

В.Г.Николенко

ЭФФЕКТЫ ФРАГМЕНТАЦИИ ОДНОЧАСТИЧНЫХ р-СОСТОЯНИЙ В НЕЙТРОННЫХ РЕЗОНАНСАХ

Направлено в журнал "Ядерная физика"

1. Максимумы в силовых функциях S ширин нейтронных резонансов объясняются наличием в волновой функции компаунд-состояния фрагментов одночастичных состояний, последние и определяют ширины нейтронных резонансов. Когда близки энергии рассеиваемого нейтрона и одночастичного состояния /0С/, то именно это 0С играет главную роль в формировании нейтронного резонанса. И максимумы S имеют место при таком размере ядра /атомном номере A /, когда соответствующие одночастичные уровни перестают быть связанными в ядерном одночастичном потенциале.

Если же это условие не соблюдено, то в формировании компаундсостояния /КС/ нет доминирующего влияния одного ОС и надо учитывать, по крайней мере, два таких состояния /связанное в яме и квазисвязанное над ней/. В таких случаях оптическая модель не может претендовать на описание фрагментации, т.к. она описывает образование КС как реакцию, и вклады разных одночастичных состояний складываются некогерентно

Особо интересными являются случаи, когда в формировании ширин КС вклады двух ОС сравнимы. Так, в области А≃ 120 для рассеяния s-нейтронов существенны 3s и 4s OC ($\ell = 0$). Учет интерференции амплитуд нейтронных ширин, за которые ответственны 3sи 4s OC, объясняет $^{/2/}$ резкое несогласие поведения S $_0$ (l=0) для изотопов Cd , Sn , Tl /область А = 120/ с оптическими расчетами. В настоящей работе рассмотрим, к чему может привести при форми~ ровании КС интерференция амплитуд ширин, соответствующих 3р1/2 ν 3p_{3/2} (l=1) 0С. В отличие от состояний 3s и 4s, разнесенных по энергии приблизительно на 18 МэВ /что соответствует изменению атомного номера на $\Delta A \approx 30$ /, удаленность по энергии $3p_{1/2}$ и $3p_{3/2}$ ОС определяется спин-орбитальным расщеплением, равным приблизительно 5 МэВ (∆А≈15). Последнее означает, что обе интерферирующие амплитуды велики и можно ожидать большого влияния этой интерференции на сечения.

Сложение амплитуд каналов g₊, g₋, соответствующих 0С 3p_{3/2} и 3p_{1/2}, возможно в p-резонансах с полным спином b=a±1/2 (b≥1, спин мишени a>0 /. Обычно выражение для $\sigma(\theta)$ приводится в представлении спина канала, при этом /в отсутствие поляризации/ относящиеся к каждому спиновому каналу ширины входят в выражение для сечения некогерентно и говорят об их смеси. В работе /3/ приведены соображения в пользу нескоррелированности флюктуаций этих ширин при переходе от резонанса к резонансу. Экспериментально смешивание в p-резонансах ширин, соответствующих двум спиновым каналам, изучалось в работах /4,5/. Но из-за малого числа /около 10/ уровней, <u>для которых удалось определить</u> пара-

e total

1

метр смеси спиновых каналов, нельзя с большой достоверностью сделать выбор между различными ^{/3-5/} предположениями. Поэтому интересно рассмотреть возможность получения подобной информации из усредненных сечений.

2. 0 характере фрагментации $3p_{3/2}$ и $3p_{1/2}$ 0С можно сделать заключение уже при анализе полных нейтронных ширин $\Gamma = \Gamma_+ + \Gamma_-$ резонансов. На подобную возможность в случае фрагментации 3s и 4s 0C ($\ell = 0$) в области $A \approx 120$ обращалось внимание в работе ^{/2/}. В самом деле, если Γ_+ и Γ_- флюктуируют нескоррелированно, то Γ не будет подчиняться распределению Портера-Томаса / ν будет больше единицы; в частности, если $\nu = 1$ для каждого набора ширин Γ_+ , Γ_- , и $\overline{\Gamma_+} = \overline{\Gamma_-}$, то для набора ширин Γ $\nu = 2$ /. В качестве довода против независимых флюктуаций Γ_+ и Γ_- можно привести аналогию со случаем фрагментации 3s и 4s 0C ($^{/2/}$: там $\Gamma = (g_{38}+g_{48})^2$ и "неоптическое" поведение Γ в области $A \simeq 120$ хорошо описывается при предположении полной корреляции g_{38} и g_{48} .

Еще одним доводом в пользу скоррелированности Γ_{μ} и $\Gamma_{}$ являются результаты, полученные из наблюдения $\sigma(\theta)$ в резонансах 89 Y $^{/5/}$, где найденные для 4 резонансов параметры смеси каналов совпадают в интервале 20-процентных экспериментальных ошибок. С другой стороны, для двух резонансов Nb $^{/4/}$ найдено отличие для двух резонансов параметров смеси, выходящее за две экспериментальные, 25-процентные ошибки.

Ниже приводятся некоторые соображения о возможной корреляции во флюктуациях g_+ и g_- при переходе от резонанса к резонансу. В основном состоянии мишень с $a \neq 0$ имеет одну квазичастицу. Рассеяние нейтрона сопровождается формированием 2-, 4- и т.д. квазичастичных состояний /КЧС/ из-за наличия двухчастичного остаточного /по отношению к одночастичному потенциалу/ взаимодействия V. Волновую функцию КС можно представить разложенной по полному набору двух (|i>), четырех |j>) и т.д. КЧС

$$X_{\lambda} = C_{\lambda 0} | 0 > + \sum_{i} C_{\lambda i} | i > + \sum_{j} C_{\lambda j} | j > + \dots,$$

2

/ $|0\rangle$ - состояние квазичастичного вакуума/. Амплитуда нейтронной ширины p-резонанса определяется коэффициентами $C_{\lambda i}$ при таких состояниях $|i\rangle$, в которых одна из квазичастиц находится на уровне $p_{3/2}$ ($|p_+\rangle$) или $p_{1/2}$ ($|p_-\rangle$), так как только для них интеграл перекрытия с канальной волновой функцией отличен от нуля.

0 соотношении фрагментов $C_{\lambda+}$, $C_{\lambda-}$ в КС можно сделать некоторое заключение, рассматривая примешивание за счет "включения" остаточного взаимодействия V двух КЧС $|p_+>$, $|p_-> \kappa$ "затравочным" волновым функциям для КС $\phi_{\lambda} = C_{\lambda0}' |0> + \sum_{j} C_{\lambdaj}' |j>+ ...,$ не содержащим двух КЧ компонент ^{/6/}:

$$g_{+} \sim C_{\lambda+} = \frac{\sum_{j} C_{\lambda j} \langle j | V | P_{+} \rangle}{E_{\lambda} - E_{+}}, \quad g_{-} \sim C_{\lambda-} = \frac{\sum_{j} C_{\lambda j} \langle j | V | P_{-} \rangle}{E_{\lambda} - E_{-}}$$
 /1/

Величины С λ_j в /1/ могут флюктуировать при переходе от одного λ к другому, что и приводит к флюктуациям $g'_+(\lambda)$, $g_-(\lambda)$. Однако, если сделать предположение, что отношения

$$R_{i} = \langle j | V | p_{+} \rangle / \langle j | V | p_{-} \rangle$$

несильно различаются для разных |j>/предположение A/, то из /1/ следует:

$$\frac{g_{+}(\lambda)}{g_{-}(\lambda)} \sim \frac{E_{\lambda} - E_{-}}{E_{\lambda} - E_{+}} R , \qquad (2/$$

т.е. отношение фрагментов |p₊> , |p_> в КС может не флюктуировать при переходе от резонанса к резонансу. К корреляции флюктуаций g₊ и g_ приведет также подавляющий вклад в /1/ одного из слагаемых /при реализации входного состояния/.

3. Посмотрим, как характер возможного изменения отношения g_+/g_- от резонанса к резонансу сказывается в $\sigma(\theta)$. Фрагментацию ОС удобно рассматривать, выражая сечение в представлении полного момента нейтрона L= ℓ +s, так как энергетическое положение ОС $p_{3/2}$ и $p_{1/2}$ зависит от спин-орбитального расшепления. Анализ эксперимента значительно упрощается, когда энергия рассеиваемых нейтронов <100 кэВ, и можно учитывать в рассеянии только орбитальные моменты ℓ =0,1 / ka <<1. где k - волновой вектор, a - радиус канала/.

В разложении $\sigma(\theta)$ по полиномам Лежандра ($\sigma(\theta) = B_0 + B_1 P_1 + B_2 P_2 + ...$) для нас интересен, прежде всего, коэффициент B_2 , так как вклад в него резонансного сечения преобладает /при малых энергиях/. Основываясь на работе^{/7/}, получаем /пренебрегая членами (ka)³/3 в сравнении с единицей/ простое соотношение для B_2/B_0 в отдельном резонансе со спином b:

$$\omega_2 = \frac{B_2}{B_0} = \frac{4(2b+1)}{(g_+^2 + g_-^2)^2} [g_+^2 W (b_-^3 + b_-^3 + 2g_+g_-W (b_-^3 + b_-^2 + g_-^2)^2, /3/$$

здесь W - коэффициенты Рака. Интерференция амплитуд g_+ , g_- имеет место только для $b = a \pm \frac{1}{2}$ /исключая случай a = 0 и b = 0 /, так как для $b = a \pm \frac{3}{2}$, $g_- = 0$.

При $a = \frac{1}{2}$, b = 1 ω_2 имеет самую широкую область изменения: $\omega_2 = \frac{1}{2} \left[\frac{(x + 2\sqrt{2})x}{1 + x^2} \right]^2$, $x = \frac{g_+}{g}$, и такие случаи являются самыми удобными для измерения x. К сожалению, сейчас ω_2 известны только для десятка таких резонансов /см. п.1/.

4. Информацию о фрагментации ОС $P_{3/2}$ и $P_{1/2}$ /"среднее" значение x / можно извлечь из усредненных сечений. Однако средние $\sigma(\theta)$ зависят от многих параметров: s и p-силовых функций, фаз s и p-потенциального рассеяния. Поэтому извлечь из экспериментальных данных еще один параметр g_+/g_- довольно трудно.Легче это сделать, сравнивая B_2 для соседних ядер, имеющих a = 0 /где нет резонансов с рассеянием в обоих каналах/ и, $a \neq 0$. Параметры /за исключением g_+/g_- /, описывающие среднее сечение для таких ядер, должны быть приблизительно одинаковыми /в отсутствие значительных спин-спиновых сил/, а члены с $g_+ \cdot g_-$ /см. /3// имеются только для случая $a \neq 0$.

При получении усредненных резонансных сечений используем одноуровневое приближение и предполагаем, что для средних приведенных ширин и средних расстояний между уровнями выполнены равенства:

для

$$b = a \pm \frac{3}{2}$$
 $\frac{\Gamma_{+}(b)}{D(b)} = S_{+}$,

для

$$b = a \pm \frac{1}{2}$$
 $\frac{\Gamma(b)}{D(b)} \pm \frac{\Gamma_{+} + \Gamma_{-}}{D(b)} = S_{+} + S_{-}$.

Имея это в виду и считая силовые функции S₊, S₋ не сильно различающимися для соседних ядер со спином a = 0 и $a \neq 0$, получаем, что B₀ и B₁ в выражении усредненного по энергии $\sigma(\theta)$ совпадают /при (ka)³ << 3 /, а для коэффициентов B₂ имеем:

$$\Gamma = \frac{B_2(a \neq 0)}{B_2(a \neq 0)} = \sum_{b=a \pm \frac{3}{2}} \frac{(2b+1)^2}{2a+1} W^2(b\frac{3}{2}b\frac{3}{2},a2) + (4/2)$$

$$+ \frac{1}{1+x^2} \sum_{b=a \pm \frac{1}{2}} \frac{(2b+1)^2}{2a+1} [xW(b\frac{3}{2}b\frac{3}{2},a2) + 2W(b\frac{3}{2}b\frac{1}{2},a2)]^2.$$

Здесь учтена только резонансная часть в коэффициентах B_2 ,так как потенциальная часть меньше в 400, 50, 5 раз, соответственно, при энергиях 10, 50, 150 кэВ /для $A \approx 100$ /. В выражении /4/ под-ра́зумевается, что х не меняется от резонанса к резонансу.

Кроме этого, рассматривался и случай, когда g_{+}/g_{-} меняются от резонанса к резонансу случайным образом: \overline{r} получались из /4/ усреднением по независимым флюктуациям g_+ , g_- /соответствующим портеро-томасовским флюктуациям g_+^2 , g_-^2 /. В результате такого усреднения для \bar{r} получается выражение, отличающееся от /4/ тем, что в последнем надо опустить член с произведением двух коэффициентов Рака на x и заменить x^2 на его среднее значение $k = S_+/S_-$.

Самое большое отличие г от г имеет место в случае $a = \frac{1}{2}$:

$$r = \frac{1}{16} \left[3 \frac{\left(x + 2\sqrt{2}\right)^2}{1 + x^2} + 7 \right], \quad \overline{r} = \frac{10k + 31}{16(k + 1)}.$$
 (5/

Здесь одному значению \bar{r} соответствует два значения г /сравнение при $x^2 = k$ /. Это дает возможность не только отличить независимые флюктуации от скоррелированных, но в последнем случае определить и знак $x = g_+/g_-$.

5. Кроме этой информации о характере фрагментации $p_{3/2}$ и $p_{1/2}$ 0С, можно проследить изменение х или k в зависимости от A и E. Например, можно ожидать значительного изменения B_2 в области $A = 80\div120$, где $3p_{3/2}$ и $3p_{1/2}$ 0С лежат вблизи энергии /отсчитываемой от дна "ямы"/ рассеиваемых нейтронов.

Оценим ожидаемое поведение г и г от Е и А, используя следующие соображения. Считаем, что матричные элементы /суммы в /1// $\langle \phi_{\lambda} | V | p_{\pm} \rangle$ -W не зависят от λ и $L(\frac{3}{2},\frac{1}{2})$, тогда для S $_{\pm}$ имеет место /6/выражение:

$$S_{\pm} = \frac{g_{\pm}^2}{D} = \frac{1}{\pi} \frac{\Gamma_0}{W} \frac{1}{1+y^2}, \qquad y = 2 \frac{E_{\pm} - E}{W}; \qquad (6/$$

здесь величина W - ширина на полувысоте пика S , равная приблизительно мнимой части оптического потенциала; Γ_0 - одночастичная ширина.

Полученные на основании /6/ и /5/ значения \bar{r} /независимые флюктуации g_+ и g_- , $a=\frac{1}{2}$ / показаны на рисунке сплошной кривой, а значения r для случаев полностью скоррелированных флюктуаций g_+ , g_- – пунктирной и штрихпунктирной кривыми, которые соот-

ветствуют разным знакам отношения $R = \langle \phi_{\lambda} | V | p_{+} \rangle / \langle \phi_{\lambda} | V | p_{-} \rangle$ /здесь использовано предположение A/. Резкое отличие г от T как по величине /при фиксированной E /,так и по зависимости от E демонстрирует чувствительность этих величин к характеру фрагментации.0собенно интересна область E вблизи E_{+}, E_{-} , где г меняется скачкообраз-

но. Однако практически извлечь из эксперимента г можно только при небольших изменениях энергии нейтрона до 300 кэВ/малое смещение по Е в сравнении с $E_--E_+ \approx 5$ МэВ при $A \approx 100/$. Поэтому увидеть излом в энергетическом ходе г или B_2 есть надежда только для ядер, у которых значения E_+ /или E_- / больше Е /отсчитываемой от дна "ямы"/ рассеиваемого нейтрона на 100-200 кэВ.

Зато мы можем измерить г для ядер с разными А. Чтобы представить зависимость г (\overline{r}) от А, можно воспользоваться тем, что качественно изменения S_± от Е и от А подобны /при увеличении размера потенциальной ямы уровни E_± опускаются, и при фиксированной энергии рассеиваемых нейтронов при возрастании А достигается перемещение с левого склона S на правый. Поэтому сравнение кривой для S₁= $\frac{4}{6}$ S₊+ $\frac{2}{6}$ S₋ /полученной из /6// с экспериментальными значениями позволяет значениям 2E/W на рисунке /верхняя шкала/ поставить в соответствие значения А /нижняя шкала/. Такая процедура позволяет ожидать резкого "излома" в поведении г или B₂ /скоррелированные флюктуации g₊u g₋, a = $\frac{1}{2}$ / Для ядер в области А ≈ 90-110. В этой области А как раз имеются митшени с a= $\frac{1}{2}$ / Rh , Ад,изотопы Ru/.

В таблице представлены значения г, полученные из дифференциальных сечений для ряда элементов $^{78.97}$. В первом столбце приведены сравниваемые мишени и спины $a \neq 0$; во втором и третьем – расчетные значения г, соответственно, для положительного и отрицательного знака отношения $R = \langle \phi | V | p_+ \rangle / \langle p | V | p_- \rangle$; в четвертом и пятом столбцах – экспериментальные значения. Ошибки значений г в четвертом и пятом столбцах оцениваем в 20-30%, они вызваны не только экспериментальными ошибками, но и поправками на вклад потенциального рассеяния в B_b при E > 100 кэВ.

Таблица

			R > '0	R < 0	160 кэВ	300 кэВ
3/2	Cu	Ni	0,36	0,22	_	0,7
3/2	Cu	Zn	0,36	0,22	0,33	0,5
9/2	Nb	Zn	0,52	0,48	0,55	0,8
1/2	Ag	Pd	1,9	0,9	0,7	-
1/2	Ag	Cd	1,9	0,9	0,75	-
9/2	In	Cd	[.] 0,68	0,64	0,5	-
1/2	T1	РЪ	1,8	0,8	0,7	0,9

Из таблицы видно, что практически можно сделать различие между тремя расчетными поведениями г только для мишеней с $a \pm 1/2$. Хотя приведенных экспериментальных значений г мало для детального сравнения с расчетом, но уже сейчас, по-видимому, можно сделать /для Ag, Tl / вывод: 1) о скоррелированности флюктуаций g_+ и g_- , 2) об отрицательном знаке R. Однако подобный вывод основывается только на средних $\sigma(\theta)$ и поэтому не относится к фрагментации в слабых резонансах.

Заметим также, что скоррелированность или нескоррелированность флюктуаций g_+ и g_- должна отражаться не только в разных средних величинах B_2 , но и в разных величинах их флюктуаций для ядер с $a \neq 0$ и a=0. Самое большое различие надо ожидать также для a=1/2, так как система уровней с b=0 не дает вклада в B_2 и потому относительное влияние уровней с b=1 будет больше.

В заключение выражаю благодарность Д.В.Николенко за помощь в расчетах.

ЛИТЕРАТУРА

- 1. Лейн А., Томас Р. Теория ядерных реакций при низких энергиях. ИЛ, М., 1960, с.190.
- 2. Николенко В.Г. ОИЯИ, Р4-б947, Дубна, 1973.
- Шапиро Ф.Л. В сб.: Лекции Всесоюзной летней школы по ядерной спектроскопии при ядерных реакциях. Обнинск, 3-16 июля 1966 г. ,ФЭИ, М., 1966, с.239.
- Chrien R.E., Bhat M.R., Cole G.W. Phys.Rev., 1973, C8, p.336.
- 5. Николенко В.Г., Самосват Г.С. Материалы 5-й Всесоюзной конференции по нейтронной физике. Киев, 15-19 сентября 1980 г. ЦНИИатоминформ, М., 1980, ч.2, с.178.
- 6. Бор 0., Моттельсон Б. Структура атомного ядра. "Мир", М., 1971, т.1, с.204.
- 7. Blatt J.M., Beidenharn L.C. Rev.Mod.Phys., 1952, 24, p.258.
- 8. Garber D.I. et al. Angular Distributions in Neutron-Induced Reactions, BNL-400, 1970, vol.2.

Рукопись поступила в издательский отдел 10 августа 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

,

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

.

		· · · ·		
Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5 р. 00 к. 4		
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6 р. 00 к.	Николенко В.Г. Р4-82-604	
Д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2 р. 50 к.	Эффекты фрагментации одночастичных р-состояний в нейтронных резонансах	
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.	. Рассчитывается влияние на среднее дифференциальное сечение рассеяния $\sigma(heta)$ медленных нейтронов интерференции амплитуд нейтронных ширин (g_{+},g_{-})	
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	бр. 00 к. , [*]	разных каналов, соответствующих наличию в волновых функциях нейтронных ре- зонансов фрагментов одночастичных P _{3/2} и P _{1/2} состояний. От характера из- менения g ₊ /g_ при переходе от одного нейтронного резонанса к другому за-	
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.	висит коэффициент B_2 при втором полиноме Лежандра в $\sigma(\theta)$. При простейших предположениях о характере фрагментации $3p_{3/2}$ и $3p_{1/2}$ состояний предска-	
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	, 5 р. 00 к.	 зывается поведение отношения коэффициентов В₂ в зависимости от атомного номера А и энергии нейтрона для ядер /спин мишени а ≠ 0 /с интерференцис ным членом типа g, g_ в резонансном сечении и ядер с отсутствием такого 	
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к	члена (а = 0). На основании экспериментальных данных сделано заключение о скор- релированных флюктуациях g ₊ и g_ в резонансах и определены знаки отношений	
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	°, 8 р. 00 к.	В ₊ /В_ для Ад и 11. Работа выполнена в Паборатории нейтронной физики ОИЯИ.	
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.		
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979,	3 р. 00 к.	Препринт Объединенного института ядерных исследований. Дубна 1982	
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. 00 к.	Nikolenko V.G. P4-82-604 Fragmentation of One-particle p-States in Neutron Resonances	
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 p. 50 κ.	The effect of the interference of neutron width amplitudes of different channels is considered. These channels correspond to the presence in wave	
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.	functions of neutron resonances of fragments of $p_{3/2}$ and $p_{1/2}$ one-particle states. The character of change of g_4/g_1 from one resonance to another determines the change of coefficient B_2 at the second Ledengre polynomial	
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.	in $\sigma(\theta)$. Under simplest assumptions about the character of fragmentation of $3p_{3/2}$ and $3p_{1/2}$ states the behaviour of ratio of B_2 coefficients is predicted for nuclei of target (spins $a \neq 0$) with interference term of $B_1 \cdot B_2$	
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 р. 40 к.	type in resonance cross section and nuclei without this term $(a=0).0n$ the basis of experimental data a conclusion is drawn as to correlated fluctua-	
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 р. 20 к.	tions g_+ and g in resonances and signs of ratios g_+/g for Ag and T1.	
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.	The investigation has been performed at the Laboratory of Neutron Physics, JINR.	
Заказ Издатели	ы на упомянутые книги могут быть направлены по а 101000 Москва, Главпочтамт, п/я 79 ьский отдел Объединенного института ядерных иссл	дресу: едований	Preprint of the Joint Institute for Nuclear Research. Dubna 1982	

.