ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

9/x11- 74

5-447

8158 P4

В.Б.Беляев, Б.Ф.Иргазиев, Ю.Ф.Орлов

4720 2-74

КОНСТАНТА СВЯЗИ (Tdn) ДЛЯ ПОТЕНЦИАЛА БРЕССЕЛЯ-КЕРМАНА-РУБЕНА

P4 - 8158

В.Б.Беляев, Б.Ф.Иргазиев, Ю.Ф.Орлов

КОНСТАНТА СВЯЗИ (Tdn) ДЛЯ ПОТЕНЦИАЛА БРЕССЕЛЯ-КЕРМАНА-РУБЕНА

Направлено в Nuclear Physics

Беляев В.Б., Иргазиев Б.Ф., Орлов Ю.В.

P4 - 8158

Константа связи Tdn для потенциала Бресселя-Кермана-Рубена

Найдены константа связи G^2 и формфакторы вершины $T_{c^*}d_{+n}$ на основе решения уравнений Фаддеева с модифицированным потенциалом Бресселя-Кермана-Рубена. Полученное значение константы $G^2_{=1}$ fm практически совпадает с экспериментальным. Устанавливается, что при нахождении константы G^2 процедура полиномиальной экстраполяции волновой функции по точкам, найденным в физической области, может оказаться ненадежной.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Belyaev V.B., Irgasiev B.F., Orlov Yu.V.

P4 - 8158

Coupling Constant Tdn for the Bressel-Kerman-Rouben Potential

The coupling constant G^2 and the form factor for the vectex $T \rightarrow d + n$ are calculated using the wave function found by solving the Faddeev equations with the modified Bressel-Kerman-Rouben potential. The result for the coupling constant ($G^2 \approx 1 \text{ fm}$) actually coincides with the experimental data. For accurate G^2 evaluation one should carefully calculate the three-nucleon wave function for the momentum unphysical region.

Preprint. Joint Institute for Nuclear Research. Dubna, 1974

I. <u>Введение</u>

В последние годы все более возрастает интерес к нахожденив констант связи $G_{A,NS}^2$, определяющих амплитуды виртуального распада (синтеза) $A \rightleftharpoons B+a$ связанного состояния ядра A (λ - орбитальный момент относительного движения частиц B и a, S - их суммарный спин; $G_{A,OS}^2 \equiv G_A$). Величина G_A , просто связанная с коэффициентом в асимптотике радиальной части вояновой функции, играет важнур роль в теории прямых ядерных реакций I, 2/, использующей формализм диапрами Фейнмана. Наряду с положением особенноств вклад конкретного графика в амплитуду реакции определяется величинами вершинных констант.

Произведение двух вершинных констант $G_A \ G_X$, входящее в вичет амплитуди для графика, имеющего полос по энергии E или $2 = cos \Theta$ (Θ - угол рассеяния), может быть найдено из анализа экспериментов по рассеяния и реакциям. Важная информация о константах связи для легчайших ядер была первоначально получена путем анализа сечений прямых ядерных реакций и рассеяния назад в рамках периферийной модели⁽³⁾. Главное предположение этой моделя, подтвердившееся, по-видимому, в ее применениях, состоит в том, что при определенных условиях можно пренебречь вкладом парциальных амплитуд с орбитальными моментами $\ell < \ell$, причем параметр обрезания L, наряду с величиной $G_A^2 G_X^2$, является подгоночным. Периферийные амплитуды с $\ell \ge L$ определяются, в основном, диаграммами Фейнмана с ближайшими к физической области особенностями по переменной 2.

Аналогичный подход был применен в работе /4/, в которой производился фазовый анализ упругого ρH_e^3 -рассеяния назад; фазы с ℓ >2 были определены из диаграмы Фейнмана, отвечающих обмену дейтроном и "синглетным дейтроном". Низшие фазы и величина С² для вершины $H_e^3 \neq d+\rho$ являлись подгоночными параметрами. В работе^{/5/} константы связи для распадов дейтрона и трития были найдены при помощи дисперсионных соотношений для амплитуды nd -рассеяния вперед. В этой процедуре, помимо сечений в широкой области энергии, необходимо знать аналитическую структуру амплитуды на левой полуоси в комплексной плоскости энергии Е . В тех случаях, когда можно ограничиться ближайшими полосными особенностями, информация о константах связи оказывается достаточно надежной (разумеется, точность определения констант зависит также от экспериментальных ошибок в сечениях). По-видимому, этот метод хорош для нахождения тритиевой и дейтронной констант и плох для константы виртуального распада \triangleleft -частицы на $\mu_{\rho}^{3} + n$. например. В последнем случае вклад левых разрезов оказывается существенным/6/

По-видимому, методом, использующим минимум допущений, является метод Каткосского-Дэо-Чуяли^{/7},^{8/}. В этом методе анализируется дифференциальное сечение при фиксированной энергии для процесса, амплитуда которого содержит полосный график с ближайшей к физической области особенностью $Z = Z_{P}$. Путем конформного преобразования по переменной 2, не меняющего физическур область и переводящего более удаленные полоса и разрезы на эллипс, достигается расширение круга сходимости вокруг полоса при $2-2_p$, который захвавывает физической область, что эффективно означает приближение полоса к физической области. Техника конформного отображения была применена в ряде работ/6,9,10/ для нахощдения константы связи в вершинах $H^3(H_e^3) \rightarrow d+n(p)$ по данным упругого рассеяния nH^3 и pH_e^3 . В работе/10/ было показано, что применение конформного отображения приводит к существенному изменения величины G^2 по сравнению со значением этой константы, найденному без использования конформного преобразования. Информация о константах связи для малонуклонных систем может быть также извлечена из анализа фото- и электрорасцепления ядер/11/.

С помощью перечисленных выше методов^X/ получены довольно надежные сведения по крайней мере о 2-х константах: $G_d^2 = 0.43 \phi$ и $G_{Tdm}^2 = 1,02^{/5/}$, $I, I3\phi^{/I0/}$ (с точностью до отклонений от изотопической инвариантности константы для распадов $H^3 \rightarrow dn$ и $H_e^3 \rightarrow d\rho$ совпадают). Результаты других методов группируются волизи этих значеный. Например, периферийная модель^{/3a}/ дает $G_{Tdm}^2 = I, II \pm 0, 27 \phi$.

В ряде работ вместо величины G_A^2 (определение G_A^2 см, например, в/12/) приводится значение C_A^2 , где C_A - безразмерный коэффициент в 2-частичной асимптотике радиальной части волновой функции ядра A.

5

X/ Этот список, конечно, не полон. Мы остановились на намболее надежных, на наш взгляд, методах определения констант связи из опыта. Более полная библиография содержится в обзоре Кима и Тубиса/24/.

Например, для трития имеем:

$$\mathcal{L}_{\tau} \rightarrow C_{\tau} \times \left[\mathcal{L}_{A} \mathcal{L}_{n}\right]_{\ell=0, J=\frac{1}{2}, I=\frac{1}{2}} \cdot \frac{e^{\mathcal{L}_{I}}}{2} , \qquad (I)$$

где [] означает систему из свободных дейтрона и нейтрона в дублетном S -состоянии по их относительному движению,

 $\mathcal{L} = \sqrt{2} M_{dn} (\mathcal{E}_{\tau} - \mathcal{E}_{d})$, \mathcal{E}_{i} - восолютное значение энергии связи ядра *i*, M_{dn} - приведенная масса. Имеется простая связь \mathbf{I}' между G_{τ}^{2} и C_{τ}^{2}

$$G_{T}^{2} = 3C_{T}^{2}\pi \mathcal{K}\left(\frac{h}{M_{H}C}\right)^{-}.$$
(2)

Итак, имея ввиду, с одной стороны, экспериментальнур измеримость величины G_T^2 , а с другой стороны, универсальный характер асимптотики (I) (она, очевидно, имеет место для NN - силлюбой формы) можно рассматривать эту константу, как независимую физическую характеристику 3-х нуклонного ядра, наряду с такими характеристиками, как энергия связи, среднеквадратичный радиус и др. Как показали расчеты авторов работ /I4, I8/ xx/, основанные на решении уравнений Фаддеева для трития, величина G_T^2 оказывается чувствительной к потенциалу NN -взаимодействия. Методом экстраноляции были получены значения $G_T^2 > I,9$ I,7 и I,02 фм для потенциалов Малфиите-Тьона (мт)

I,7 и I,02 фм для потенциалов Малфлита-Тьона (МТ), Даревича-Грина (ДГ) и Рейда (Р),соответственно. В то же время дейтронная константа $G_{d}^{2} \simeq 0,43$ ф практически не меняется, оставаясь близкой к эксперимениальному значению для множества цотенциалов. В работах /15,16/ для нахождения G_r^2 использовалась аналитическая аппроксимация волновой функции трития, найденной из решения уравнения Фаддеева с сепарабельным потенциалом Ямагучи. В работе /15/ с помощью двух выражений для вершинных формфакторов, эквивалентных при использовании точного решения уравнений Фаддеева, были получены разные эначения G_r^2 = 1.51 и 1.79 Ф,

что свидетельствует, по-видимому, о неадекватности аналитической аппроксимации волновой функции трития. Расчет с потенциалом Ямагучи без использования аналитической аппроксимации волновой функции дал /17/ величину G_{τ}^2 =1.9 Φ . X/. В упомянутом расчете Кима и Тубиса /18/, основанном на решении уравнений Фаддеева с потенциалом Рейда (Р), было получено значение G_{T}^{2} = =I.02<u>+</u>0.0I Ф в близком согласии с результатом работы /5/. Однако при сопоставлении этого результата со значениями констант для потенциалов MT и ДГ следует иметь в виду различие в расчетных значениях энергии связи $\mathcal{E}_{ au}$, найденных в работах /18/ и /19,20/. Если для оценки воспользоваться экстраполяционной процелурой работы /16/, то переход от значения $\mathcal{E}_{\tau} = 6,5$ МэВ к экспериментальному значению \mathcal{E}_{T} =8.48 МэВ приведет к величине G_{T}^{2} =1.47±0.20 Ф (вместо величины G_{T}^{2} =1.02, соответствующей знергии трития{= 6.5 МэВ). Кроме того, сопоставляя результаты для потенциалов ДГ, MT и Р, следует иметь в виду различие в их асимптотическом поведении. Действительно, из всех трех упомянутых потенциалов наименее реалистична асимптотика потенциала ДГ и жанболее реалистичен потенциал Р, имеющий юкавское убывание на бесконечности.

X/ Коэффициент 3 возникает из-за учета /13/ тождественности муклонов.

XX/ В работе /I4/ при расчете G_{τ}^2 я форм-факторов для ДГ потенциала допущена численная ошибка. Здесь мы приводим исправленные значения.

x/ Мы благодарны авторам работы /17/, сообщившим нам этот результат до его опубликования.

Представляется интересным выяснить, имеется ли чувствительность G_{τ}^2 к форме *NN*-потенциалов, имеющих одинаковур (однопионнур) асимптотику и, следовательно, к более детальной структуре волновой функции трития. В связи с этим в настоящей работе выполнены расчеты вершинного формфактора и величины G_{τ}^2 для вершины $T \gtrsim d_{+}n$ в случае модифицированного потенциала Бресселя-Кермана-Рубена (БКР), имеющего однопионный "хвост".

Решение уравнений Фаддеева с этим потенциалом было дано методом Бейтмана /19/ в работе /20/. В отличие от исходного потенциала БКР, содержащего тензорное взаимодействие в триплетном потенциале, была жепользована только центральная часть, параметры которой были изменены так, чтобы воспроизводилась экспериментальная фаза ${}^{3}S_{4}$ вплоть до 360 МзВ. Синглетный потенциал использовался без изменений. С этими потенциалами в работе /20/ были, в частности, получены значения \mathcal{E}_{τ} =8.27 МзВ и \mathcal{E}_{d} =2.16, близкие к экспериментальным 8.48 и 2.23 МзВ, соответственно.

2. Процедуры вычисления константы связи

Можно указать несколько способов теоретического нахохдения величины G_{τ}^2 , если известна волновая функция трития с правильной асимптотикой. Во-первых, константу G_{τ}^z можно найти как предельное значение вершинного формфактора $\mathcal{W}(Q^2)$ при $Q^2 = = (\vec{p}_d - 2\vec{p}_{\tau})^2/g = -x^2$. Рассмотрим различные эквивалентные выражения $\mathcal{W}(Q^2)$, которые, например, легко получить из формул работы /15/. Общее выражение для вершинной функции, справедливсе при выходе частии d и γ за массовую поверхность. **T.e.** при $\Sigma = \mathbb{Z}_d \neq D$, $\Sigma_n \neq D$, где $\Sigma_i = \mathcal{E}_i - \frac{P_i}{\mathbb{Z}_{w_i}}$, \mathcal{E}_i , \vec{p}_i , m_i - энергия, импульс, масса частицы *i*, имеет вид (для физических \vec{Q})X/:

$$W(Q, \Sigma) = -\frac{1}{2m} \int \frac{d\vec{Q}_{1}}{(2\pi)^{3}} \frac{(|\vec{Q}_{1} + \vec{Q}_{2}|^{2}/m + \varepsilon_{d})}{(|\vec{Q}_{1} + \vec{Q}_{2}|^{2}/m + \varepsilon_{d} - \Sigma - i\eta)} \times (3) \times (Q^{2} + Q^{2} + \vec{Q}\vec{Q}_{1} + m\varepsilon_{T}) [\upsilon(|\vec{Q}_{1} + \vec{Q}_{2}|, Q_{1}) + 3\iota(|\vec{Q} + \vec{Q}_{1}|, Q_{1})] \times (Q(|\vec{Q}_{1} + \vec{Q}_{2}|, Q_{1})).$$

Здесь функции \mathcal{U} и \mathcal{V} - пространственные компоненты волновой функции трития^{/2I/}, \mathcal{C} - пространственная часть волновой функции дейтрона. Напомним, что \mathcal{L} и \mathcal{Z}_{h} связаны соотношением:

$$\Sigma + \Sigma_{y} = -\frac{3}{4m} \left(Q^{2} + \chi^{2} \right) \,. \tag{4}$$

Тритий рассматривается как реальная частица. В предельных случаях имеем:

 $W_{\mathbf{1}}(Q) \equiv W(Q, \Sigma) \Big|_{\mathbf{\Sigma}_{\mathbf{P}} = \mathcal{O}} ; W_{\mathbf{2}}(Q) \equiv W(Q, \mathcal{O}) .$

Совершая тождественные преобразования^{22/}, можно получить следующие выражения для функций W_4 и W_2 в виде интегралов перекрытия для случаев

реального нейтрона $(\Sigma_n = 0)$:

$$W_{1}(Q) = -\left(\frac{3}{4}\frac{Q^{2}}{m} + \varepsilon_{\tau} - \varepsilon_{d}\right) \int \frac{d\vec{q}}{(2\pi)^{3}} \mathcal{V}(q, Q) \mathcal{V}(q)$$
(5)

Х/ При нефизических значениях – $\chi^2 \leq Q^2 < O$ контур интегрирования по G, в (3) и (6) лежит в нижней полуплоскости комплексной переменной G, . Однако ввиду отсутствия у подынтегральной функции особенностей в области между этим контуром и действительной осьв, интегрирование можно производить по действительной осв.

и реального дейтрона
$$(\Sigma = c)$$

 $W_2(Q) = W_4(Q) - (\frac{3}{4}\frac{Q^2}{W} + \mathcal{E}_T - \mathcal{E}_d)\frac{1}{2} \times (\int \frac{d\vec{Q_1}}{(2\pi)^3} \left[\mathcal{V}(|\vec{Q} + \frac{\vec{Q_1}}{2}|, Q_4) + 3\mathcal{U}(|Q + \frac{\vec{Q_1}}{2}|, Q_1) \times \mathcal{V}(|\vec{Q_1} + \vec{Q_2}|) \right].$
(6)

При Q²→-ж²получаем

$$W \rightarrow W_1 \rightarrow W_2 \rightarrow G. \tag{7}$$

Если функции $\mathcal{U}(q, Q)$ и $\mathcal{U}(q, Q)$ найдены только в области $Q^2 > 0$, то возможна лишь численная экстраполяция в точку $Q^2 = -x^2$ выражений (5) и (6). Однако в области $-x^2 \le Q^2 \le 0$ формфакторы $W_{i,2}$ изменяются весьма своеобразно, поэтому процедура экстраполяции из физической области может оказаться ненадежной. В случае сепарабельного представления парной t -матрицы полоснур зависимость от переменной Q^2 можно выделить в явном виде и найти непосредственно значение W в точке $Q^2_{=-x}^2$. Действительно, если воспользоваться сепарабельным разложением нуклон-нуклонного потенциала по методу Бейтмана, то для функции $\mathcal{V}(q, Q)$ получим/19/:

$$\mathcal{V}(q,Q) = -\frac{g^{t}}{2\pi} \frac{w \mathcal{N}}{(q^{2} + \frac{3}{4}Q^{2} + w\mathcal{E}_{T})} \sum_{ij} C_{ij}^{t}(Q) \mathcal{V}(q,p_{i}) \mathcal{B}_{j}^{t}(Q)(8)$$

где $\mathcal{V}(q,q') - S$ - гармоника триплетного потенциала в импульс-
ном представлении, матрица C^{t} определяет зависимость от
энергии парной t -матрицы , \mathcal{N} - нормировка,
 g^{t} - константа. (Выражение для $\mathcal{U}(q,Q)$ получается из (8)

заменой индекса t (триплет) на S (синглет)). Функции $B_{j}^{\tau}(\varphi)$ удовлетворяют системе одномерных интегральных уравнений и могут быть найдены из них при нефизических Q.

Константа \mathfrak{S}_{τ} может быть также найдена из вычисленной функции $\mathcal{V}(q, Q)$ путем экстраполяции к полюсу при $\varphi^2 = \mathscr{X}^{2/18/2}$:

$$\begin{aligned} & \displaystyle \mathbf{G}_{T} = \mathcal{C}_{im} \quad \mathbf{G}_{T} \left(\mathbf{q}, \mathbf{Q} \right), \\ & \displaystyle \mathbf{Q}^{2} \rightarrow - \mathbf{x}^{2} \end{aligned}$$

где

$$G_{\tau}(q,Q) = -\frac{3\sqrt{3}}{4m} \left(Q^2 + x^2\right) \frac{\mathcal{V}(q,Q)}{\varphi(q)}$$
(9)

Формула (9) наиболее наглядно получается из рассмотрения графиков Фейнмана (рис. I) для вершинной функции R в виртуальном распаде T->n+p+n ({123}->1+2+3) /22/. Очевидно, что

Рис.І. Графики Эейнмана для вершины трехнуклонного распада.

дейтронный полос имеется, в соответствии с фаддеевским разбиением $\Psi(i,2,3)$ у части вершинной функции, заканчивающейся на взаимодействии h и p (I и 2). Квадратик на рис. I изображает полную амплитуду рассеяния, имеющую полос при $E_{i_2} = -\mathcal{E}_{i_1}$. Таким образом, выделяя полосной график с промежуточным дейтроном. для \mathcal{R}^{12} имеем:

$$R^{12} = \frac{\widetilde{W}(Q, \Sigma) \cdot \mathcal{E}_{12}(Q)}{E_{12} + \mathcal{E}_{d}} + \frac{\text{Hendahochbie}}{\text{charaemble}}$$
(10)

Используя очевидные соотношения для триплетной части вершинной функции

$$\mathcal{L}_{12}(q) = -\left(\frac{q^2}{m} + \mathcal{E}_d\right) \mathcal{V}(q) \tag{II}$$

$$R_{t}^{12}\left(\vec{q}_{12},\vec{Q}_{3},\vec{E}_{12}\right) = -\left(\frac{\vec{q}_{12}}{m} + \frac{3}{4}\frac{\vec{Q}_{12}}{m} + \mathcal{E}_{T}\right)\mathcal{U}\left(q_{12},Q_{3}\right)$$
(12)

при $E_{12} = -\mathcal{E}_T - \frac{3}{4} \frac{Q_2^2}{m}$, что отвечает выводу частицы 3 на массовур поверхность, т.е. при

$$E_{12} + \mathcal{E}_{d} = \frac{q_{12}^{2}}{m} + \mathcal{E}_{d} = -\frac{3}{4m} \left(Q_{3}^{2} + \mathcal{X}^{2} \right), \tag{13}$$

HAXOJUM $(q_1, \equiv q_2, Q_2 \equiv Q)$

При рассмотрении графиков рис. I мы не учли тождественности нуклонов, приводящей к соотношению W= √3 ŵ (см. примечание (2)). В результате приходим к формуле (9).

3. Результаты расчетов

На рис.2 приведены результаты расчетов вершинного формфактора $W(Q, \Sigma)$, определяющего амплитуду W распада $T - d + \eta$ с учетом лишь 5 - состояния следующим образом:

$$W = C_{\frac{1}{2}M_{m} 1M_{k}}^{V_{2}M_{T}} W \left(Q, \Sigma \right).$$
(15)

Для сравнения на этом же рисунке приведены результаты для потенциалов МТ и ДГ. Видно, что, несмотря на различное асимптотическое поведение потенциалов МТ и БКР (показатель экспоненты в притягивающей части потенциала ШТ примерно в 2 раза больше, чем в потенциале БКР), в физической области вершинные функции почти не различаются. В нефизической области (- $x^2 \le Q^2 < O$) формфакторы были вычислены по формуле (3). Предельное значение $W_{i,2}$ при $Q^2 \rightarrow -x^2$ дало величину $G^2 = I,03 \ \Phi$. Расчеты показали (см. рис.3), что поведение $G_{\tau\tau}(q,Q)$ в зависимости от Q^2 в нефизической области является немонотонным (значения $B_d^{\dagger}(Q)$ для $Q^2 < O$ были найдены непосредственно из уравнений Фаддеева). Поэтому полиномиальная экстраполяция $G_{\tau\tau}(q,Q)$ из физической области к полюсу функции U(q,Q)для БКР- потенциала приводит к завышенному результату

= I,6 Ф. Расчет формфакторов в нефизической области для потенциалов ДГ и МТ дает для G_t^z значения 1.4 и 1.6 Ф, соответственно (см. рис. 2).

Рис.3. Зависимость от Q^2 функции G(q, Q) для различных значений q $1-q=0.078 qp^{-1}$, $2-q=0.405 qp^{-1}$, $3-q=2.53 \approx 28,89 qp^{-1}$. Аккуратный расчет $G_{r}(q, Q)$ в нашем случае при нефизических Q дает величину $G_{r}^{2} = I, OI \Phi m$, согласурщурся в пределах точности расчета с величиной G_{r}^{2} (=I,03 Φm), найденной по формуле (3).

Интересно отметить также наличие максимума в вершинном формфакторе W₂ в нефизической области (рис. 2) для потенциала БКР.

4. Обсуждение результатов

Как отмечалось выше, результат вычисления G_{τ}^{2} чувствителен к поведению потенциала, в отличие от других характеристик связанного состояния трехчастичных ядер, за исключением, может быть, примеси состояния смешанной симметрии. Интересно отметить, что в то же время в достаточно широкой области при $Q^{2} \approx e^{2}$ вершинные формфакторы как W_{1} , так и W_{2} мало различаются для различных потенциалов, поэтому можно считать их достаточно надежно установленными и использовать в расчетах сечений ядерных реакций.

Результаты расчетов G_{τ}^2 и \mathcal{E}_{τ} на основе решения уравнений Фаддеева, полученные к настоящему времени, сведены в таблицу.

Потенциал	Ямагучи /7/	Рейд ^{/8/}	EKP	MT	ДГ	эксп.
G ² M	I , 9	1,02	1,03	I , 6	I , 4	I,I
ET MOB	II	6,5	8,27	8,57	9,12	8,48

В заключение обсудим влияние тензорных сил в NN-потенциале на величину константы G_{T}^{2} . Вклад D -волны в нормировочный интеграл мал, однако, известно, что учет тензорных сил (при соответствующей перенормировке центральной части потенциала) приводит к уменьшению энергии связи трития примерно на 2 МэВ. Поскольку G_{τ}^2 определяется значением вершинной функции в полюсе $Q^2 = -\infty^2$, то все зависит от поведения формфактора в нефизической области. Например, если он является монотонной функцией, то, очевидно, учет тензорных сил, приводящий к сдвигу полоса, может уменьшить значение константы G_{τ}^2 . В связи с этим было бы интересно сравнить величины G_{τ}^2 для потенциалов Р и БКР, полученных в одинаковых предположениях, используя, например, результаты работы⁽²³⁾. Еще раз подчеркнем важность аккуратных вычислений волновой функции трития в нефизической области для правильного нахождения константы связи G_{τ}^2 .

В заключение авторы выражают благодарность Г.Шульцу за номощь в работе.

Литература

- И.С.Шапиро. Теория прямых ядерных реакций. М., Госатомиздат, 1963.
- 2. И.С.Шапиро. УФН 92, 549 (1967).
- Э.И.Долинский. Изв.АН СССР, сер.физ. 34, 165 (1970).
- 3a.E.I.Dolinsky, P.O.Dzhamalov and A.M.Mukhamedzhanov, Nucl.Phys. A202, 97 (1973).
- 4. M.Bolsterly, G.Hale. Phys.Rev.Lett. 47B, 93 (1973).
- 5. M.P.Locher. Nucl. Phys. B23, 116 (1970).
- 6. L.S.Kisslinger. Phys.Rev.Lett. 29, 505 (1972).
- R.E.Cutkosky and B.B.Deo. Phys.Rev. 174, 1859 (1968).
 R.E.Cutkosky, Ann. of Phys., 54, 350 (1969).
- 8. S.Ciulli, Nuovo Cim. 61A, 787 (1969); 62A, 301 (1969).
- 9. S.Dubnicka, O.V.Dumbrais, F.Nichitiu. Preprint JINR,
 E2-7228, Dubna (1973); Nucl. Phys., A217, 535 (1973).
 I.Borbely. Preprint JINR, E4-7993, Dubna, 1974.
- 10.L.S.Kisslinger. Phys.Letters 47B, 93 (1973).
- 11.T.K.Lim. Phys.Rev.Lett. 30, 709 (1973).
- 12. М.М.Аль-Бейдови, Л.Д.Блохинцев, Э.И.Долинский, В.В.Туровцев. Вестник Моск.ун-та, физ., астрон., №6, 3, 1967.
- 13. И.Борбей, Э.И.Долинский, ЯФ 7, 554 (1968);

14. D.В.Орлов, В.Б.Беляев, Письма ЖЭТФ 17, 385, 602 (1973).
15. Л.Д.Блохинцев, И.А.Шварц, Вестник Моск.ун-та, физ., астрон., №5, 31 (1972).

- L.I.B.Goldfarb, I.A.Gonzales, A.C.Phillips. Nucl. Phys., A209, 77 (1973).
- 17. А.Г.Барышников, Л.Д.Блохинцев, И.М.Народецкий. Phys.Lett. у 51. №3. р 333 (1974).
- 18. Y.E.Kim, A.Tubis, Phys.Rev.Lett. 29, 1017 (1972).
- Б.Ахмадходжаев, В.Б.Беляев, Е.Вжеционко, № II, I016 (1970);
 В.Б.Беляев, Е.Вжеционко, А.Л.Зубарев, № I2, 923 (1970).
- 20. V.B.Belyaev, H.Schulz. Preprint JINR E4-6353, Dubna (1972).
- 21. A.G.Sitenko, V.F.Kharchenko, N.M.Petrov, Phys.Lett. 28B, 308 (1968).
- 22. Л.Д.Блохинцев, Э.И.Долинский. ЯФ 5, 797 (1967).
- R.A.Malfliet and I.A.Tjon. Phys.Lett. 35B, 487 (1971);
 Proc. Conf. Few particle problem., Los Angeles, 1972.
- 24. Y.E.Kim and A.Tubis. Preprint LA-UR-74-312.
 - (Submitted to "Annual Review of Nuclear Science, v.24,1974).

Рукопись поступила в издательский отдел 30 июля 1974 года.