

P4-82-425

Ф.Никитиу, М.Г.Сапожников

интерпретация результатов Фазового анализа упругого **л** ⁴ не- рассеяния

Направлено в журнал "Ядерная физика"

•Центральный институт физики, Бухарест.

1. ВВЕДЕНИЕ

В последнее время был выполнен ряд точных экспериментов по исследованию рассеяния пионов на ⁴He в области энергий T_{π} = = 50-300 МэВ. Это обстоятельство сделало возможным проведение фазового анализа /ФА/ упругого π ⁴He рассеяния. Так как процедура выполнения ФА достаточно хорошо изучена, то результаты ФА можно считать почти "экспериментальными" данными. Однако, по сравнению с непосредственно измеряемыми дифференциальными и полными сечениями рассеяния, фазовый анализ позволяет получить важную информацию о характере взаимодействия между частицей и ядром-мишенью в состояниях с разными угловыми моментами.

Для упругого *ж⁴Не -*рассеяния был выполнен ФА при отдельных энергиях /1-3/. Существенным недостатком такого ФА является его неоднозначность, т.е. всегда можно получить несколько наборов фаз, дающих в точности то же самое $d_\sigma/d\Omega$. В настоящей работе мы анализируем результаты зависящего от энергии ФА /ЗФА/. При выполнении ЗФА задается определенная форма зависимости амплитуды рассеяния от энергии, и параметры в этой формуле подгоняются так, чтобы добиться согласия с экспериментальными данными одновременно для всех измеренных $d\sigma/d\Omega$ и σ_{tot} при всех энергиях. Важным достоинством ЗФА является его однозначность. Кроме того, ЗФА дает возможность получить информацию о рассеянии даже в тех областях по энергии, где отсутствуют какие-либо экспериментальные измерения /конечно, надежность такой экстраполяции зависит от точности экспериментальных данных/.

Детальное обсуждение техники выполнения нашего ЗФА для случая упругого π^{4} Не рассеяния содержится в⁴⁴. В настоящей работе основное внимание будет уделено обсуждению новых физических результатов, полученных в нашем ФА. Одним из таких результатов является обнаружение того факта, что при энергиях T_{π} ниже 50 МэВ рассеяние пионов на ⁴Не становится все более неупругим, т.е. величина $X = \sigma_{el} / \sigma_{tot}$ начинает уменьшаться с уменьшением T_{π} . Такая ситуация полностью противоположна тому, что наблюдается в нуклон-ядерном рассеянии, где с уменьшением T_{N} величина X в случае пион-ядерного рассеяния.

Особое внимание уделено рассмотрению энергетического поведения фазы S -волны как наиболее плохо описываемой существующими теоретическими моделями. Мы изучаем, какие эффекты πN -

Осьедного аргососской Аделариски БИБЛИСТЕКА

взаимодействия вносят определяющую роль в поведение фазы S – волны $\pi^4 \text{He}$ рассеяния.

Интересным результатом, полученным в ЗФА, является обнаружение нового решения в ФА, которое характеризуется отсутствием всякого неупругого рассеяния в S-волне в районе $T_{\pi} \sim 50-80$ МэВ. Мы обсуждаем, как этот физический эффект может быть проверен в независимых экспериментах по квазиупругому π^{4} Не рассеянию.

Все результаты ЗФА сравниваются с расчетами по стандартной оптической модели /ОМ/ с потенциалом первого порядка $U^{(1)}$.

Изложение построено следующим образом. В разделе 2 дается краткое описание процедуры 3ФА и основные положения ОМ. В разделе 3 обсуждаются результаты 3ФА и проводится сравнение с ОМ. Основные выводы работы содержатся в разделе 4.

2. ОПИСАНИЕ ФОРМАЛИЗМА

2.1. Оптическая модель

Для сравнения результатов 3ФА с теоретическими расчетами мы выбрали оптическую модель с потенциалом первого порядка $U^{(1)}$. Преимущества и недостатки этого подхода довольно хорошо изучены /см., например, ^{75,67} /. Конкретная модель, применявшаяся нами, описана в работах ^{77,87}. Оптический потенциал $U^{(1)}$, нелокальный и зависящий от энергии, строится в импульсном пространстве на основе данных о формфакторе ⁴Не, которые берутся из эксперимента, и информации о пион-нуклонной t -матрице, которая на массовой поверхности определяется через известные фазы рассеяния πN , а вне массовой поверхности берется в сепарабельном виде с формфакторами типа Ямагучи.

2.2. Зависящий от энергии фазовый анализ

Ранее нами был выполнен один из вариантов $3\Phi A^{/9/}$ для упругого π^4 Не рассеяния, в котором зависимость амплитуды упругого рассеяния от энергии выбиралась в виде разложения типа эффективного радиуса:

$$k^{2\ell+1} \operatorname{ctg} \delta_{\ell} = -\frac{1}{a_{\ell}} + b_{\ell} T_{\pi} + c_{\ell} T_{\pi}^{2} + d_{\ell} T_{\pi}^{3}, \qquad /1/$$

где T_{π} - кинетическая энергия π -мезона, а комплексные числа а ℓ , b_{ℓ} , c_{ℓ} и d_{ℓ} - параметры подгонки. Недостатком такой параметризации является то, что при больших энергиях / $T_{\pi} \geq 200-250$ МэВ/ она приводит к нарушению унитарности: парциальные амплитуды на диаграмме Аргана выходят за пределы унитарного круга. В том варианте ЗФА, который обсуждается в настоящей работе, мы стремились выбрать такую параметризацию, которая была бы лишена этого недостатка и вместе с тем имела бы правильное поведение при низких энергиях / $T_{\pi} \sim 0-20$ МэВ/.

Мы параметризовали парциальную S-матрицу

 $S_{\rho}(k) = 1 + 2 i f_{\rho}(k),$

где $f_{\rho}(k)$ - парциальная амплитуда

Подробное обсуждение свойств этой параметризации содержится в работе⁴⁴. Мы учитывали 5 парциальных волн (L_{max} 4), каждая из которых описывалась 5 комплексными параметрами $a_1,...,a_5$. Таким образом, мы варьировали 50 параметров, чтобы добиться списания экспериментальных данных по дифференциальным и полным сечениям упругого π^2 Не рассеяния. Всего было N_p = 338 экспериментальных точек. В результате подгонки получился $\chi^2/N_p = 1,88$.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Зависимость величины $X = \sigma_{el}/\sigma_{tot}$ от энергии

На <u>рис.1</u> показано поведение отношения полного упругого сечения π^{-4} Не рассеяния к полному сечению X = σ_{el}/σ_{tot} в зависимости от энергии. Штриховой линией нанесены результаты 3ФА. Видно, что измеренное в экспериментах отношение X слабо зависит от энергии в области от 100 до 300 МэВ. Однако результаты 3ФА показывают, что при малых энергиях / $T_{\pi} \approx 50$ МэВ/ величина X уменьшается, т.е. пион-ядерное рассеяние становится все более неупругим. Это довольно интересный факт, потому что, во-первых, хорошо известно, что такое отношение для нуклонядерного рассеяния растет, когда энергия падающего нуклона уменьшается / $T_N < 100$ МзВ/. Во-вторых, для π^4 Не-рассеяния, при $T_{\pi} = 28$ МэВ закрываются все каналы неупругого рассеяния,

Рис.3. Зависимость параметра неупругости η_ℓ от энергии в S- и Р-волнах. Сплошная линия - результат ЗФА, штриховая линия - расчет по ОМ. Экспериментальные точки взяты из работ^{/1,2}/ Характерный коридор ошибок показан пунктиром в районе T_{π} = 50-80 МэВ.

Рис.2. Диаграмма Аргана для парциальной амплитуды S -волны. Штриховой линией показаны результаты расчета в оптической модели с U⁽¹⁾, когда учитывается лишь вклад P_{33} -волны в "N-рассеянии. Точечная линия соответствует учету вклада только усредненных по изоспину $S_{\pi N}$ -волн. Все кривые, за исключением штриховой, начинаются с $T_{\pi} = 50$ МэВ.

считанная с ОМ. Видно, что она качественно воспроизводит поведение S-волны, полученное в ЗФА. Это дает основание для непосредственной проверки того, насколько важны пион-нуклонные S- волны и в чем же заключается их влияние на пион-ядерную Sволну.

Из кинематических соображений следует /см., например, ^{/18/} /, что в пион-ядерную парциальную волну с определенным значением углового момента $\ell_{\pi\Lambda}$ должны давать вклад пион-нуклонные волны с разными значениями $\ell_{\pi N}$, не только с $\ell_{\pi N} = \ell_{\pi \Lambda}$. Поэтому мы выполнили расчет в ОМ, в котором полностью пренебрегали либо вкладом $S_{\pi N}$, оставляя только $P_{\pi N} - и$ $D_{\pi N}$ -волны, либо оставляли только $S_{\pi N}$ и не учитывали доминирующую в πN -взаимо-действии P_{33} -волну. Из рис.2 видно, что в первом случае получается обычное резонансноподобное поведение, тогда как во втором случае учет одной лишь $S_{\pi N}$ приводит к сильному "сжатию" всей картины поведения $S_{\pi} H_{\rm He}$, и лишь при малых энергиях / $T_{\pi} \sim 50$ M3B/ она напоминает результат полного расчета.

Рис. 4. Дифференциальное сечение π ⁴He –рассеяния при энергии T_{π} = = 51 МэВ. Сплошная линия – ре– зультат ЗФА, экспериментальные точки взяты из работы ^{/3/}.

Таким образом, можно сделать заключение о том, что основные черты поведения $S_{\pi} 4_{He}$ определяются резонансной Р-волной в πN -рассеянии. Усредненные по изоспину $S_{\pi N}$ -волны вносят основной вклад в S-волну π^{4} Heрассеяния лишь при малой энергии.

Неожиданным результатом нашего фазового анализа явилось обнаружение того, что в районе $T_{\pi} \sim$ ~50~80 МэВ парциальная амплитуда S-волны идет по границе унитарного 20 40 50 50 100 120 140 160 6 круга /см. рис.2/. Это означает,

что в S-волне при таких энергиях есть только упругое рассеяние, а S-волновое парциальное сечение всех неупругих реакций сильно подавлено, т.е.

$$\sigma_{\rm el}^{\circ} = \sigma_{\rm tot}^{\circ}$$
, $\sigma_{\rm R}^{\circ} = 0$, при $T_{\pi} = 50-80$ МэВ,

где

$$\sigma_{\rm el}^{\ell} = \frac{4\pi}{k^2} \sum_{\ell} (2\ell + 1) |f_{\ell}|^2,$$

$$\sigma_{\rm tot}^{\ell} = \frac{4\pi}{k^2} \sum_{\ell} (2\ell + 1) \operatorname{Im} f_{\ell},$$
/3/

а fp - парциальная амплитуда рассеяния.

Такое решение ФА не было найдено ни в одном из анализов, выполненных при фиксированных энергиях. Хотя, как видно из <u>рис.3</u>, на котором показана зависимость параметра неупругости $\eta_{\ell^{=}}|S_{\ell}(k)|$ от энергии, некоторая тенденция к уменьшению $\sigma_{R}^{\circ} = \frac{4\pi}{r^{2}}(1-\eta_{0}^{2})$

в районе Т_~ 50-80 МэВ наблюдалась и ранее.

Так как при выполнении ЗФА требуется, чтобы было получено согласие одновременно по всем имеющимся экспериментальным данным, то вполне могло получиться, что именно в данной области энергий ЗФА плохо описывает эксперимент и из-за этого получа-

ется, что $\eta_0 = 1$. Однако оказывается, что результаты ЗФА достаточно хорошо воспроизводят экспериментальные $d\sigma/d\Omega$. В качестве примера на <u>рис.4</u> показано $d\sigma/d\Omega$ из ЗФА при энергии 51 МэВ.

3.3. Дисперсионные соотношения для π^4 Не рассеяния

Вполне могло оказаться, что результат, полученный в 3ФА для S -волнового неупругого рассеяния, мог возникнуть за счет того, что выбранная нами параметризация для зависимости парциальной амплитуды от энергии /2/ "внутренне противоречива". Например, она обладает неправильными аналитическими свойствами и не удовлетворяет дисперсионным соотношениям. Чтобы проверить это, мы рассчитали величину реальной части амплитуды рассеяния на нулевой угол Ref(0) по стандартным дисперсионным соотношениям с одним вычитанием ^{/19/}:

$$\operatorname{Ref}(\omega) = \operatorname{Ref}(\mathfrak{m}_{\pi}) + \frac{2\mathbf{k}^{2}}{\pi} \mathcal{P} \int_{\omega_{0}}^{\infty} \frac{\mathbf{x} \operatorname{Imf}(\mathbf{x}) d\mathbf{x}}{(\mathbf{x}^{2} - \mathfrak{m}_{\pi}^{2})(\mathbf{x}^{2} - \omega^{2})}, \qquad /4/$$

где $\omega = T_{\pi} + m_{\pi}$; Ref(ω) и Imf(ω) - реальная и мнимая части амплитуды рассеяния на нулевой угол, а $\omega_0 = 0$ – порог разреза за счет поглощения пиона. $\operatorname{Im} f(\omega)$ мы аппроксимировали диагональным паде-аппроксимантом [4x4] и сначала подгоняли параметры аппроксимации по экспериментальным данным для полного сечения π^4 не рассеяния. Это давало нам поведение Imf(ω) в нефизической области ($\omega < m_{\pi}$) и в области больших энергий. Затем мы фиксировали поведение $Imf(\omega)$ при $\omega < m_{\pi}$ и $\omega > 3m_{\pi}$ из подгонки по экспериментальным $\sigma_{\rm tot}$, а в промежутке ${\rm m}_{\pi} < \omega < 3 {\rm m}_{\pi}$ брали Imf(ω) либо из данных ЗФА, либо из оптической модели, и находили величину Ref(ω) из соотношения /4/. На рис.5 показаны результаты сравнения величины $\operatorname{Ref}(\omega)$, полученные с помощью такой процедуры из дисперсионного соотношения /4/ и тех значений Ref(w), которые непосредственно определяются в 3ФА и ОМ. Видно, что в области малых энергий ${f T}_{\pi} < 100$ МэВ значения $\operatorname{Ref}(\omega)$ из ЗФА совпадают с теми, что получаются из дисперсионных соотношений, когда $Imf(\omega)$ берется также из 3ФА. Следовательно, в этом смысле можно считать, что при $T_{\pi} < 100$ МэВ параметризация /2/, используемая в ЗФА, внутренне согласована, и поведение S-волны при этих энергиях нельзя приписывать недостаткам в аналитической структуре выражения /2/.

Сравнение результатов ОМ, выполненное таким способом, показывает, что, как и ожидалось, пион-ядерная амплитуда, рассчитанная в ОМ, не удовлетворяет дисперсионным соотношениям типа /4/. Интересно, что степень этого рассогласования велика во всей области исследуемых энергий. Возможно, это проявление того обстоятельства,что в ОМ не выполняется кроссинг-симметрия амплитуды рассеяния.

Рис.5. Энергетическая зависимость Ref(ω). Сплошной, штриховой и штрих-пунктирной линиями показаны результаты расчета Ref(ω) по формуле /4/, когда Imf(ω) брались из эксперимента, из ЗФА и из ОМ, соответствсино. Кружкани и крестиками показаны Ref(ω). непосредственно получающиеся в ОМ и ЗФА. Экспериментальные данные для Ref(ω) взяты из работы /2/.

4. ОСНОВНЫЕ ВЫВОДЫ

Результаты ЗФА упругого π^{4} Не рассеяния предсказывают несколько новых феноменов, которые могут быть проверены в будущих экспериментах:

1. Уменьшение доли упругого рассеяния при малых энергиях / T_{π} <50 МэВ/. Разница между результатами ЗФА и ОМ /см.рис.1/, возможно, свидетельствует о сильной роли канала поглощения пионов в области T_{π} <50 МэВ.

2. Подавление парциального сечения неупругого рассеяния в S -волне в районе $T_{\pi} \sim 50-80$ МэВ. Этот результат фазового анализа в принципе может быть проверен в измерениях дифференциального сечения квазиупругого рассеяния пионов на ⁴ Не. Если $\sigma_{\rm R}^{\rm o}$ действительно сильно подавлено в этой области энергий, то тогда в дифференциальном сечении квазиупругого рассеяния должен наблюдаться глубокий минимум, когда угол рассеянного пиона близок к 90°. Он появляется из-за того, что парциальное сечение в Р-волне будет при $\theta_{\pi} = 90^{\circ}$ равным нулю, $\sigma_{\rm R}^{\circ} \approx 0$, по предположению, а вклад высших парциальных волн в рассматриваемой области энергий налетающего пиона / $T_{\pi} \sim 50-80$ МэВ/ мал. Такой эффект должен хорошо наблюдаться, так как дифференциальное сечение квазиупругого выбивания, измеренное в^{/20/} при больших энергиях / $T_{\pi} = 120,145$ и 165 МэВ/, не имеет никакого минимума при $\theta_{\pi} = 90^{\circ}$, а почти постоянно от $\theta_{\pi} = 40^{\circ}$ до $\theta_{\pi} = 180^{\circ}$.

Мы благодарны В.Б.Беляеву, Р.Маху и М.Х.Ханхасаеву за плодотворные обсуждения.

ЛИТЕРАТУРА

- 1. Falomkin I.V. et al. Nuovo Cim., 1978, 43A, p.604.
- 2. Binon F. et al. Nucl. Phys., 1978, A298, p.499.
- 3. Crowe K.M. et al. Phys.Rev., 1969, 180, p.1349.
- 4. Nichitiu F. et al. Nuovo Cim., 1982, 67A, p.1.
- Koltun D., Eisenberg J. Theory of Meson Interactions with Nuclei. Wiley, 1980.
- Копалейшвили Т.И. ЭЧАЯ, 1979, 10, с.429.
- 7. Falomkin I.V. et al. Nuovo Cim., 1980, 57A, p.111.
- 8. Mach R., Sapozhnikov M.G. JINR, E4-82-189, Dubna, 1982.
- 9. Александров Л. и др. ОИЯИ, Р1-8328, Дубна, 1974.
- 10. Balestra F. et al. Preprint LNF-81/33, Frascati, 1981.
- Geesman D. et al. Proc. iCOHEPANS, Versailletes, 1981, vol.1, p.344.
- 12. Källne J. et al. Phys.Lett., 1980, B97, p.205.
- 13. Johnson K.F. Thesis, Preprint LAMPF, LA-6561 -T, 1976.
- Binon F. Meson-Nuclear Physics-1976, Pittsburgh, 1977, p.348.
- 15. Nichitiu F. et al. JINR, D1-10914, Dubna, 1977.
- 16. Lenz F. Proc. Topical Meeting on Intermediate Energy Physics, Zuoz, 1976, vol.2.
- 17. Копалейшвили Т.И., Схиртладзе В.С. ЯФ, 1980, 32, с.1267.
- Landau R., Phatak S., Tabakin F. Ann.Phys., 1973, 78, p.299.
- 19. Ericson T.E.O., Locher M. Nucl. Phys., 1970, A148, p.1.
- 20. Balestra F. et al. Nucl.Phys., 1980, A340, p.372.
- 21. Binon F. et al. Nucl.Phys., 1970, B17, p.168.

Рукопись поступила в издательский отдел 8 июня 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	р.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p .	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
n4-80-271	Тоулы Межлунаролной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Т _{руды} Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Никитиу Ф., Сапожников М.Г. Р4-82-425 Интерпретация результатов фазового анализа упругого π^4 Не-рассеяния

Обсуждаются результаты зависящего от энергии фазового анализа упругого π^4 Не рассеяния в области энергий $T_{\pi} =$ = 0-300 МэВ. Обнаружено уменьшение доли упругого рассеяния в полном сечении π^4 Не — рассеяния при малых энергиях / $T_{\pi} <$ <50 МэВ/ и подавление парциального сечения неупругого рассеяния в S-волне в районе $T_{\pi} \sim$ 50-80 МэВ. Проводится сравнение с расчетами по оптической модели и дисперсионным соотношениям.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Nichitiu F., Sapozhnikov M.G. F4 82 425 Interpretation of the Phase Shift Analysis of Elastic π^4 He Scattering

The results are discussed of an energy dependent phase shift analysis of elastic π^4 He scattering for energies T_{π} = = 0-300 MeV. A decrease of the contribution of elastic scattering to the total π^4 He scattering cross section has been found at low energies ($T_{\pi} < 50$ MeV), while the partial inelastic cross section in the S-wave turns out to be suppressed at energies within the energy region $T_{\pi} \sim 50$ -80 MeV. Comparison is made with results from optical model calculations and dispersion relations.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.