

ОБЪЕДИНЕННЫЙ Институт ядерных Исследований

дубна

3828/82

P4-82-385

16/8-82

И.Ж.Петков, М.В.Стоицов

ПРИМЕНЕНИЕ МЕТОДА ЛОКАЛЬНО-МАСШТАБНОГО ПРЕОБРАЗОВАНИЯ В ТЕОРИИ ХАРТРИ-ФОКА

Направлено в журнал "Ядерная физика"

1982

1. ВВЕДЕНИЕ

Метод Хартри-Фока /ХФ/ с эффективными силами, зависящими от плотности^{/1/}, стал одним из самых распространенных методов микроскопического описания основного состояния атомных ядер. Введение схематичных сил взаимодействия между нуклонами ^{/2/}, и, особенно, сил Скирма^{/3/}, намного упростило решение самосогласованных ХФ-уравнений для одночастичных волновых функций нуклонов в ядре.

ХФ-вычисления, однако, все еще остаются сложными для систем с больщим числом частиц и особенно для описания взаимодействия между ядрами в физике тяжелых ионов. В последнее время все чаще возникает необходимость в вычислениях в рамках зависящего от времени метода ХФ, что снова делает актуальным вопрос о преодолении трудностей при решении стационарной ХФзадачи.

Имея в виду эффективную природу сил, можно задаться вопросом: как такая трудоемкая процедура решения уравнения ХФ может быть упрощена без значительных нарушений точности полученных в методе ХФ результатов.

Метод Томаса-Ферми /ТФ/ в ядре '^{4/} является давно известной альтернативой методу ХФ, которая выражается в том, что одночастичные волновые Функции локально заменяются на плоские волны с периодическими граничными условиями. Существует весьма обширный круг подходов '^{5/} в которых на базе метода ТФ энергия ядерной системы представляется как функционал от локальной плотности $\rho(\vec{r})$. В каждом из них, однако, хорошее описание основных ядерных характеристик достигается за счет введения феноменологии, и следует подчеркнуть, что эти подходы не позволяют, определив $\rho(\vec{r})$, воспроизвести микроскопические характеристики основного состояния ядерной системы.

В настоящей работе метод локально-масштабного преобразования /МЛМП/ ⁶ применяется в теории ХФ для описания основного состояния А-частичной ядерной системы. Сущность метода/часть 2/ состоит в проведении локально-масштабного преобразования /ЛМП/ подходящим образом выбранной "модельной" многочастичной волновой функции $\Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)$, представляющей детерминант Слеттера из одночастичных волновых функций "модельного" базиса $\{\vec{\phi}_i\}$. Полученная в результате пробная волновая функция $\Psi_f(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)$ превращает среднее значение гамильтониана Н рассматриваемой

5.5

1

системы в энергетический функционал $E[\underline{f}]$, который необходимо минимизировать. Таким образом система из A интегро-дифференциальных уравнений XФ в МЛМП сводится к решению уравнения для функции ЛМП - $f(\overline{f})$.

В случае сферически-симметричных ядерных систем /часть 3/ f(\vec{r}) зависит только от модуля r вектора \vec{r} . При использовании эффективных сил Скирма ^{/7/} для осцилляторной детерминантной орбиты \vec{O} плотность $\vec{\varepsilon}_{f}(\vec{r})$ энергетического функционала E[f]становится обыкновенной алгебраической функцией от $f(\mathbf{r})$ и ее производных. Условие стационарности E[f] определяет уравнение Эйлера-Лагранжа, для численного решения которого /часть 4/ применяется одна из модификаций метода стержневых сплайнов ^{/8/}, которая дает возможность определить неизвестную функцию $f(\mathbf{r})$ в аналитическом виде.

Полученные результаты для энергии связи, одночастичных энергий, плотности нуклонов и геометрических характеристик ядер, как видно из части 5, вполне удовлетворительно воспроизводят точные ХФ-результаты. В части 6 коротко обсуждаются результаты и намечаются возможности их практического применения.

2. МЛМП В ТЕОРИИ ХФ

Рассмотрим A-частичную квантово-механическую систему с га-мильтонианом H:

$$\widetilde{\mathbf{n}} = \sum_{i=1}^{A} \mathbf{T}(\vec{\mathbf{r}}_{i}) + \sum_{i < j}^{A} \mathbf{V}(\vec{\mathbf{r}}_{i}, \vec{\mathbf{r}}_{j}), \qquad /1/$$

где одночастичный оператор

$$T(\vec{r}_{i}) = -\frac{\hbar^{2}}{2M} \vec{\nabla} \cdot \frac{2}{\vec{r}_{i}} + v(\vec{r}_{i})$$
 /2/

представляет сумму кинетической энергии и потенциальной энергии во внешнем поле v(\vec{r}) i -той частицы; V($\vec{r_i}$, $\vec{r_j}$) - двухчастичное взаимодействие i -той и j -той частиц. Пусть \mathcal{H} - полное гильбертово пространство динамических состояний рассматривае-мой системы.

в МЛМП^{/6/} рассматривается группа \mathcal{F} ЛМП реального, трехмерного, векторного пространства $\vec{R}_3 = \{r = (r, r_0); r \in \mathbb{R}, \vec{r}_0 \in \Omega\}$ и ее унитарное представление $\mathfrak{U}_{\mathcal{F}} = \{\mathfrak{U}_{\vec{r}}; \vec{r} \in \mathcal{F}\}$ в пространстве \mathcal{K} . Операторы $\mathfrak{U}_{\vec{r}} \in \mathfrak{U}_{\mathcal{F}}$, действующие на всякую функцию $\Psi \in \mathcal{K}$ по правилу:

$$\mathcal{U}_{\vec{f}} \Psi(\vec{r_1}, \vec{r_2}, ..., \vec{r_A}) = D_1^{\frac{1}{2}} \times D_2^{\frac{1}{2}} \times ... \times D_A^{\frac{1}{2}} \Psi(\vec{f}(\vec{r_1}), \vec{f}(\vec{r_2}), ..., \vec{f}(\vec{r_A})),$$
 /3/
где $D_i = D(\vec{f}(\vec{r_i})/\vec{r_i}) - якобиан ЛМП:$

$$D(\vec{f}(\vec{r})/\vec{r}) \equiv \frac{D(f_x, f_y, f_z)}{D(x, y, z)} = \frac{f^2}{r^2} \frac{\partial f}{\partial r}, \qquad (4/4)$$

представляет произведение

$$\mathcal{U}_{\overrightarrow{f}}(\overrightarrow{r}_{1}^{*},...,\overrightarrow{r}_{A}^{*}) = \prod_{i=1}^{A} U_{\overrightarrow{f}}(\overrightarrow{r}_{i}^{*})$$
⁽⁵⁾

одночастичных, линейных операторов $U_{\vec{r}}(\vec{r}_{1})$, (i=1,2,...,A), каждый из которых реализует ЛМП функции $\Psi(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A}) \in \mathcal{H}$ соответственно по \vec{r}_{i} -той координате. Тогда, согласно 6 , описание основного состояния рассматриваемой системы состоит в:

1/ выборе модельной волновой функции $\Psi \in \mathbb{H}$, определяющей класс пробных волновых функций как орбиту:

на пространстве Ж относительно группы ЛМП;

2/ построении энергетического функционала E[f] как среднего значения гамильтониана H по состояниям $\Psi_f \in \bar{O}$:

$$\mathbf{E}[\mathbf{f}] = \frac{\langle \Psi_{\mathbf{f}} | \mathbf{H} | \Psi_{\mathbf{f}} \rangle}{\langle \Psi_{\mathbf{f}} | \Psi_{\mathbf{f}} \rangle}; \qquad (77)$$

3/ решении уравнения для функции ЛМП, полученного из условия стационарности E[f]. при произвольных вариациях f(\vec{r}):

$$\frac{\partial E[\vec{i}]}{\partial f(\vec{r})} = 0; \quad \vec{f} \in \mathcal{F}.$$
(8)

Пусть "модельная" волновая функция $\bar{\Psi} \in \mathcal{H}$ представляет A – частичный слеттеровский детерминант:

$$\overline{\Psi}(\vec{r_1},...,\vec{r_A}) = (A!)^{-\frac{1}{2}} \det |\vec{\omega}_i(\vec{r_j})|; \quad (i,j=1,2,...,A), \qquad /9/$$

составленный из ортонормированных "модельных" одночастичных волновых функций $\overline{\phi_i}(\vec{f})$; (i=1,2,...,A). Тогда всякая из детерминантных орбит, построенных, согласно /6/, на основе "модельной" волновой функции типа /9/, включает в себя многочастичные волновые функции:

$$\Psi_{f}(\vec{r}_{1},...,\vec{r}_{A}) = (A!)^{-\frac{1}{2}} \det |\phi_{i}(\vec{r}_{j})|; \quad (i, j = 1, 2, ..., A).$$
 /10/

Здесь пробные одночастичные волновые функции:

e

$$\phi_{i}(\vec{r}) = U_{\vec{f}}(\vec{r}) \phi_{i}(\vec{r}) = D(\vec{f}(\vec{r})/\vec{r}) \phi_{i}(\vec{f})$$
 (11)

удовлетворяют /поскольку $\vec{\mathfrak{f}}\in\mathfrak{F}$ / условиям ортонормированности:

$$\langle \phi_{i} | \phi_{j} \rangle = \langle \overline{\phi}_{i} | U_{\overline{f}}^{-1} U_{\overline{f}} | \overline{\phi}_{j} \rangle = \langle \overline{\phi}_{i} | \overline{\phi}_{j} \rangle = \delta_{ij}.$$
 (12/
3)

Имея в виду /5/, эффективный гамильтониан:

$$H[f] = \hat{U}_{\vec{f}}^{-1}(\vec{r_1},...,\vec{r_A})H\hat{U}_{\vec{f}}(\vec{r_1},...,\vec{r_A}), \qquad (13)$$

аналогично /1/, принимает вид:

$$H[f] = \sum_{i=1}^{A} T_{f}(\vec{r}_{i}) + \sum_{i < j}^{A} V_{f}(\vec{r}_{i}, \vec{r}_{j}), \qquad (14)$$

где

$$T_{\vec{f}}(\vec{r}_{i}) = U_{\vec{f}}^{-1}(\vec{r}_{i})T(\vec{r}_{i})U_{\vec{f}}(\vec{r}_{i})$$

$$/14a/$$

И

$$V_{f}(\vec{r_{i}}, \vec{r_{j}}) = U_{\vec{t}}^{-1}(\vec{r_{i}}) U_{\vec{t}}^{-1}(\vec{r_{j}}) V(\vec{r_{i}}, \vec{r_{j}}) U_{\vec{t}}(\vec{r_{j}}) U_{\vec{t}}(\vec{r_{i}})$$
 (146/

представляют, соответственно, эффективный одночастичный оператор і той частицы и эффективное взаимодействие между і той и ј-той частицами системы. Тогда энергетический функционал /7/:

$$\mathbf{E}[\mathbf{f}] = \langle \Psi | \mathbf{H}[\mathbf{f}] | \Psi \rangle , \qquad /15/$$

определенный над орбитой О, имеет вид:

$$\mathbb{E}[t] = \int dt T_{\mathbf{f}}(t) \overline{\rho}(t, t') \Big|_{t' \neq t'} + \frac{1}{2} \int dt' dt' \cdot v_{\mathbf{f}}(t, t') \{ \overline{\rho}(t) \rho(t') - \{ \overline{\rho}(t, t') \}^{2} \}. \qquad / | b /$$

В /16/ вместе с неизвестной функцией f(r) присутствует еще параметрическая функция и "модельная" одночастичная дираковская матрица плотности:

$$\overline{\rho}(\vec{r},\vec{r'}) = A \int \overline{\Psi}^*(\vec{r},\vec{r_2},\ldots\vec{r_A}) \Psi(\vec{r'},\vec{r_2},\ldots\vec{r_A}) d\vec{r_2} \ldots d\vec{r_A} = \sum_{i=1}^{A} \overline{\phi}^*(\vec{r}) \overline{\phi}_i(\vec{r'}), /17/$$

диагональные элементы которой определяют "модельную" плотность частиц:

$$\overline{\rho}(\vec{r}) \equiv \overline{\rho}(\vec{r}, \vec{r}' \equiv \vec{r}) = \sum_{i=1}^{A} |\overline{\phi}_{i}(\vec{r})|^{2}.$$
(18/

С помощью /16/ легко получить уравнение стационарности /8/, которое определяет вид функции f (\vec{r}). Интересно отметить, что вследствие универсальности МЛМП ^{/6/} при варьировании в /16/ по искомой функции f(\vec{r}), функции $\bar{\rho}(\vec{r},\vec{r}')$ и $\bar{\rho}(\vec{r})$ не затрагиваются, что весьма удобно при практических вычислениях.

В методе ХФ среднее значение гамильтониана H минимизируется в рамках подпространства $\mathcal{H}_{X\Phi}$ представляющего объединение по-парно непересекающихся детерминантных орбит $\bar{O} \subset \mathcal{H}_{X\Phi}$. Следова-

тельно, метод ХФ определяет точную нижнюю границу $E_{X\Phi}$ для энергии E_{f} основного состояния системы в МЛМП, приложенном к произвольной орбите $\vec{O} \subset \mathcal{H}_{X\Phi}$, и имеет место неравенство:

$$\overline{\mathbf{E}} \geq \mathbf{E}_{f} \geq \mathbf{E}_{X\Phi}$$
, (19/

где $\vec{E} = E[f] = t]$ представляет среднее значение Н в состоянии, определяемом "модельной" волновой функцией /9/.

В рамках определенной уравнениями /6/ и /9/ орбиты между локальной плотностью $\rho(r)$ и функцией f(r) существует взаимнооднозначное соответствие:

$$\rho(\vec{\mathbf{r}}) = \frac{f^2}{r^2} \frac{\partial f}{\partial r} \sum_{i=1}^{A} |\vec{\phi}_i(\vec{\mathbf{r}})|^2.$$
 /20/

Согласно /20/, даже в случае, когда "модельная" плотность /18/ сферически симметрична, МЛМП дает возможность описания основного состояния системы с деформированной плотностью распределения, поскольку в $\rho(\vec{t})$ могут присутствовать статические деформации, порождаемые деформацией метрики в пространстве \vec{R}_3 , подверженном ЛМП.

Дальнейшее практическое использование МЛМП в теории ХФ для конкретных физических систем связано с заданием явного вида гамильтониана /1/ и определением вида "модельного" одночастичного базиса $\{\vec{\phi}_i\}$. Эти два момента тесно связаны между собой, поскольку, согласно /19/, "модельная" функция $\vec{\Psi}$ должна адекватно отражать особенности конкретной физической системы. Так, например, для случая атомных систем одним из возможных выборов "модельного" базиса $\{\vec{\phi}_i\}$ является выбор водородных одночастичных волновых функций '9'. Для ядерных систем самым простым и удобным для применения является осцилляторный базис.

3. СФЕРИЧЕСКИЕ ЯДРА

e.

В настоящей работе МЛМП в теории ХФ используется для описания основного состояния сферических ядер. Одночастичный "модельный" базис состоит из ортонормированных осцилляторных волновых функций^{/10/}:

$$\vec{\phi}_{i}(\vec{r}) = \phi_{n\ell}(r) \, \mathcal{Y}_{n\ell j}(\vec{r}_{0}, \vec{\sigma}) \, \chi_{q}(\vec{r})$$

$$/21/$$

$$\mathcal{Y}_{n\ell_{j}}(\vec{r}_{0},\vec{\sigma}) = \sum_{m\ell_{s}} (\ell_{\frac{1}{2}} m_{\ell}m_{s} | jm) Y_{\ell m\ell}(\vec{r}_{0}) \chi_{m_{s}}(\vec{\sigma})$$
 /21a/

$$\bar{\phi}_{n\ell}(t) = \pi^{-1/4} \frac{3/2}{a^{2}} \left[\frac{2^{\ell-n+3}}{[(2\ell+1)!!]^{2}(n-1)!} \left[(at)^{\frac{1}{2}} \exp\left[-\frac{1}{2} (at)^{2} \right] \times \right] \times \frac{n^{-1}}{\sum_{k=0}^{n-1} (-2)^{k} \frac{(n-1)!}{(n-1-k)!k!} \frac{(2\ell+1)!!}{(2\ell+2k+1)!!} \left[(at)^{\frac{2k}{2}} \right] .$$

Здесь индекс і включает набор квантовых чисел: заряд q, главное квантовое число n, орбитальный угловой момент ℓ , полный уг-

ловой моментј и магнитное квантовое число m, а $a = \left(\frac{M_{\omega}}{m}\right)^{\frac{1}{2}}$

является радиальным параметром осциллятора. Тогда уравнения /6/, /9/, /21/ определяют осцилляторную детерминантную орбиту \overline{O} , которой принадлежат пробные волновые функции $\Psi_f \in \overline{O}$, определенные равенствами /10/, /11/, /21/.

Для четно-четных сферических ядер спин-угловые функции /21a/ являются решениями уравнений ХФ, которые, согласно /19/, определяют точную нижнюю границу энергии в МЛМП, построенном с детерминантными орбитами в $\mathcal{K}_{X\Phi}$. Тогда для \vec{O} в уравнении стационарности /8/ переменные разделяются, и функция $f(\vec{t})$ оказывается зависящей только от величины $r \in \mathbb{R}$ вектора $\vec{t} \in \vec{R}_3$. В этом случае якобиан /4/ МЛП пространства \vec{R}_3 , которое задается векторными функциями $\vec{f}(\vec{r}) = \vec{r}_0 f(r)$, имеет вид:

$$D = D (f(r)/r) = \frac{f^2(r)}{r^2} \frac{df(r)}{dr},$$
 /22/

Далее используем силы Скирма⁷⁷⁷ в гамильтониане /1/ /внешнее поле $v(\vec{r}) \equiv 0$ /. Для сил Скирма плотность $\delta_{\vec{r}}(\vec{r})$ энергетического функционала /16/:

$$\mathbf{E}[\mathbf{f}] = \int \hat{\mathbf{\xi}}_{\mathbf{f}}(\mathbf{\vec{r}}) d\mathbf{\vec{r}}$$
 (23/

зависит от локальной плотности $\rho_n(\rho_p)$, спин-плотности $J_n(J_p)$ и плотности кинетической энергии $\tau_n(\tau_p)$ нейтронов /протонов/. Эти величины в \overline{O} зависят от "модельного" базиса /21/и функции f(r) следующим образом:

$$\rho(\mathbf{r}) = \sum_{i} |\phi_{i}(\vec{\mathbf{r}})|^{2} = D \sum_{i} |\vec{\phi}_{i}(\vec{\mathbf{r}})|^{2}, \qquad (24)$$

$$J(\mathbf{r}) = \mathbf{r}^{-1} \sum_{i} (\phi_{i}^{*} \vec{\ell} \cdot \vec{\sigma} \cdot \phi_{i}) = D \mathbf{r}^{-1} \sum_{i} \vec{\phi}_{i}^{*} (\vec{f}) \vec{\ell} \cdot \vec{\sigma} \vec{\phi}_{i} (\vec{f}), \qquad /25/$$

$$r(\mathbf{r}) = \sum_{i} |\vec{\nabla}\phi_{i}(\mathbf{r})|^{2} = \frac{1}{2} \vec{\Delta}\rho - \sum_{i} \vec{\phi}_{i}^{*}(\mathbf{f})\theta_{i}(\mathbf{f},\mathbf{r})\vec{\phi}_{i}(\vec{f}), \qquad /26/$$

где

$$\theta_{i}(f,r) = D\left[\frac{1}{2}\frac{f''}{f'} - \frac{1}{4}\frac{f''^{2}}{f'^{2}} + 2\frac{f''}{f} - \frac{\ell_{i}(\ell_{i}+1)}{r^{2}} + \frac{1}{2}(f'' + \frac{f'^{2}}{f})\frac{\partial}{\partial f} + f''\frac{\partial^{2}}{\partial f^{2}}\right], /26a/$$

а штрихом обозначены производные по г. Суммирование в /24/-/26 проводится по занятым нейтронным /протонным/ состояниям, зависящим соответственно от функций $\phi_i^{(n)}(\phi_i^{(p)})$ и функций ЛМП $f_n(f_p)$, что дает нейтронные /протонные/ плотностные величины В явном виде:

$$\begin{split} \tilde{\mathfrak{S}}_{f}(t) &= \frac{h^{2}}{2M} t + \frac{1}{2} t_{0} \left\{ \left(1 + \frac{x_{0}}{2}\right) \rho^{2} - \left(x_{0} + \frac{1}{2}\right) \left(\rho_{n}^{2} + \rho_{p}^{2}\right) \right\} + \\ &+ \frac{1}{4} \left(t_{1} + t_{2}\right) \rho t + \frac{1}{8} \left(t_{2} - t_{1}\right) \left(\rho_{n} t_{n} + \rho_{p} t_{p}\right) + \frac{1}{4} t_{0} \rho_{n} \rho_{p} \rho + \\ &+ \frac{1}{16} \left(t_{2} - 3t_{1}\right) \rho \vec{\Delta} \rho + \frac{1}{32} \left(3t_{1} + t_{2}\right) \left(\rho_{n} \vec{\Delta} \rho_{n} + \rho_{p} \vec{\Delta} \rho_{p}\right) + \\ &+ \frac{1}{2} W_{0} \left(\rho J' + \rho_{n} J_{n}' + \rho_{p} J_{p}'\right) + \tilde{\mathfrak{S}}_{C}(t), \end{split}$$

где $\rho = \rho_n + \rho_p$, $J = J_n + J_p$, $r = r_n + r_p$. Символами t_0 , t_1 , t_2 , t_3 , x_0 и W_0 в /27/ обозначены параметры Скирма, а последний член:

$$\mathcal{E}_{C}(\vec{r}) = \frac{e^{2}}{2} \left\{ \frac{\rho_{p}(\vec{r})\rho_{p}(\vec{r}')}{|\vec{r} - \vec{r}'|} dr' \right\}$$
(27a/

представляет плотность кулоновской энергии. Таким образом, при явном выражении /21/ и равенстве /22/-/26/, плотность /27/ энергетического функционала /23/ превращается в обыкновенную алгебраическую функцию от f(t) и ее производных f', f'', f'''. Из условия стационарности /8/ получаем уравнения Эйлера-Лагранжа:

$$\sum_{n=0}^{3} (1)^{m} \frac{d^{m}}{dr} \frac{\partial \mathcal{E}_{f}(\vec{t})}{\partial f_{\sigma}} = 0; \quad (v = p, n), \qquad (28)$$

которые определяют функции f_n и f_p . Необходимые для решения уравнений /28/ граничные условия следуют из групповых свойств ЛМП в пространстве R_3 и из взаимно-однозначной связи, существующей между плотностью $\rho_n(\rho_p)$ и функцией ЛМП $f_n(f_p)$.

Таким образом, описание основного состояния ядерной системы сводится к решению определенной на орбите О системы уравнений /28/ для функции ЛМП. Получено значительное упрощение многочастичной задачи, поскольку в методе ХФ приходится решать систему из А связанных интегро-дифференциальных уравнений, каждое из которых по сложности сравнимо с /28/. Разумеется, это значительное упрощение стационарной ХФ-задачи имело бы смысл только при условии, что полученные в МЛМП результаты воспроизводят с удовлетворительной точностью результаты метода ХФ.

4. РЕШЕНИЕ УРАВНЕНИЙ МЛМП

Û

В настоящей работе используется модификация метода стержневых сплайнов ^{/8/} для решения полученных в МЛМП уравнений /28/. Метод стержневых сплайнов был предложен для решения задач на собственные значения линейных дифференциальных уравнений высокого порядка. Однако он является эффективным вычислительным средством и в применении к уравнениям низкого порядка /11/.

Рассмотрим для определенности одно из уравнений /28/. Искомое решение $f(\mathbf{r})$ на конечном интервале $X = [\mathbf{x}_H, \mathbf{x}_K]$ представляется в аналитическом виде $\mathbf{y}(\mathbf{x})$ как произведение:

$$y(x) = S^{(3)}(x)p(x)$$
 /29/

кубического интерполяционного сплайна:

$$S_n^{(3)} = a_n x^3 + b_n x^2 + c_n x + d_n$$
, /30/

где n=1,2,...N / N - число узлов в сетке $\{\bar{x}_n\}^{/8/}$, и стержня p(x)=x, который представляет решение рассматриваемого уравнения при r \rightarrow 0. После того, как будут удовлетворены условия гладкого сшивания y, y', y'' на узлах сетки $\{\bar{x}_n\}$ и граничные условия для f(t) при r \rightarrow 0 и r $\rightarrow \infty$, в искомом решении /29/ остаются как независимые только M(M = N + 1) из всех 4N коэффициентов сплайна /30/. Обозначим через $\{a_m\}$, m = 1,2...M совокупность этих неизвестных коэффициентов.

Согласно ⁷⁸, их значения должны были бы определиться из условия, чтобы рассматриваемое дифференциальное уравнение было удовлетворено в точках интерполяционной сетки $\{x_m\}$. Имея в виду,однако, что уравнение /28/ получено из условия стацио нарности энергетического функционала E[f], который имеет сравнительно простую структуру, мы подставляем так дискретизированное решение /29/ прямо в выражения /22/-/27/ для E[f]. Тогда коэффициенты $\{a_m\}$ определяются из уравнений:

$$\frac{\partial E[a_1 a_2 ... a_M]}{\partial a_m} = 0, \quad (m = 1, 2...M). \quad /31/$$

Рассмотренные две схемы дискретизации решения /до и после вариации E[f] / должны давать одинаковые результаты с увеличением числа N сплайнов в интервале X. Согласно вариационному методу Ритца^{/12/}, однако, уравнения /31/ дают возможность правильной физической интерпретации решений даже в случае малого числа M неизвестных коэффициентов { a_m }. Так, например, в случае M=1 и $a_1 = b_1 \equiv 0$ единственный неизвестный коэффициент a_1 совпадает с осцилляторным параметром a в "модельном" базисе /21/. В этом случае решение уравнения /31/ определяет наилучшее значение энергии \overline{E} /см. /19//, полученной в рамках осцилляторной модели оболочек.

В общем случае полученная нелинейная алгебраическая система уравнений /31/, определяющая нейтронную /протонную/ функцию ЛМП $f_n(f_p)$ в аналитическом виде, решается авторегуляризованным итерационным процессом типа Гаусса-Ньютона^{/13/} Вычисления проводились на ЭВМ IBM-370/145 в режиме с двойной точностью и на CDC-6500 для широкого круга ядер с параметрами Скирма^{/7/}

5. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Мы рассчитали энергию связи, одночастичные энергии, плотность нуклонов и геометрические характеристики ядер 16 O, 40 Ca, $^{90}{\rm Zr}$, 208 Pb, что дает ясное представление о возможностях МЛМП при описании основного состояния ядерных систем в приближении XФ. Точные скирм-хартри-фоковские /CXФ/ результаты, полученные интегрированием уравнений XФ в координатном пространстве, с которыми мы провели сравнение, приведены в работе $^{/14/}$. Для сравнения мы показываем также и наилучшие результаты, которые могут быть получены только в "модельной" функции гармонического осциллятора /Г0/.

Таблица 1

Энергия связи и радиусы ядер

	016				Ca 40	Ca40			0	P6 208			
	٢٥	млмп	cx♦	ra	MAMA	cx4	٢٥	Mann	¢x>	10	MAMN	CX Ø	
Rm	2,57	2,55	2,55	3,34	3,29	3,29	4,24	4,17	4,I7	5,54	5,44	5,45	
Rn	2,56	2,53	2,53	3,32	3,27	3,27	4,26	4,19	6,19	5,58	5,48	5,49	
R.p.	2,58	2,56	2,56	3,36	3,31	3,31	4,22	4,I4	4,I4	5,47	5,38	5,38	
Rc	2,70	2,68	2,68	3,46	3,4I	3,4I	4,30	4,22	4,22	5,53	5,44	5,44	
- E	128,2	130,9	131,5	33 1,5	343,6	34 5 6	740,I	786,I	7929	I469	1624	I64I	

В табл.1 даны вычисленные значения среднеквадратичных радиусов /в Фм/ нейтронного (R_n), протонного (R_p), зарядового (R_c) распределения и массовый среднеквадратичный радиус R_m , а также полные энергии связи – Е /МэВ/ рассматриваемых ядер. Из таблицы видно, что геометрические характеристики основного состояния в МЛМП воспроизводятся точно. На <u>рис.1</u> изображена относительная ошибка $\mathcal{E}_E/\mathcal{C}$, с которой воспроизводится полная энергия в МЛМП и в ГО. С увеличением числа нуклонов в системе увеличивается и ошибка \mathcal{E}_E , с которой воспроизводится $E_{X\Phi}$. Но если в ГО эта ошибка с 3% для ¹⁸О нарастает /почти линейно/, до 10-11% для $A \sim 208$, то в МЛМП максимальное отклонение

Рис.1. Относительная ошибка в полной энергии связи.

<u>Рис.2</u>. Распределение плотности нуклонов в ядре ¹⁶О.

Рис.3. Распределение плотности нуклонов в ядре ⁴⁰Са.

от E_{XФ}, которое наблюдается для ²⁰⁸Pb, равно лишь ~1%. Это максимальное отклонение в МЛМП представляет только 17 МаВ, что можно считать абсолютно удовлетворительным совпадением, имея в виду абсолютное значение - E_{XΦ} в этом случае/1641 МаВ/. Типичные результаты, которые получаются для распределения

плотности нуклонов, показаны **1 2 3 4 5** на <u>рис.2-4</u>. В области легких ядер (¹⁶О) МЛМП /сплошная линия/ практически точно воспроизводит

ядер (0) нлип / сплошная линия/ практически точно воспроизводит плотность $\rho_{X\Phi}$ /обозначена точками/. Этот результат неудивителен, поскольку даже ГО дает хорошее согласие с XФ-результатами в этой области ядер^{/14/}. Для более тяжелых ядер плотность ГО /штрихованная линия/ для ядер ⁴⁰Са и ⁹⁰Zr и особенно для тяжелого ²⁰⁸Pb /рис.4/ сильно отличается от плотности, полученной методом XФ. Тем не менее видно, что МЛМП удовлетворительно воспроизводит точные XФ-результаты: место и амплитуду оболочечных осцилляций, хвосты плотностных распределений. Самое большое отклонение наблюдается в области г + 0. Эта область, однако, при определении ядерных характеристик участвует с минимальным геометрическим весом /интегрирование с r²dr /. Так, например, при описании экспериментов по рассеянию электронов

Рис.4. Протонное и нейтронное распределения плотности в апре ²⁰⁸Ph

на ядрах заштрихованная область на рис.3 и 4 не дала бы существенного различия между формфакторами, определенными в МЛМП и в методе $X\Phi$ /15/.

В МЛМП удовлетворительно воспроизводятся и одночастичные энергии нуклонов в рассмотренных ядерных системах. В <u>табл.2</u> и <u>3</u> показаны результаты /в МэВ/ для одночастичных энергий, занятых протонных и нейтронных состояний. Производит впечатление, что наилучшее согласие с точными ХФ результатами получается для состояний, близких к уровню Ферми.Имея в виду асимптотическое поведение решений /28/, этим фактом можно объяснить точное воспроизведение хвостов плотностных распределений/рис.2, 3 и 4/. Максимальное отклонение от полученных ХФ значений наблюдается в 1s и 1p-состояниях, которые для ядра ²⁰⁸ Pb достигают 1-2 МэВ. Сами экспериментальные данные ^{/16/}, однако,для этих состояний определяются с точностью <u>+</u>7-11 МэВ, что еще раз показывает взаимную заменяемость результатов МЛМП и результатов метода ХФ.

Таблица 3

Таблица 2

Одночастичные энергии протонов

	PALOB			2, 90			Ca.40			016		
nlj	F0	nmn	CX Ф	50	MAM	cxø	٥٦	MAMI	cx¢	٢Q	NAMI	cxø
15 1/E	25,5	34,9	36,6	29,I	35,I	36,3	29,2	32,5	32,8	27,9	28,7	28,8
1 7 3/2	27,2	31,8	33,I	28,4	30,2	30,8	23,8	24,2	24,2	16,3	16,7	16,8
4P 1/2	25,5	31,4	32,5	25,4	28,6	29,I	19 , I	20,3	20,5	9,4	9,9	9,9
1 al 5/2	25,8	27,7	28,4	23,6	23,7	23,9	I4,I	I4 , 3	I4 , 4			
25 1/2	20,2	25,I	24,0	15,2	18,7	17,6	4,6	8,0	7,9			
1 al 3/2	23,2	26,6	27,0	18,9	20,0	20,1	7,0	7,2	7,3			
15 7/2	22,0	22,6	22,9	15,7	15,8	15,9		•	•			
2 p 3/2	(4,4	18,3	17,1	5,7	8,6	7,8						
1 f 5/2	18,4	20,I	20,3	9,4	9,3	9,6						
2 7 1/2	12,7	7 16,9	16,0	3,0	6,2	6,1						
1 7 9/2	16,2	2 16,7	16,7	1								
18 7/8	μì,	5 12,2	12,5									
2 @ 5%	ų 7,'	7 10,6	9,7									
35 1/1	3,	2 7,6	6,8	³								
24 34	2 5,	0 8,0	7,7	'								
16 214	9 ,	0 9,0	9,9	"								
											· · ·	

На <u>рис.5</u> показан типичный вид решений, полученных для функции ЛМП. Пунктирной линией обозначено тождественное преобразование $f(r) \equiv r$, которое генерирует модельную функцию Ψ орбиты $\overline{O} \subset \mathcal{H}_{X\Phi}$. Отчетливо видно поведение $f(r) \sim r$ решений при $r \rightarrow 0$. При $r \rightarrow \infty$ асимптотическое поведение $f(r) \sim r^{\frac{1}{2}}$ воспроизводит правильное экспоненциальное поведение одночастичных волновых функций $\{\phi_i\}$. Одночастичные энергии нейтронов

	Pb ²⁰⁸			Zr 90			Ca40			O ¹⁶		
nlj	ra	MAM	cx¢	ro	nana	cx♦	ro	mm	cx∳	٢٥	MANN	cx∳
15 1/2	37 , 0	42,8	44,6	39,0	44,I	44,7	37,4	40,7	4I,0	32,I	32,9	32,9
1P 3/2	36,6	39,5	40,9	35,9	37,7	38,0	31,7	32,I	32,2	20,3	20,8	20,8
1 P 1/2	34,7	39,0	40,3	36,3	36,6	36,6	26,8	28,2	28,4	13,1	13 , 8	13,8
1 d 5/2	34,0	35,2	36,2	29,7	30,I	30,3	21,9	2 2, I	22,2			
2 5 1/2	29,6	33,I	32,5	22,7	25,9	25,5	12,5	15,8	15,7			
1 al 3/2	3I,I	34,I	34,7	25,0	26,6	26,9	I4,5	I4,8	14,9			
1 f ₹/2	29,7	30,I	30,6	21,5	21,8	21 ,9						
2 P 3/2	23,9	26,5	25,4	13,7	16,2	15,8						
1 f 3/2	25,7	27,7	28,0	14,8	15,4	15,8	1					
2 7 1/2	21,9	25 , I	24,2	10,7	13,7	13,7						
4 8 <i>3/2</i>	23,9	24 , I	24,5	12,1	12,8	12,9						
1 g 7/2	17,7	I9 , 9	20,2									
2 d 5/2	17,1	19,0	18,1									
3 5 1/E	13,4	16,4	15,6									
2 . 572	14,0	16,4	15,9									
1 h 11/2	16,9	17,6	17,7									
1 4 9/2	10,6	11,0	11,5									
1 (13/2	9,2	10,3	10,5									
27 1/2	10,2	,,,,	10,6									
23 5/2	0,1 6 3	,4 8 0	/,4									
3P 3/2	0,3	6,0	(,) 6 "									
3P 7/2	4,0	0,0	0,4									

6. ЗАКЛЮЧЕНИЕ

Полученные результаты приложения МЛМП к осцилляторной детерминантной орбите $\overline{O} \subset \mathcal{H}_{X\Phi}$ обнаруживают удивительное согласие с точными ХФ-результатами для основных состояний сферических ядер. При этом вместо системы большого числа интегро-дифференциальных уравнений ХФ решается только уравнение для функ-

ции ЛМП. Таким образом для систематического исследования представляются доступными область тяжелых и сверхтяжелых ядер, деление ядер, вопросы физики тяжелых ионов и ряд других /существенно многочастичных/ задач, где исключительно трудно прямое использование результатов метода ХФ.

ЛИТЕРАТУРА

- Brueckner K.A., Gammel J.L., Weitzner H. Phys.Rev., 1958, 110, p.431; Nemeth J., Vautherin D. Phys.Lett., 1970, 32B, p.561; Negele J.W. Phys.Rev., 1970, C1, p.2160; Banerjee P., Sprung D. Nucl.Phys., 1971, A168, p.273; Campi X., Strung D. Nucl.Phys., 1972, A194, p.401.
- Brink D., Boeker E. Nucl.Phys., 1967, 91, p.1; Volkov A. Nucl.Phys., 1965, 74, p.33; Saunier G., Pearson J. Phys. Rev., 1970, C1, p.1353; Moszkowski S. Phys.Rev., 1970, C2, p.402.
- Skyrme T. Phil.Mag., 1956, 1, p.1043; Nucl.Phys., 1959, 615, p.9.
- 4. Bethe H.A. Phys.Rev., 1968, 167, p.879.
- 5. Berg R., Willets L. Proc.Phys.Soc., 1955, A68, p.229; Kumar K., Le Couteur K., Roy M. Nucl.Phys., 1963, 42, p.529; Stock H. Nucl.Phys., 1975, A237, p.365; Holzwarth G., Eckart G. Z.Phys., 1977, A281, p.385; Lombard R. Ann. Phys., 1973, 77, p.380; Brueckner K.A. et al. Phys.Rev., 1968, 171, p.1188.

- 6. Петков И.Ж., Стоицов М.В. Доклады БАН, 1981, 34, с.1657; Петков И.Ж., Стоицов М.В. ОИЯИ, Р4-82-349, Дубна, 1982.
- 7. Vautherin D., Brink D. Phys.Lett., 1970, 32B, p.149.
- 8. Александров Л., Караджов Д. ЖВМ и МФ, 1980, 20, с.923.
- 9. Hall G. Proc. Phys. Soc., 1960, 75, p.575.
- Айзенберг И., Грайнер В. Микроскопическая теория ядра. Атомиздат, М., 1976.
- 11. Александров Л., Дренска М., Караджов Д. ОИЯИ, Р5-80-751, Дубна, 1980.
- Morse P., Feshbach H. Methods of Theoretical Physics. New York, 1953, part II.
- 13. Александров Л. ЖВМ и МФ, 1971, 11, с.36; ОИЯИ, Р5-7259, Дубна, 1973.
- 14. Vauntherin D., Brink D. Phys.Rev., 1972, C5, p.626.
- 15. Лукьянов В.К., Поль Ю.С. ЭЧАЯ, 1974, 5, с.955.
- 16. James A. et al. Nucl.Phys., 1969, A138, p.145.

Рукопись поступила в издательский отдел 26 мая 1982 года.

15

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5 p. 00 ĸ.
A17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6 р. 00 к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2 p. 50 ĸ.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3 р. 00 к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6 p. 00 ĸ.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5 p. 00 ĸ.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3 р. 00 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p. 00 ĸ.
Д2-81- 543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 р. 40 к.
Д1,2-82-27	Труды Международного симпозиуна по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 р. 20 к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

	· · · · · · · · · · · · · · · · · · ·
Петков И.Ж., Стоицов М.В. Применение метода локально-масштаб в теории Хартри-Фока	Р4-82-385 бного преобразования
Метод локально-масштабного пр в теории Скирма-Хартри-Фока для оп сферических ядер. Вместо системы с ференциальных уравнений для одноча решается только уравнение для функ преобразования. Для ряда ядер вычи частичные энергии, плотность нукло ристики основного состояния. Получ удовлетворительно воспроизводят то четы и могут применяться для систе области тяжелых и сверхтяжелых яде физики тяжелых ионов, где исключит нение результатов метода Хартри-Фо	реобразования применяется писания основного состояния большого числа интегро-диф- астичных волновых функций кции локально-масштабного ислены энергии связи, одно- онов и геометрические характе венные результаты вполне очные хартри-фоковские рас- ематического исследования в ср, деления ядер и вопросов тельно трудно прямое приме- ока.
Препринт Объединенного института ядер	оных исследований. Дубна 1982
Petkov I.Zh., Stoitsov M.V. The Application of the Local-Scale to the Hartree-Fock Theory	P4-82-385 Transformation Method
The local-scale transformation Skyrme-Hartree-Fock theory for the state of the spherical nuclei. Inse number of integro-differential eque wave-functions, we solve just one of the local scale transformation binding energy, the one-particle of ties and the geometrical character are calculated. The results agreed	on method is applied to the e description of the ground stead of the system of large pations for the one-particle equation for the function . For a number of nuclei the energies, the nucleon densi- cistics of the ground state

ones from the Hartree-Fock theory. The method may be applied for a systematical investigation in the field of heavy and super-heavy nuclei, nuclear fission and heavy ion physics, where the direct application of the Hartree-Fock method is ve-

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

ry difficult.