	1/2 1/2
ACTEPHEIO ANDS $I(n(\ell))^{f_{\ell}}(h(\ell')'''\ell')^{J_{\rho}} = I_{\rho}$	Hall A	للا) مر	₽ ²	E _k MaB	I ^{akc} (≴)	₽²	E _× MaB	I ^{əkc} (۶)	¢y ¥
[(14 gr)0 (2 fils)5/2]5/2	6 , 73I	8,16	3	5,850	۲	3,6	4,882	श्च	3 , 6
[(14 94) 0 (3 Pr,),]y, -	6,62 4	8		5,783	9 0		4,880	ğ	
[(th gh,) + (3P, 12,) +] J_{h} -	6,522	12,2	3,2	5,616	4,3	3 , 6	4,620	0,6	3,25
					•	Габлиц	2		

		2.0			1	[
+01 9	6,07	н, 1, 84	6 . 0	3 , I		4+)
3 ⁴	6,127	5±0,5	3,9	12,2		
4+ + 6	6,173	4,6±0,5	6,7	20.7	e	(51)
÷€	6 , I84	5 ,5±0, 5	6,1	I8,7	Tadata	(44)
51 12	6,227	Н.Н.	204	æ0~3	T	(53)
+62	6 , 23I	Н.В.	8°0	9°0	- ,	55
đ	6, 335	H. H.	I, 36	3.3		
۲ł	6,335	4344	49	ISI		4
4 †	6,342	I3≢I	H	R		5
5 ⁺	5,262	156±20	169	282		37
5 <u>1</u>	6,383	100	10	8		4
6† 6	6,405	93 1 5	67	302		6†
trt T	EMaB	$I^{akc}_{\alpha}(z)$	I ⁷ (\$)	$I_{d_i}^{T}(\boldsymbol{x})$		4 F F
			1		1	

	(4 ⁺)	(5,324)	E ₉ H.	2.I0 ⁴
	(2†)	(5 , I6)	H.E.	1•10 4
S SUMMAR	(4 ⁺)	5,175	0,7±0,2	0,74
-	(5 1)	5,242	3, 2±0,3	2,4
	25 24	5,360	98 1 7	IOA
	ţ.	5,385	I6,2'I	22. 6
	21	5,442	100±5,3	81 1
	3t	5,455	I ,4± 0,2	0,87
	41	5,465	25 ,4 ±I	I4.4
	1 9	5,524	107 23	88,3
	क्म म क्म म	$\mathbf{E}_{\mathbf{q}} \mathbf{MaB}$	I ^{2KC} (\$)	। ^म (प्र)

Рассмотрим сначала а-распад ядра 212 Fr. Величину (Γ_{α}) обол., входящую в формулу /5/, рассчитаем, принимая для основного состояния ядра 212 Fr "чистую" двухквазичастичную конфигурацию/15/ [$P(1h_{9/2})_{9/2}^{5}N(3p_{1/2})_{1/2}^{1}]_{5}$ +, а для состояний дочернего ядра 208 At используем волновые функции, полученные в работе/ $^{16/}$ с учетом смешивания конфигураций за счет NP -взаимодействий. В табл.2 приведены теоретические и экспериментальные интенсивности апереходов в ядре 212 Fr. Видно /ср.3 и 5 строки таблицы/, что с волновыми функциями/ $^{16/}$ не удается описать относительных интенсивностей а-переходов.

Обсудим более подробно причину этого расхождения. Согласно работе^{/16/}, для уровня 5⁺1 ядра ²⁰⁸ At лидирующей компонентой является конфигурация {1}; так что *α*-переход 5⁺ → 5⁺1 оказывается практически необлегченным по нейтронной системе, тогда как *α*переход 5⁺ → 5⁺2 имеет облегченный характер по обеим системам, поскольку в состоянии 5⁺2 доминирует компонента {2}; +. Однако близость^{/14,15/} экспериментальных факторов запрета для *α*-переходов на уровни 5⁺1 и 5⁺2 указывает, по-видимому, на то, что в обоих случаях реализуется облегченный механизм *α*-распада. На языке структуры уровней это означает, что в состоянии 5⁺1 ядра ²⁰⁸ At имеется большая примесь мультиплета {2}; +. В четвертой строке табл.2 приведены теоретические интенсивности *α*-переходов, рассичтанные с волновыми функциями^{16/}, модифицированными для состояний 5⁺1 и 5⁺2 следующим образом:

$$|5_{1}^{+}\rangle = \sqrt{0.878} |\{1\}_{5^{+}}\rangle + \sqrt{0.122} |\{2\}_{5^{+}}\rangle ,$$

$$|5_{2}^{+}\rangle = \sqrt{0.878} |\{2\}_{5^{+}}\rangle - \sqrt{0.122} |\{1\}_{5^{+}}\rangle .$$
(9)

При этом, как видно из таблицы, удается удовлетворительно воспроизвести относительные вероятности *а*-переходов на уровни дочернего ядра ²⁰⁸ At с известными J_f^{nf} . Исходя из разумного согласия между экспериментальными и теоретическими интенсивностями *а*-переходов с энергиями 6,184; 6,173; 6,127 и 6,076 МэВ, можно провести сопоставление структуры и квантовых характеристик (J_f^{nf}) соответствующих состояний с уровнями теоретического спектра возбуждений дочернего ядра^{/16/}.Заметим, что три уровня ядра ²⁰⁸ At, предсказанные в работе^{/16/}, а именно: 2_1^+ , 3_1^+ и 4_2^+ в *а*-распаде 212 Fr не наблюдаются^{/14,15/}. Наши расчеты, представляющие собой верхние оценки соответствующих *а*-ширин, дают величины интенсивностей *а*-переходов на уровни 2_1^+ и 4_2^+ ниже порога экспериментальной чувствительности. Что касается *а*-перехода на уровень 3_1^+ , то для него теоретическая интенсивность сравнима с интенсивностью обнаруженных слабых *а*-групп. Возможно, что соответствующая *а*-линия отличается по энергии E_a лишь на несколько кэв от сильной *а*-группы с $E_a = 6,340$ МэВ и поэтому пока не обнаружена.

6

Переходя к анализу *a*-распада ядра²¹⁰ At, отметим, что для дочернего ядра²⁰⁶ Bi отсутствуют волновые функции с последовательным учетом смешивания конфигураций. Расчеты относительных вероятностей *a*-переходов в ядре²¹⁰ At проведем в полной аналогии с рассмотренным выше случаем *a*-распада²¹² Fr. Для основного состояния ядра²¹⁰ At примем "чистую" двухквазичастичную конфигурацию [P(1h₉/₂)³N (3p_{1/2})¹]₅+. Поскольку экспериментальные спектры возбуждения ядер ²⁰⁸ At и ²⁰⁶ Bi имеют сходный характер /14,15/, для состояний дочернего ядра²⁰⁶ Bi в первом приближении используем волновые функции /16/, рассчитанные для ядра²⁰⁸ At. Ввиду того, что ситуация с *a*-переходами 5⁺ → 5⁺₁ и 5⁺ → 5⁺₂ в ²¹⁰ At очень близка к рассмотренной выше для ядра²¹² Fr. то, чтобы описать относительные вероятности этих переходов, волновые функции состояний 5⁺₁ и 5⁺₂ в ядре²⁰⁶ Bi модифицируем к виду

$$|5_{1}^{+}\rangle = \sqrt{0,744} |\{1\}_{5^{+}}\rangle + \sqrt{0,256} |\{2\}_{5^{+}}\rangle,$$

$$|5_{2}^{+}\rangle = \sqrt{0,744} |\{2\}_{5^{+}}\rangle - \sqrt{0,256} |\{1\}_{5^{+}}\rangle.$$
/10/

В табл.3 сравниваются результаты расчетов относительных интенсивностей *а*-переходов с соответствующими экспериментальными величинами, полученными в работах $^{/14,15/}$. Значения спинов и четностей двух уровней, на которые *а*-переходы не наблюдались, взяты из работы $^{/17/}$. Видно. что уровень согласия теории и эксперимента примерно тот же, что и в случае *а*-распада ядра 212 Fr, несмотря на менее последовательный выбор волновых функций ядра 206 Bi

Заметим, что фрагментация силы облегченных *a*-переходов, повидимому, присуща не только ядрам ²¹²Fr и ²¹⁰At. Согласно /18,19/, в ядрах ²¹⁴Ac и ²¹⁶Pac N = 125 также имеется по два *a*-перехода с близкими значениями экспериментальных факторов запрета, характерных для облегченных *a*-переходов. Похожая картина наблюдается^{/20,21/} и при *a*-распаде изотопов ^{200,202}At и изотопа ²⁰⁴Fr. К сожалению, в настоящее время отсутствует достаточная информация о спинах и четностях начальных состояний этих ядер и конечных состояний соответствующих дочерних ядер, что не позволяет провести последовательный анализ указанных *a*-переходов.

В свете отмеченной тенденции фрагментации силы облегченных a -переходов в нечетно-нечетных ядрах полученный нами вывод о сильном смешивании мультиплетов {1}и {2} в ядрах ²⁰⁸ At и ²⁰⁶ Bi стимулирует дальнейшие теоретические и экспериментальные исследования структуры низколежащих состояний указанных ядер. Подчеркнем, что полученное нами смешивание, по-видимому, трудно объяснить на основе традиционно используемого эффективного остаточного взаимодействия /12,22,23/. 5. Переходя к обсуждению физического смысла полученных результатов, заметим, что впервые анализ относительных вероятностей *а*-переходов различного типа с учетом эффектов сверхтекучего усиления был проведен в работах^{9,10}/В модели с постоянным спариванием на основе упрощенного описания механизма *а*-распада для ряда сильнодеформированных ядер удалось воспроизвести^{9,1}/ экспериментальные факторы запрета. Однако поскольку реализация не- R-матричного подхода⁷⁷ для деформированных ядер связана с весьма трудоемкими вычислениями, использование этих ядер с целью получения количественной информации о величинах $K_{N(P)}^{\Phi}$ оказывается затруднительным.

Отметим, что некоторые ядра с N = 125, исследованные выше, рассматривались ранее /24,25/. Авторы работы /24/ попытались рассчитать абсолютные вероятности облегченных и полуоблегченных a переходов в ядрах 209 Po, 211 Rn и 213 Ra, используя "гибридный" вариант R -матричной теории a-распада / 26/и волновые функции начальных и конечных состояний, полученные с учетом спаривания /27/ Поскольку в работе /24/ не удалось воспроизвести относительные /и абсолютные / ширины облегченных и полуоблегченных a -переходов, то не представляется возможным провести прямое сопоставление теоретических коэффициентов усиления с полученными нами величинами K_N^{\oplus} . Что касается работы /25/, где был проведен анализ относительных a-ширин в ядре 210 At, то необходимо отметить идеологическую непоследовательность, связанную с тем, что авторы полностью игнорировали влияние эффектов спаривания на относительные вероятности a-переходов разного типа.

Абсолютные величины коэффициентов усиления K_N^{τ} , полученные в настоящей работе, сравним со значениями теоретических коэффициентов усиления K_N^T , рассчитанными $^{(4,6)}$ для ядер с N = 124 – $12 \leq K \leq 30$. Малость величин K_N^{Φ} по сравнению с K_N^T позволяет сделать вывод о том, что размерность использованного в расчетах $^{(4,6)}$ оболочечного базиса существенно завышена. Заметим, что величина K_N^T определяется эффективным числом компонент N₉ $_{\Phi}$ волновой функции куперовской пары, которые дают когерентный вклад в a-ширину. С другой стороны, N₉ $_{\Phi}$ пропорционально размерности оболочечного базиса, т.е. величине ΔE_{max} /см. пункт 1/. Поскольку характерный импульс q, передаваемый потенциалом эффективного взаимодействия, обратно пропорционален радиусу взаимодействия r_0 , то величину интервала ΔE_{max} можно оценить как

 $\Delta E_{max} = \frac{\hbar v_F}{r_0}$, где v_F - скорость, соответствующая импульсу Ферми.

Из сравнения значений K_N^{\oplus} , полученных выше, и теоретических коэффициентов K_N^{T} , рассчитанных $^{/4,6/}$ с использованием $r_0 \simeq 1,5$ Фм, следует оценка для радиуса эффективного взаимодействия в канале частица-частица $r_0 \simeq (4 \div 10)r_0 \simeq R_A$, где R_A - радиус ядра.

Представляется, что столь большие радиусы эффективного взаимодействия могут реализоваться только за счет перенормировки нуклон-

нуклонного взаимодействия в ядерной среде, связанной с поляризационными эффектами ядра как целого^{/28}.Таким образом, просматривается прямая аналогия с фононным механизмом взаимодействия электронов в сверхпроводниках.

ЛИТЕРАТУРА

- 1. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- 2. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер. "Наука", М., 1965.
- 3. Саперштейн Э.И., Троицкий М.А. ЯФ, 1975, 1, с.400.
- 4. Кадменский С.Г., Рыбак К.С. ЯФ, 1974, 19, с.971; Кадменский С.Г. и др. ЯФ, 1976, 24, с.501.
- 5. Bang E. et al. JINR, E4-10691, Dubna, 1977.
- 6. Arima A., Tonozuka I. Nucl.Phys., 1979, A323, p.45.
- 7. Кадменский С.Г., Фурман В.И. ЭЧАЯ, 1975, 6, с.469.
- Furman V.I. et al. JINR, E4-11286, Dubna, 1978; E4-11287, Dubna, 1978.
- 9. Соловьев В.Г. ДАН СССР, 1962, 144, с.1281.
- Mang H.J., Rasmussen J.O. Mat.Fys.Skr.Dan.Vid.Selsk., 1962, 2, No.3.
- 11. Zeh H.D. Z.Phys., 1963, 175, p.490.
- 12. Артамонов С.А. и др. Изв. АН СССР /сер.физ./, 1977, 41, с.2074.
- 13. Артамонов С.А. и др. яф, 1982, 36, с.829.
- 14. Lederer C.M. et al. Table of Isotopes, 7th ed., N.Y., 1978.
- 15. Вахтель В.М. и др. Изв.АН СССР /сер.физ./, 1981, 45, с.1861; 1981, 45, с.1966.
- 16. Артамонов С.А. и др. Изв. АН СССР /сер.физ./, 1979, 43, с.2071.
- 17. Jardine L.J., Shihab-Eldin A.-A. Nucl.Phys., 1975, A244, p.34.
- 18. Toth K.S. Nucl.Data Sheets, 1977, 21, p.437.
- 19. Schmidt K.H. et al. Nucl.Phys., 1979, A318, p.253.
- 20. Schmorak M.R. Nuclear Data Sheets, 1979, 26, p.81.
- 21. Вахтель В.М. и др. ОИЯИ, Д6-11574, Дубна, 1978, с.47.
- 22. Kim Y.E., Rasmussen J.O. Nucl.Phys., 1963, 47, p.184; Phys.Rev., 1964, 135, p.1344.
- 23. Ma C.W., True W.W. Phys.Rev., 1973, C8, p.2313.
- 24. Rasmussen J.O. et al. Z.Phys., 1976, A279, p.313.
- 25. Shihab-Eldin A.A. et al. Nucl. Phys., 1975, A244, p.435.
- Fliessbach T. Z.Phys., 1975, A272, p.39; Fliessbach T., Mang H.J. Nucl.Phys., 1976, A263, p.75.
- 27. Arvieu R. et al. Nucl. Phys., 1970, A143, p.577.
- 28. Кадменский С.Г., Фурман В.И. Тезисы XXXII совещ. по ядерн. спектр. и структ.ат. ядра. "Наука", Л., 1982, с.147. Рукопись поступила в издательский отдел 31 декабря 1982 года.

Вахтель В.М. и др. Облегченный и полуоблегченный а -распад ядер с N =125 и эффекты спаривания

Из анализа относительных вероятностей облегченных и полуоблегченных *а*-переходов в ядрах с N=125, проведенного на основе не- R-матричного варианта теории *а*-распада, получены абсолютные значения феноменологических нейтронных коэффициентов усиления $K_N^{\oplus} = 3, 3\pm0, 3$. Сопоставление величин K_N^{\oplus} со значениями теоретических коэффициентов усиления облегченного *а*-распада околомагических ядер приводит к выводу о необходимости увеличения радиуса эффективного взаимодействия в канале частица-частица, чтобы обеспечить надлежащее обрезание вклада базисных оболочечных состояний, лежащих далеко от поверхности Ферми.

P4-82-933

P4-82-933

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Vakhtel V.M. et al. Favoured and Semifavoured α -Decay for Nuclei with N=125 and Pairing Effects

The absolute values of the phenomenological enhancement coefficients K^{ph} are obtained from an analysis of the relative probabilities of a favoured and semifavoured *a*-transitions for nuclei with N = 125 based on the non-R -matrix *a*-decay theory. A comparison of the value of K^{ph} =3.3+0.3 and the theoretical enhancement coefficients for a favoured *a*-decay of nuclei with N = 126 leads to the conclusion that a radius of the effective interaction in particle-particle channel has been increased to ensure a cut of the contributions of shell model basic states far from the Fermi surface.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institu

Перевод О.С.Виноградовой.