

3827/82

16/8-82

P4-82-358

В.В.Воронов, В.Г.Соловьев, Ч.Стоянов

ФРАГМЕНТАЦИЯ ДЫРОЧНЫХ СОСТОЯНИЙ В 207 рь и 203,205,207 Tl

Ядра с массовыми числами А ~208 хорошо изучены экспериментально и теоретически. Достаточно полные данные имеются по характеристикам низколежащих состояний /см.^{/1,2/}/. В последние годы происходит быстрое накопление экспериментальных данных по фрагментации глубоколежащих дырочных состояний^{/3-6/}. Фрагментация малоквазичастичных компонент волновых функций сферических и деформированных ядер интенсивно исследуется ^{/7-11/} в рамках квазичастично-фононной модели ядра ^{/12/}. Расчеты фрагментации этих компонент для большого числа ядер хорошо согласуются с экспериментальными данными. В работе ^{/11/} было показано, что квазичастично-фононная модель дает довольно хорошее описание фрагментации дырочных состояний в ^{205,207} Рь. В данной работе мы исследуем фрагментацию дырочных состояний для ряда изотопов Рь и T1.

Гамильтониан квазичастично-фононной модели ядра^{/12/} включает среднее поле в форме потенциала Саксона-Вудса, спаривательное взаимодействие и эффективные остаточные мультипольные и спин-мультипольные силы. Модельный гамильтониан в терминах операторов рождения и уничтожения квазичастиц и фононов приведен в '^{5,12}'. Для нечетных сферических ядер волновые функции имеют вид

$$\begin{split} \Psi_{\nu} (\mathbf{JM}) &= \mathbf{C}_{\mathbf{J}\nu} \left\{ a_{\mathbf{JM}}^{+} + \sum_{\lambda ij} \mathbf{D}_{j}^{\lambda i} (\mathbf{J}\nu) \left[a_{jm}^{+} \mathbf{Q}_{\lambda \mu i}^{+} \right]_{\mathbf{JM}} \right. + \\ &+ \sum_{\lambda_{i} i_{\lambda} \lambda_{i} i_{0}} \sum_{j\mathbf{I}} \mathbf{F}_{j\mathbf{I}}^{\lambda_{1} i_{1} \lambda_{2} i_{2}} (\mathbf{J}\nu) \left[a_{jm}^{+} \left[\mathbf{Q}_{\lambda_{1} \mu_{1} i_{1}}^{+} \mathbf{Q}_{\lambda_{2} \mu_{2} i_{2}}^{+} \right]_{\mathbf{IM}} \right]_{\mathbf{JM}} \right\} \Psi_{\mathbf{0}} \, . \end{split}$$

Здесь a_{JM}^+ , $Q_{\lambda\mu l}^+$ - операторы рождения квазичастиц и фононов; Ψ_0 - волновая функция фононного вакуума. Волновая функция /1/ нормирована на единицу. Система уравнений для нахождения собственных энергий η_{ν} и коэффициентов волновой функции /1/ дана в ^{/8,11/}. При расчетах фрагментации высоковозбужденных состояний удобнее рассчитывать соответствующие силовые функции. Силовая функция для одноквазичастичной компоненты волновой функции /1/ имеет вид ^{/8,12/}:

$$C_{J\nu}^{2}(\eta) = \frac{1}{2\pi} \sum_{\nu} C_{J\nu}^{2} \frac{\Delta}{(\eta - \eta_{\nu})^{2} + \Delta^{2}/4} = \frac{1}{\pi} \operatorname{Im} \frac{1}{F(\eta + i \Delta/2)}, \qquad /2/$$

۲ ۱

ì

ł

где $F(\eta_{\nu}) = 0$ - секулярное уравнение для нахождения η_{ν} . Энергетический интервал Δ определяет способ представления результатов вычисления. Явный вид для /2/ приведен в ^{/8/}.

Параметрами квазичастично-фононной модели ядра являются параметры одночастичного потенциала и константы остаточных эффективных взаимодействий. В данной работе мы использовали такие же параметры потенциала Саксона-Вудса, как и в^{/18/}, а для констант остаточных сил были взяты значения из^{/11/}. Используя набор констант из^{/11/}, удается получить одновременное описание низколежащих коллективных состояний и гигантских резонансов в ^{206,208} Pb. В расчетах мы полагали значение $\Delta = 0,2$ МэВ.

Приведем основные формулы, используемые при расчетах характеристик дырочных состояний.

Спектроскопические факторы реакций нуклонных передач типа (p, d) на подоболочку ј имеют вид

$$S'_{j} = (2j + 1) C^{2}_{j\nu} v^{2}_{j}$$
, /3/

причем vj²=1 для реакции на ²⁰⁸РЪ.Соответствующая силовая функция равна

$$S'_{j}(\eta) = (2j+1) \mathbf{v}_{j}^{2} C_{j}^{2}(\eta),$$
 /4/

где $C_{j}^{2}(\eta)$ определена формулой /2/. Интегральные характеристики распределения силы состояния определяются энергией центра тяжести $\mathbf{\bar{E}}_{i}$ и шириной Γ_{i} :

$$\widetilde{\mathbf{E}}_{j} = \int_{\Delta \mathbf{E}} \eta \mathbf{S}'_{j}(\eta) \, \mathrm{d}\eta / \mathbf{N}, \qquad \mathbf{N} = \int_{\Delta \mathbf{E}} \mathbf{S}'_{j}(\eta) \, \mathrm{d}\eta , \qquad /5/$$

$$\Gamma_{j} = 2,35\sigma, \quad \sigma^{2} = \int_{\Delta E} (\vec{E}_{j} - \eta)^{2} S_{j}(\eta) d\eta/N.$$
 (6)

В качестве примера в табл.1 приведены результаты расчетов ряда низколежащих дырочных состояний в 207 Pb. Экспериментальные данные для S', полученные из различных типов реакций однонуклонных передач, просуммированы в /3/, в табл.1 даны их нижняя и верхняя оценки. Расчеты согласуются с экспериментальными данными и результатами работы /14/. Недавние исследования ^{/3-5/} реакции ²⁰⁸Рb(³He, a) ²⁰⁷Рb позволили получить информацию о фрагментации подоболочек 1h 0 /0, 1h 11/2, 1g 7/2 и 1g 9/2 в 207 Pb. Экспериментальные и рассчитанные нами распределения силы подоболочки 1h_{11/2} приведены на рис.1. Как видно из рисунка, расчеты дают более сильную концентрацию силы, чем эксперимент. В расчетах не учитываются компоненты волновой функции "квазичастица плюс три и более фононов", которые могут привести к более сильной фрагментации подоболочки 1h 11/2. Было бы противоестественным, если бы расчеты с использованием волновой функции/1/ давали более

Таблица 1

Спектроскопические факторы некоторых низколежащих состояний в ²⁰⁷ Pb и ²⁰⁷ Tl

Ядро	nej	E, MaB		S''	
		Эксп.	Расч.	Эксп.	Расч.
201-	1113/2	1,629	I,6	8,5-14,5	12,7
201P e	2f 3/2	2,334	2,7	5,I-I0,4	6,3
	1h 9/2	3,415	3,6	5,8-9,6	8,7
²⁰⁷ Te	3 5 1/2	0	0	1,26-1,9	1,9
	2 d 3/2	0,351	0,43	4,35-4,5	3,9
	1 his/2	I,34 I	Ι,6	7,28-10,8	3 IO,I
	2d5/2	I,674	I,9	3,13-3,6	4,6
	187/2	3,47	3,7	3,2-6,43	6,0

<u>Рис.1.</u> Экспериментальное $^{/4/}$ и рассчитанное /заштрихованная область/ распределение силы подоболочки $1h_{11/2}$ в ²⁰⁷ Pb.

Таблица 2

Интегральные характеристики глубоколежащих дырочных состояний в ²⁰⁷Pb и ²⁰⁷Tl

Ядро	nlj	<i>Е</i> , м Э кс п.	ав Расч.	<i>Гј,</i> М э В Эксп.	Расч.	∫ <u>⊿</u> Е Эксп.	S(7)d(Расч	≥ <u>∆Е</u> мэв
	1h11/2	8,5	8,4	3,7 <u>+</u> 0,5	2,5	71%	78%	6,7-10,5
20×Pl	197/2	10,8	11,2	-	2,3	-	90%	9,0-14,0
	193/2	14	14,5	5,I <u>+</u> 0,5	3,9	92%	78%	II,0-17,0
207 To	197/2	-	3,9	_	_	-	88%	2,0-6,0
16	199/2	-	8,0	-	2,4	-	73%	6,0-II,0

сильную фрагментацию, чем получено экспериментально. Интегральные характеристики фрагментации подоболочки $1h_{11/2}$ представлены в табл.2, экспериментальные данные взяты из^{/11/}.Для спин-орбитального расщепления $\Delta E_{s.o.} = \overline{E}_{1h_{11/2}} - \overline{E}_{1h_{9/2}}$

Ны получаем величину $\Lambda E_{a,b} = 4.7$ МаВ при экспериментальном значении $^{4/4}$ 4,5 МаВ. Согласно $^{73,5/7}$ суммарная спектроскопическая сила для индивидуальных состояний составляет около 50% от полной подоболочки $1h_{11/2}$. Однако анализ $^{74/7}$ спектроскопической силы, локализованной во всей резонансноподобной структуре, дает величину 71%. Это хорошо согласуется с нашими результатами и расчетами работ $^{715,16/7}$. Необходимо дальнейшее экспериментальное исследование фрагментации подоболочки $1h_{11/2}$ в 207 Pb.

Менее определенная информация существует о глубоколежащих дырочных уровнях $1g_{7/2}$ и $1g_{9/2}$ в ²⁰⁷ Pb, интегральные характеристики которых даны в табл.2, причем экспериментальные данные взяты из¹¹⁷. Экспериментальное значение ⁴⁴ ΔE_{g.0} =3,2 МэВ, расчеты дают $\Delta E_{g.0}$ =3,3 МэВ. По оценкам работы⁵⁶, в интервале /10-21/ МэВ исчерпывается порядка 80% силы подоболочек $1g_{7/2}$ и $1g_{9/2}$, и $E_{1g_{7/2}} \sim 13,5$ МэВ, $E_{1g_{9/2}} \sim 16,0$ МэВ, что отличается от экспериментальных данных ^{3,44}, с которыми лучше согласуются наши расчеты. Результаты наших расчетов для силовых функций $C_{J}^{2}(\eta)$ для подоболочек $1g_{7/2}$ и $1g_{9/2}$ показаны на <u>рис.2</u>. Области локализации этих подоболочек в интервале 12,5-14,5 МэВ/. Необходимо дальнейшее эксперименталь-

Рис.2. Фрагментация нейтронных дырочных подоболочек 1g_{7/2} и 1g_{9/2} в ²⁰⁷Рb.

ное исследование этих глубоколежащих дырочных состояний. В настоящее время фрагментация нейтронных и протонных подоболочек 1g 7/2, 1g 9/2 в области свинца исследуется в Орсэ.

Результаты расчетов энергий спектроскопических факторов и экспериментальные данные из 6 для ряда низколежащих дырочных уровней 207 T1 даны в табл.1. Расчеты находятся в довольно хорошем согласии с экспериментом. Силовые функции $C_J^2(\eta)$ для подоболочек 1g $_{7/2}$ и 1g $_{9/2}$ в изотопах 203, 205, 207 T1 приведены на рис.3. Фрагментация этих состояний в трех изотопах T1 очень похожа. Основная часть

силы состояния $1g_{7/2}$ сконцентрирована на нижайшем уровне, а состояние $1g_{9/2}$ сильно фрагментировано в интервале энергий /4÷13/ МэВ, в этом интервале исчерпывается около 90% силы подоболочки $1g_{9/2}$ во всех трех изотопах T1, причем 60-70% силы локализовано в интервале /6÷10/ МэВ. Интегральные характеристики этих подоболочек даны в табл.2, спин-орбитальное расщепление равно $\Delta E_{\text{в.о.}} = 4,1$ МэВ. Экспериментальное изучение фрагментации подоболочек $1g_{7/2}$ и $1g_{9/2}$ проводится в Орсэ.

В качестве другого примера фрагментации глубоколежащих дырочных протонных состояний на <u>puc.3</u> показаны силовые функции $C_j^2(\eta)$ для состояний $2p_{1/2}$, $2p_{3/2}$ в 203,205,207 T1. Взаимодействие со сложными конфигурациями приводит к сильной фрагментации этих состояний в области /3-13/ МэВ, причем в 205 T1 и 203 T1 фрагментация более сильная, чем в 207 T1. В отличие от подоболочек с большими ℓ , подоболочки 2p значительно перекрываются, что затрудняет экспериментальное выделение вклада состояний с различными $j = \ell \pm 1/2$. Исследование учета принципа Паули в компонентах "квазичастица плюс фонон" волновой функции /1/, проведенное по методике работ /11,17/, показало, что строгий учет принципа Паули слабо влияет на распределение силы дырочных состояний в 207 Pb и 207 T1.

<u>Рис.3.</u> Фрагментация протонных подоболочек: a/ $1g_{7/2}$, $1g_{9/2}$; $\frac{1}{6/2p_{1/2}}$ и $2p_{3/2}$ в изотопах 203,205,207 Tl.

В целом квазичастично-фононная модель дает довольно хорошее описание фрагментации глубоколежащих дырочных состояний, и наши расчеты могут служить ориентиром при экспериментальном исследовании этих ядер.

ЛИТЕРАТУРА

1. Schmorak M.R. Nucl.Data Table, 1980, 31, p. 283. 2. Kyw B. ЭЧАЯ, 1974, 5, c. 334.

- 3. Gales S. et al. Phys.Rev., 1978, C18, p. 2475.
- 4. Gales S. Nucl.Phys., 1981, A354, p. 193; Preprint IPNO Ph.81-05, Orsay, 1981.
- 5. Guillot et al. Phys. Rev., 1980, C21, p. 879.
- 6. Flyn E.R. et al. Nucl. Phys., 1977, A279, p. 394.
- 7. Malov L.A., Soloviev V.G. Nucl. Phys., 1976, A270, p. 87.
- 8. Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl.Phys., 1980, A342, p. 261.
- Soloviev V.G., Stoyanova O., Voronov V.V. Nucl. Phys., 1981, A370, p. 13.
- 10. Вдовин А.И., Стоянов Ч., Чан Зуй Кхыонг. Изв. АН СССР, сер.физ., 1979, 43, с. 998.
- 11. Воронов В.В., Чан Зуй Кхыонг. Изв. АН СССР, сер.физ., 1981, 45, с. 1909.
- 12. Соловьев В.Г. ЭЧАЯ, 1978, 9, с. 580; Nucleonica, 1978, 23, р. 1149.
- 13. Ponomarev V.Yu. et al. Nucl. Phys., 1979, A323, p. 446.
- 14. Ring P., Werner E. Nucl. Phys., 1973, A211, p. 198.
- 15. Bortignon P.F., Broglia R.A. Nucl.Phys., 1981, A371, p. 405.
- 16. Nguen Van Giai. In: Proc. Int.Symp. on Highly Excited States in Nuclear Reactions, Osaka, 1980, p. 682.
- 17. Chan Zuy Khuong, Soloviev V.G., Voronov V.V. J.Phys., 1981, G7, p. 151.

Рукопись поступила в издательский отдел 18 мая 1982 года.

7

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	p.	00	к.
A17-11490	Труды Международного симпозиума по избранным пробле- мам статистической мехамики. Дубна, 1977.	6	p.	00	к.
д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
A3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к,
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких знергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам амалитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
A4-80-271	Труды Маждународной конференции по пробленан нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.
A10,11-81-622	Труды Международного совещания по проблеман математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
A1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Воронов В.В., Соловьев В.Г., Стоянов Ч. Фрагментация дырочных состояний в 207рь и 208,205,207 т P4-82-358 В рамках квазичастично-фононной модели ядра рассчитана фрагментация ряда дырочных состояний в ²⁰⁷ Pb и ^{203,205,207} Tl. В расчетах помимо одноквазичастичных компонент и сомпонент "квазичастица плюс фонон" в волновых функциях учтены компоненты "квазичастица плюс два фонона". Расчеты хорошо описывают экспериментальные данные для спектроскопических факторов низколежащих состояний ²⁰⁷ Pb и ²⁰⁷ TL. Получено правильное описание интегральных характеристик глубоколежащих дырочных состояний ²⁰⁷ Pb, возбуждаемых в реакции 208 рь(3 Не. а) 207 рь. Работа выполнена в Лаборатории теоретической физики ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1982 Voronov V.V., Soloviev V.G., Stoyanov Ch. Fragmentation P4-82-358 of Deeply-Bound Hole States in 207 pb and 203,206,207 m Within quasiparticle-phonon nuclear model the fragmentation of some deeply-bound hole states in 207Pb and 208,205,207Tl is calculated. The model wave function includes the "quasiparticle plus phonon" and "quasiparticle plus two phonons" components. The good agreement with the experimental data for the spectroscopic factors of low-lying states in ²⁰⁷Pb and ²⁰⁷Tl is obtained. The integral characteristics of deeply-bound hole states, which are excited in the 208 pb(8 He, a) 207 pb reaction, are correctly described.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод авторов.