

сообщения объединенного института ядерных исследований дубна

P4-82-418

М.В.Стоицов

ВЫЧИСЛЕНИЯ ИОН-ИОННЫХ ПОТЕНЦИАЛОВ ВЗАИМОДЕЙСТВИЯ В МЕТОДЕ ЛОКАЛЬНО-МАСШТАБНОГО ПРЕОБРАЗОВАНИЯ

1. При построении ион-ионного потенциала взаимодействия V(R) между среднетяжелыми и тяжелыми ядрами все чаще используются результаты микроскопических хартри-фоковских /ХФ/ расчетов основных состояний ядер, особенно после применения в них схематичных сил Скирма^{/1-3/}. Таким образом в физике тяжелых ионов к принципиальным затруднениям, связанным с учетом эффектов антисимметризации и искажений волновых функций взаимодействующих систем, прибавились и трудности, связанные с решением стационарной XФ задачи. Поэтому при определении V(R) приходится прибегать к замене одночастичных волновых функций ХФ функциями, имеющими простой аналитический вид, например, к функциям оболочечной осцилляторной модели /4-7/. В полученных таким образом ион-ионных потенциалах ${ar V}(R)$, с одной стороны допускается существенная неточность из-за неадекватности осцилляторного одночастичного базиса для случаев среднетяжелых и тяжелых ядер, с другой - полностью игнорируется эффект самосогласования, достигнутый в методе ХФ. Вот почему представляет интерес исследование изменений в ион-ионном потенциале, к которым приводит замена волновых функций ХФ на функции осцилляторного одночастичного базиса.

2. В настоящей работе делается попытка проанализировать различие между V(R) и V(R) на основе метода локально-масштабного преобразования /МЛМП/, предложенного в работе⁷⁸⁷. Как было показано в⁹⁹, полученные в МЛМП одночастичные волновые функции $\{\phi_i\}$ практически воспроизводят точные XФ результаты для сферически-симметричных ядерных систем. В то же время этот реалистический одночастичный базис, благодаря использованию в⁹⁷ численного метода стержневых сплайнов¹⁰⁷, имеет простой аналитический вид, что делает его исключительно удобным для приложений в физике тяжелых ионов.

3. В МЛМП, применяемом к осцилляторной детерминантной орбите $\vec{O} \in \mathcal{H}_{\chi \Phi}^{/9/}$ волновая функция ядра A представляет слеттеров детерминант из одночастичных волновых функций:

$$\phi_{i}(\mathbf{r}) = \left[\frac{f^{2}(\mathbf{r})}{r^{2}} - \frac{df(\mathbf{r})}{dr}\right]^{\frac{1}{2}} \overline{\phi_{i}}(\mathbf{f}), \quad (i = 1, 2, ..., A), \quad /1/$$

полученных посредством локально-масштабного преобразования /ЛМП/ осцилляторного одночастичного базиса $\{\vec{\phi}_i^c\}$. ЛМП определяется векторной функцией:

SUBERTERA

1

$$\vec{f}(\vec{r}) = \vec{r}_0 f(r).$$
 /2/

Скалярная функция ЛМП- f(r) зависит только от величины r= $|\vec{r}|$ вектора \vec{r} , имеющего направление, задаваемое единичным вектором $\vec{r}_0 = \vec{r}/r$. Если использовать силы Скирма^{/1/}, полная энергия ядерной системы превращается в энергетический функционал от f(r), имеющий вид:

$$E[f] = \int \mathcal{S}_{f}(\vec{r}) d\vec{r}, \qquad (3)$$

где

$$\begin{split} \tilde{\mathfrak{G}}_{f}(\mathbf{r}) &= \frac{\hbar^{2}}{2M} \cdot r + \frac{1}{2} \cdot t_{0} \left\{ (1 + \frac{\mathbf{x}_{0}}{2}) \rho^{2} - (\mathbf{x}_{0} + \frac{1}{2}) (\rho_{n}^{2} + \rho_{p}^{2}) \right\} + \\ &+ \frac{1}{4} \cdot (t_{1} + t_{2}) \rho r + \frac{1}{8} \cdot (t_{2} - t_{1}) (\rho_{n} r_{n} + \rho_{p} r_{p}) + \frac{1}{4} \cdot t_{3} \rho_{n} \rho_{p} \rho + \\ &+ \frac{1}{16} \cdot (t_{2} - 3t_{1}) \rho \Delta \rho + \frac{1}{32} \cdot (3t_{1} + t_{2}) (\rho_{n} \Delta \rho_{n} + \rho_{p} \Delta \rho_{p}) + \\ &+ \frac{1}{2} W (\rho \vec{\nabla}, \vec{J} + \rho_{n} \vec{\nabla}, \vec{J}_{n} + \rho_{p} \vec{\nabla}, \vec{J}_{p}). \end{split}$$

Здесь локальная плотность ρ_n , ρ_p , $\rho = \rho_n + \rho_p$, плотность кинетической энергии, r_n , r_p , $r = r_n + r_p$ и спиновая плотность \vec{J}_n , \vec{J}_p , $\vec{J} = \vec{J}_n + \vec{J}_p$, определяются через модельные функции $\vec{\phi}_i^{(n)}$, $\vec{\phi}_i^{(p)}$ и функции ЛМП f_n , f_p для двух сортов частиц посредством равенств:

$$\rho_{n}(\mathbf{r}) = \sum_{i=1}^{N} |\phi_{i}^{(n)}|^{2}, \qquad \rho_{p}(\mathbf{r}) = \sum_{i=1}^{Z} |\phi_{i}^{(p)}|^{2}$$
 (4/

$$r_{n}(\mathbf{r}) = \sum_{i=1}^{N} |\vec{\nabla} \phi_{i}^{(n)}|^{2}, \quad r_{p}(\mathbf{r}) = \sum_{i=1}^{Z} |\vec{\nabla} \phi_{i}^{(p)}|^{2}$$
 /5/

$$\vec{J}_{n}(\mathbf{r}) = \operatorname{Im} \{ \sum_{i=1}^{N} \phi_{i}^{(n)} \vec{\nabla} \phi_{i}^{(n)} \}, \quad \vec{J}_{p}(\mathbf{r}) = \operatorname{Im} \{ \sum_{i=1}^{Z} \phi_{i}^{(p)} \vec{\nabla} \phi_{i}^{(p)} \}$$
 /6/

и, согласно /1/, представляют обыкновенные алгебраические функции от f(r) и ее производных. Решение уравнения стационарности энергетического функционала /3/ определяет функции ЛМП, одночастичный базис /1/ и все остальные характеристики: полную энергию E, одночастичные энергии ϵ_i , плотности ρ, τ, \vec{J} и геометрические характеристики основного состояния ядерной системы. Таким образом, в МЛМП воспроизводятся с удовлетворительной точностью^{/9/} результаты, полученные по методу ХФ^{/2/}.

В случае, когда $f(r) = \alpha r$, минимизация /3/ по константе α , совпадающей с радиальным параметром $\alpha = (M\omega/\hbar)^{\frac{1}{2}}$ гармониче-

ского осциллятора, определяет оптимальный осцилляторный базис $\{\overline{\phi}_1\}$, который дает для энергии системы значение $\overline{\mathbf{E}} > \mathbf{E}$.

4. Рассмотрим систему двух взаимодействующих между собой ядер с массами A_1 и A_2 , локализованных в точках — $\frac{\vec{R}}{2}$ и $\frac{\vec{R}}{2}$ соответственно, где $\vec{R} = \vec{R}_2 - \vec{R}_1$ есть расстояние между центрами тяжести \vec{R}_1 (i=1,2) двух ядер. Следуя двухкластерной модели /4/. полную волновую функцию Ψ (\vec{r}_1 , \vec{r}_2 ,..., \vec{r}_{A_1} , ..., \vec{r}_{A_1+1} , $\vec{r}_{A_1+A_2}$) представляем как произведение волновых функций Ψ_1 и Ψ_2 двух ядер, умноженных на кинематический фазовый фактор относительного движения

$$\Psi = \pi \mathcal{C} \{ [\Psi_1 (-\frac{\vec{R}}{2}) \exp(ik.\vec{R}_1)] [\Psi_2 (\frac{\vec{R}}{2}) \exp(-i\vec{k}.\vec{R}_2)] \}, \qquad /7/$$

где $\hbar \vec{k}$ - импульс относительного движения, \mathfrak{A} - оператор антисимметризации, \hbar - нормировочная постоянная. В "приближении внезапного удара" волновые функции обоих ядер в процессе взаимодействия задаются их асимптотическим видом при $\mathbb{R} \to \infty$, где Ψ_1 и Ψ_2 представляют слеттеровы детерминанты, составленные, соответственно, из A_1 и A_2 одночастичных волновых функций базиса /1/, определяющие основное состояние изолированных в бесконечности ядер.

Введем общее обозначение для одночастичных волновых функций системы из $A = A_1 + A_9$ частиц, равенствами:

$$\psi_{a(1)}(\vec{r} + \frac{\vec{R}}{2}) = \phi_{a(1)}(\vec{r} + \frac{\vec{R}}{2}) \exp(i\frac{\vec{k} \cdot \vec{r}}{A_1})$$

$$\psi_{\beta(2)}(\vec{r} - \frac{\vec{R}}{2}) = \phi_{\beta(2)}(\vec{r} - \frac{\vec{R}}{2}) \exp(-i\frac{\vec{k} \cdot \vec{r}}{A_2}).$$
(8/

Тогда локальная плотность *р* и плотность кинетической энергии системы принимает вид^{/11/}:

$$p = \sum_{a(i)\beta(j)} B_{\beta(j)a(i)}^{-1} (\vec{R}, \vec{k}) \psi_{a(i)}^{*} \psi_{\beta(j)} , \qquad (9/2)$$

$$= \sum_{\substack{a(i)\beta(j)\\ a(i)}} B_{\beta(j)a(i)}^{-1} (\vec{R},\vec{k}) \vec{\nabla} \psi_{a(i)}^{*} \vec{\nabla} \psi_{\beta(j)} \cdot /10 /$$

Здесь $B_{\beta(j)\alpha(i)}^{-1}$ - суть матричные элементы матрицы B^{-1} , обратной матрице B с размерностью $A \times A$ и элементами:

$$B_{a(i)\beta(j)} = \langle \psi_{a(i)} | \psi_{\beta(j)} \rangle . \qquad (11)$$

Для сферически-симметричных ядер, члены энергетического функционала E[f], зависящие от спиновой плотности, дают малый вклад

3

в полную энергию связи и могут быть опущены. Тогда энергия $E(\vec{R},\vec{k})$ системы взаимодействующих ядер имеет вид /3/ с $W \equiv 0$, где плотности ρ и τ задаются выражениями /9/ и /10/.

В приближении Борна-Оппенгеймера ^{/5/}мы определяем потенциал взаимодействия V(R,k) двух ядер A₁ и A₂ разностью

$$V(\vec{R},\vec{k}) = E(\vec{R},\vec{k}) - E_1 - E_2,$$
 /12/

где E_i (i=1,2) представляет энергию связи i -го изолированного ядра, полученную в МЛМП ^{/9/}. Аналогичным способом для случая $f(r) = \alpha r$ определим ион-ионный потенциал:

$$\overline{V}(\vec{R},\vec{k}) = \overline{E}(R,\vec{k}) - \overline{E}_1 - \overline{E}_2, \qquad (13)$$

соответствующий замене в /12/ одночастичных волновых функций $\{\phi_i\}$ функциями оптимального осцилляторного базиса $\{\overline{\phi}_i\}$.

5. Основная трудность при определении $V(\vec{R}, \vec{k})$ и $\vec{V}(\vec{R}, \vec{k})$ на этом этапе связана с вычислением матричных элементов /11/ и обращением образованной из них матрицы В. Даже в случае взаимодействия ядер $^{16}O_{-}$ $^{16}O_{,}$ В представляет комплексную матрицу 8x8, которую надо вычислить для всякого относительного расстояния \vec{R} и импульса \vec{k} . Сами интегралы /12/, /13/ в этом случае представляют сложные многомерные интегралы, определенные в линзе взаимодействия двух ядер. Имея в виду явный вид одночастичного базиса $\vec{l} \phi_i$, мы устанавливаем, что необходимые для определения $V(\vec{R}, \vec{k})$ вычисления по трудности и объему соизмеримы с вычислениями $V(\vec{R}, \vec{k})$ в осцилляторном одночастичном базисе.

6. В настоящей работе мы вычисляем V и \overline{V} для всех пар взаимодействующих ядер ⁴Не, ¹⁸ О, ⁴⁰ Св, ⁹⁰ Zr и ²⁰⁸Pb в случае, когда:

1/ Ион-ионный потенциал не содержит эффектов антисмиметризации волновой функции /7/. В этом случае матрица В совпадает с единичной матрицей и $B_{\alpha(i)}\beta(j) = \delta_{\alpha(i)}\beta(j)$. Плотности ρ и τ , согласно /9/ и /10/, принимают вид:

$$\rho(\vec{r}, \vec{R}) = \rho_1(r + \frac{\vec{R}}{2}) + \rho_2(\vec{r} - \frac{\vec{R}}{2})$$
 /14/

и

$$r(\vec{r}, \vec{R}) = r_1(\vec{r} + \frac{\vec{R}}{2}) + r_2(\vec{r} - \frac{\vec{R}}{2}),$$
 (15/

где ρ_i , τ_i , (i=1,2) соответствуют плотностям i -го ядра и определяются равенствами /4/ и /5/. Полученные таким образом потенциалы $V_{NA}(\mathbf{R})$ и $\overline{V}_{NA}(\mathbf{R})$ отвечают "фолдинг"-потенциалам^{/12/}, которые аппроксимируют $V(\mathbf{R}, \mathbf{k})$ и $\overline{V}(\mathbf{R}, \mathbf{k})$ при малых областях перекрытия взаимодействующих ядер. 2/ Локальная плотность $\rho(\vec{r}, \vec{R})$ системы имеет вид /14/, а плотность кинетической энергии в изолированных ядрах /5/ и во взаимодействующей системе /10/ в томас-фермиевском /ТФ/ приближении^{/18/} задаются, соответственно, равенствами:

$$r(\vec{r}) = \frac{1}{2} \Delta \rho(\vec{r}) + r_{TF}; \quad r_{TF} = C_k \rho^{5/3}(\vec{r}); \qquad /16/$$

$$r'_{\rm TF}(\vec{r},\vec{R}) = C_{\rm k} \left[\rho_1(\vec{r} + \frac{\vec{R}}{2}) + \rho_2(\vec{r} - \frac{\vec{R}}{2}) \right]^{5/3}, \qquad /17/$$

где $C_k = \frac{3}{5} \left(-\frac{3\pi^2}{2}\right)^{2/3}$ Полученные так из /12/, /13/ потенциалы $V_{T\,F}(R)$ и $\overline{V}_{T\,F}(R)$ включают ^{/5/}до 75% эффектов антисимметризации в области, расположенной /по R / правее суммы среднеквадратичных радиусов взаимодействующих ядер - приблизительно равной критическому радиусу $D = 1.5(A_1^{1/3} + A_2^{1/3})$.

7. Расчеты, основная часть которых состоит в вычислении по методу Симпсона двукратных интегралов, определенных в области перекрытия ядерных плотностей, проведены на ЭВМ (CDC-6500).0сцилляторный параметр для протонных /нейтронных/ функций $\phi_1^{(p)}(\phi_1^{(n)})$ имеет значения /в МэВ/: $\hbar\omega_{\rm He}$ = 18,1 /18,3/; $\hbar\omega_0$ = 14,0/14,3/; $\hbar\omega_{\rm Ca}$ = 11,0/11,3/; $\hbar\omega_{\rm Zr}$ = 8,7/9,4/; $\hbar\omega_{\rm Pb}$ = = 6,6/7,3/. При этом выборе осцилляторного базиса использованы функции ЛМП, полученные в работе ^{/9/}.

8. На <u>рис.1</u> показан типичный вид ядерной части V_N ионионных потенциалов $V_{TF}(R)$ /сплошная линия/ и $\overline{V}_{TF}(R)$ /пунктирные линии/. Видно, что, как правило, потенциалы, полученные с волновыми функциями /1/, которые близки к решениям ХФ, менее глубоки и более узки по сравнению с потенциалами, полученными с осцилляторными функциями { $\overline{\phi}_i$ }. Различие становится значительным в области тяжелых ядер, где минимумы $\overline{V}_{TF}^{(0)}$ потенциалов $\overline{V}_{TF}(R)$ почти в два раза превосходят, по абсолютному значению, минимумы $V_{TF}^{(0)}$ потенциалов $V_{TF}(R)$. Точки $\overline{R}_{TF}^{(0)}$, в которых достигаются минимумы потенциалов $\overline{V}_{TF}(R)$, перемещаются влево от $R_{TF}^{(0)}$ потенциалов $V_{TF}(R)$, в направлении меньших значений относительного расстояния R.

чении относительного расстояния к. На <u>рис.2</u> изображена зависимость $V_{TF}^{(0)}$ и $\overline{V}_{TF}^{(0)}$ от параметра $R_A = A_1^{1/3} + A_2^{1/3}$. Видно, что если $V_{TF}(R)$ дает для зависимости $V_{TF}^{(0)}(R_A)$ почти прямую линию ($V_{TF}^{(0)} \approx 19.09 - 9.09R_A$), то подобное поведение $\overline{V}_{TF}^{(0)}(R_A)$ проявляется до $R_A \approx 7$, после чего сильно отклоняется от прямой.

Зависимость положений минимумов $\mathbb{R}_{TF}^{(0)}$ и $\overline{\mathbb{R}}_{TF}^{(0)}$ от \mathbb{R}_{A} показана на <u>рис.3</u>. Как значения $\mathbb{R}_{TF}^{(0)}(\mathbb{R}_{A})$ /сплошная линия/, так и $\overline{V}_{TF}^{(0)}(\mathbb{R}_{A})$ /пунктирная линия/, могут быть аппроксимированы прямыми линиями (~a \mathbb{R}_{A}), которые проходят через начало координатной системы, причем $\mathbf{a} - \overline{\mathbf{a}} \sim 0,05$ Фм.

Рис.1. Ядерная часть ион-ионных потенциалов в ТФприближении для кинетической энергии.

<u>Puc.2</u>. Минимум ион-ионных потенциалов $V_{TF}(R)$ и $V_{TF}(R)$ как функция величины $R_A = A_1^{1/8} + A_2^{1/8}$.

<u>Рис.3</u>. Зависимость положения минимума ион-ионных потенциалов $V_{TF}(R)$ и $\overline{V}_{TF}(R)$ от величины R_A .

Рис.4. Ядерная часть ион-ионных потенциалов без учета эффектов антисимметризации.

Аналогичное поведение имеет и разница между потенциалами $V_{NA}(R)$ /сплошные линии/ и $V_{NA}(R)$ /пунктирные линии/, изображенными на <u>рис.4</u>. Это потенциалы, у которых нет отталкивающе го кора при $R \rightarrow 0$, поскольку при их получении игнорируются эффекты антисимметризации в волновой функции взаимодействующей системы.

Процессы упругого рассеяния ядер чувствительны прежде всего к поверхностной области ион-ионного потенциала, расположенной правее критического радиуса D. В дифференциальном сечении рассеяния участвует сумма ядерной части $V_N(R)$ ион-ионных потенциалов и кулоновского потенциала $V_C(R)$. Последний записываем в виде:

1

$$V_{\rm C}({\rm R}) = {\rm e}^2 \frac{Z_1 Z_2}{{\rm R}},$$
 /18/

где Z_i , (i =1,2) - число протонов в i -том из взаимодействующих ядер. Определим место R_B кулоновского барьера для суммарного потенциала $V = V_N + V_C$. На <u>рис.6</u> изображена величина V_B ядерной части полученных потенциалов в точке R_B как функции от параметра $r_B = R_B/R_A$. Зависимость r_B от величины /14/ (Z_1Z_2)/ R_A дана на <u>рис.5</u>. Для пар_легких взаимодействующих ядер / $r_B > 1,4$ Фм/ потенциалы V(R) и V(R) дают приблизительно

7

Рис.5. Положение кулоновского барьера для вычисленных ионионных потенциалов.

Рис.6. Величина ядерной части ион-ионных потенциалов в точке кулоновского барьера как функция величины г_в.

(Z,Z)R1

300

одинаковые результаты для V_B в месте положения кулоновского барьера. В этом случае осцилляторный базис с успехом может заменить сложные одночастичные волновые функции ХФ. В области средних и особенно тяжелых /г_В<1,5 Фм/ взаимодействующих систем различия между V_B и \bar{V}_B становятся существенными, и использовать функции осцилляторного базиса нельзя.

9. Разумеется, для точного количественного анализа экспериментальных данных по взаимодействию между сложными атомными ядрами необходимо определение V(R, i) корректным учетом антисимметризации и зависимости от энергии налетающей частицы. При этом необходим и оптимальный выбор параметров Скирма^{/8/}, которые адекватно отражали бы особенности взаимодействующих систем. Однако из данной работы могут быть сделаны следующие общие выводы:

1/ Использование осцилляторного базиса, хотя и упрощает необходимые численные расчеты ион-ионных потенциалов, дает существенные различия в области среднетяжелых и тяжелых ядер.

2/ Полученные в осцилляторном базисе потенциалы более глубоки и более широки по сравнению с потенциалами, полученными в методе ХФ. Наблюдается смещение как места их минимума, так и положение кулоновского барьера в направлении малых R, причем значения потенциалов в этих точках значительно превышают истинные /ХФ/ их значения. 3/ Для реалистических расчетов удобен полученный в МЛМП ^{/9/} одночастичный базис, который воспроизводит с удовлетворительной точностью результаты решения стационарной ХФ-задачи и имеет простой аналитический вид.

ЛИТЕРАТУРА

- 1. Vautherin D., Brink D. Phys.Lett., 1970, 32B, p.149.
- 2. Vautherin D., Brink D. Phys.Rev., 1972, C5, p.626.
- 3. Beiner M. et al. Nucl.Phys., 1975, A238, p.29.
- 4. Fliessbach T. Z.Phys., 1971, 247, p.117.
- 5. Brink D., Stancu F. Nucl. Phys., 1975, A243, p.175.
- 6. Goritz G., Mosel V. Z.Phys., 1976, A277, p.243.
- 7. Zint P. Z.Phys., 1977, A281, p.373.
- 8. Петков И., Стоицов М. Доклады БАН, 1981, 34, с.1657; Петков И., Стоицов М. ОИЯИ, Р4-82-349, Дубна, 1982.
- 9. Петков И., Стоицов М. ОИЯИ, Р4-82-385, Дубна, 1982.
- 10. Александров Л., Караджов Д. ЖВМ и МФ, 1980, 20, с.923.
- 11. Brink D. Scuola Internationale di Fisica E.Fermi, 1965, course 36, p.247.
- 12. Flecuner J., Mosel U. Nucl. Phys., 1977, A277, p.170.
- 13. Stancu F., Brink D. Nucl.Phys., 1976, A270, p.236.
- 14. Ngo C. et al. Nucl. Phys., 1975, A240, p.353.

Рукопись поступила в издательский отдел 4 июня 1982 года. Стоицов М.В.

P4-82-418

Вычисления ион-ионных потенциалов взаимодействия в методе локально-масштабного преобразования

Рассматривается возможность применения метода локально-масштабного преобразования в приближении Хартри-Фока, для определения ион-ионных потенциалов взаимодействий. Для реалистических расчетов удобен полученный одночастичный базис, который воспроизводит с удовлетворительной точностью результаты решения стационарной хартри-фоковской задачи и имеет простой аналитический вид. Вычислены ион-ионные потенциалы с силами Скирма, без учета эффектов антисимметризации и при частичном учете этих эффектов для всех пар взаимодействующих сферических ядер: ⁴Не, ¹⁶O, ⁴⁰ Ca, ⁹⁰ Zr, ²⁰⁸ Pb. Рассматриваются изменения в ион-ионных потенциалах, к которым приводит замена волновых функций Хартри-Фока на функции осцилляторного базиса.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1982

Stoitsov M.V.

P4-82-418

Calculations of the ion-ion Interaction Potentials in Local-Scale Transformation Method

The possibility for application of the local-scale transformation method in Hartree-Fock approximations for the determination of the ion-ion interaction potentials is considered. For realistic calculations it is convenient to use the obtained one-particle basis, which reproduces the resuits of the stationary Hartree-Fock problem with satisfactory accuracy and has simple analytic form. The ion-ion potentials are calculated with the Skyrme forces when neglecting the antisymmetrization effects and also partially taking them into account for all pairs of interacting spherical nuclei: ⁴He, ¹⁶O, ⁴⁰Ca, ⁹⁰Zr, ²⁰⁸Pb. The changes in the ion-ion potentials, caused by the use of the oscillator bašes wave functions instead of the Hartree-Fock ones, are considered.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.