510/00

Объединенный институт ядерных исследований

дубна

P4-81-855

В.Б.Беляев, Е.Вжеционко, М.И.Сакварелидзе

РАСЩЕПЛЕНИЕ ЯДРА ³Не В РЕАКЦИИ **π** ³He → **π** pd ПРИ НИЗКИХ И СРЕДНИХ ЭНЕРГИЯХ ПИОНОВ

Направлено в ЯФ

§1. ВВЕДЕНИЕ

Реакция 2-частичного развала ³ Не под действием пионов представляет интерес в следующем отношении. Во-первых, в этой реакции возможно изучение парных взаимодействий конечных частиц в кинематической области, трудно достижимой в соответствующей 2-частичной реакции. Особенно интересными здесь могли бы стать эксперименты с минимальной относительной энергией в парах *n*d и *m*p, поскольку прямые измерения соответствующих длин и фаз рассеяния содержат большие неопределенности, либо вообще отсутствуют.

Далее, известно $^{1/}$, что в реакциях выбивания нуклонов из ядер со значительным выходом наблюдается так называемое квазиупругое выбивание, т.е. налетающая частица взаимодействует с нуклоном ядра, как со свободным с точки зрения кинематики столкновения. Исследование этого явления в реакции π^{3} He $\rightarrow \pi pd$, по-видимому, позволит количественно ответить на вопрос - насколько сильно перенормируется пустотное πN взаимодействие в простейшем ядре 3 He.

Наконец, в чисто теоретическом плане, оценка сечений 2частичного развала ³Не позволяет определить величину вклада в упругое *n* ³Не рассеяние, происходящего от учета непрерывного спектра 3-нуклонного гамильтониана по сравнению с вкладом от рассеяния, идущего через основное состояние ³Не.

В основе расчета будут лежать приближенные 4-частичные уравнения, предложенные в /2/ и применявшиеся в /3/ к описанию #⁸Не-рассеяния. Характерной низкоэнергетического упругого особенностью этих уравнений является возможность приближенного нахождения полного 4-частичного оператора перехода для сис-Это обстоятельство и позволяет подойти к рассмотретемы $\pi 3N$. нию процесса развала в рамках таких уравнений. Итак, в данном подходе учитываются перерассеяния пиона на нуклонах во всех порядках, и,кроме того, используются правильные асимптотические состояния. Существует /4/ независимое указание. свидетельствующее об адэкватности предлагаемого метода реальной ситуации. Оно было получено при рассмотрении реакции развала дейтрона в поле ядра методом, весьма близким к используемому в данной работе. При этом оказалось, что сечение развала приближается к сечению, полученному в точном расчете, основанном на методе сильной связи каналов, с ростом энергии налетающей

частицы. Это может быть связано с возникновением в системе малого параметра, о котором ниже будет сказано подробнее.

§2. ФОРМАЛИЗМ

В работах $^{/3,5/}$ было установлено, что процесс взаимодействия π -мезонов с ядром ³Не в широкой области энергий $/0 \leq E_{\pi} \leq 2200$ МэВ/ вполне разумно можно описывать амплитудой T°, удовлетворяющей уравнению:

/1/

$$T^{\circ}(E) = V_{\pi N} - V_{\pi N} G_{0}(E) T^{\circ}$$

где

$$V_{\pi N} = \sum_{i=1}^{8} V_{\pi N i}$$
, $G_0(E) = (h_0 - E)^{-1}$,

b₀ - кинетическая энергия относительного движения пиона и центра тяжести 3 нуклонов.

Поскольку полный изоспин системы $\pi 3N$ сохраняется, уравнение /1/ удобнее решать не для физических амплитуд, а для амплитуд с фиксированным полным изоспином системы T, который, очевидно, в данном случае принимает значения T=1/2, T=3/2. С этой целью сначала спроектируем потенциал $V_{\pi N}$ на состояние с данным T, имеем:

$$\langle \vec{k} | V^{T}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{M_{S}M_{S}'} = \sum_{i=1}^{3} \left[C_{\frac{1}{2}M_{S}M_{S}'}^{T} \langle \vec{k} | v^{\frac{1}{2}} | \vec{k}' \rangle_{M_{S}M_{S}'} + C_{\frac{3}{2}M_{S}M_{S}'}^{T} \langle \vec{k} | v^{\frac{3}{2}} | \vec{k}' \rangle_{M_{S}M_{S}'}^{T} \right] e^{i(\vec{k}-\vec{k}')\vec{z}_{i}},$$

$$\langle 2/$$

коэффициенты $C_{\pi N}^{T} M_{s} M_{s}^{\prime}$ даны в Приложении, $\langle \vec{k} | v^{\dagger} m_{N} \vec{k} \rangle$ - потенциал, действующий в состоянии с изоспином $t_{\pi N}$, $\vec{z_{1}} = \frac{1}{2}\vec{r_{12}} + \frac{1}{3}\vec{r_{3}}$, $\vec{z_{2}} = -\frac{1}{2}\vec{r_{12}} + \frac{1}{3}\vec{r_{3}}$, $\vec{z_{3}} = -\frac{2}{3}\vec{r_{3}}$

- расстояния от центра тяжести 3N до частиц 1,2,3 /см.рис.1/, M_s - проекция спина. В парциальном разложении π N -потенциала будем учитывать только S -волны и две P -волны: P_{33} и P_{31} . P -волнами в состоянии с изоспином $t_{\pi N} = 1/2$ будем пренебрегать, поскольку соответствующие им фазы малы в рассматриваемой области энергий. S -волновые потенциалы брались из работы $^{13/3}$, а P -волновые – из работы $^{6/2}$. Так как одновременно учитываются P_{33} и P_{31} волны, возможны процессы с переворотом спина. В этом

$$\langle \vec{k} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{++} = \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{++} -$$

$$- \int d\vec{q} \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{q} \rangle_{++} \cdot G_{0}(\vec{q}, E) \langle \vec{q} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{++} -$$

$$- \int d\vec{q} \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{q} \rangle_{-+} \cdot G_{0}(\vec{q}, E) \langle \vec{q} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{++} -$$

$$- \int d\vec{q} \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{-+} = \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{-+} -$$

$$- \int d\vec{q} \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{q} \rangle_{-+} \cdot G_{0}(\vec{q}, E) \langle \vec{q} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{++} -$$

$$- \int d\vec{q} \langle \vec{k} | V(\vec{r}_{12}, \vec{r}_{3}) | \vec{q} \rangle_{--} \cdot G_{0}(\vec{q}, E) \langle \vec{q} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{-+} +$$

$$\eta_{\alpha}(\vec{k},\vec{r}_{12},\vec{r}_{3}) \equiv e^{\vec{i}\vec{k}\vec{z}_{1}} \cdot \Gamma_{\sigma m}^{+}(\hat{k})h_{\sigma}(k), \qquad (4/\omega_{\alpha}(\vec{k},\vec{r}_{12},\vec{r}_{3}) \equiv e^{-\vec{i}\vec{k}\vec{z}_{1}} \cdot \Gamma_{\sigma m}^{-}(\hat{k})h_{\sigma}(k).$$

 $\Gamma_{\sigma_{m}}^{\pm}(\hat{k}) = \sqrt{4\pi} \begin{cases} (1\frac{1}{2}m \pm \frac{1}{2} | \frac{3}{2}m \pm \frac{1}{2}) Y_{1m}(\hat{k}) & \sigma = 3, \\ \\ (1\frac{1}{2}m \pm \frac{1}{2} | \frac{1}{2}m \pm \frac{1}{2}) Y_{1m}(\hat{k}) & \sigma = 4, \end{cases}$

h_σ (k) - формфакторы сепарабельного πN потенциала, α обозначает совокупность индексов {mσi}. Вводя вместо амплитуд T° новые неизвестные функции

$$Z_{\alpha}(\vec{r}_{12}, \vec{r}_{3}, E, \vec{k}) = \int \eta_{\alpha}(\vec{q}, \vec{r}_{12}, \vec{r}_{3}) G_{0}(q, E) < \vec{q} |T^{\circ}(\vec{r}_{12}, \vec{r}_{3})|\vec{k}\rangle_{++} d\vec{q},$$

$$Z_{\alpha}(\vec{r}_{12}, \vec{r}_{3}, E, \vec{k}) = \int \omega_{\alpha}(\vec{q}, \vec{r}_{12}, \vec{r}_{3}) G_{0}(q, E) < \vec{q} |T^{\circ}(\vec{r}_{12}, \vec{r}_{3})|\vec{k}\rangle_{-+} d\vec{q},$$

$$/5/$$

решение системы уравнений /3/ можно представить в виде:

$$\langle \vec{\mathbf{k}} | \mathbf{T}^{\circ}(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) | \vec{\mathbf{k}}' \rangle_{++} = \sum_{aa} , \eta_{a}(\vec{\mathbf{k}}, \vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) | \Lambda_{aa}' [\eta_{a}'(\vec{\mathbf{k}}', \vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) - Z_{a}'(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}, \mathbf{E}, \vec{\mathbf{k}}')] - \Lambda_{aa}' Z_{a}'(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}, \mathbf{E}, \vec{\mathbf{k}}') | ,$$

$$\langle \vec{\mathbf{k}} | \mathbf{T}^{\circ}(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) | \vec{\mathbf{k}}' \rangle_{-+} = \sum_{aa} , \omega_{a} (\vec{\mathbf{k}}, \vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) | \Lambda_{aa}' [\eta_{a}'(\vec{\mathbf{k}}', \vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) - Z_{a}'(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) | \Lambda_{aa}' [\eta_{a}'(\vec{\mathbf{k}}', \vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}) - Z_{a}'(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}, \mathbf{E}, \vec{\mathbf{k}}')] - \Lambda_{aa}' Z_{a}'(\vec{\mathbf{r}}_{12}, \vec{\mathbf{r}}_{3}, \mathbf{E}, \vec{\mathbf{k}}') | ,$$

где матрицы Λ и Λ' приведены в Приложении. Подставляя /6/ в /5/ и вводя интегралы

$$J_{aa}(E, \vec{r}_{12}, \vec{r}_{3}) = \int \eta_{a}(\vec{q}, \vec{r}_{12}, \vec{r}_{3}) G_{0}(E, q) \eta_{a}(\vec{q}, \vec{r}_{12}, \vec{r}_{3}) d\vec{q}, /7/$$

$$J_{aa}(E, \vec{r}_{12}, \vec{r}_{3}) = \int \omega_{a}(\vec{q}, \vec{r}_{12}, \vec{r}_{3}) G_{0}(q, E) \omega_{a}(\vec{q}, \vec{r}_{12}, \vec{r}_{3}) d\vec{q}, /7/$$

получаем систему алгебраических уравнений для неизвестных функций \mathbf{Z}_a и $\overline{\mathbf{Z}}_a$, которая в матричной форме имеет вид:

$$\begin{pmatrix} 1 + J\Lambda & J\overline{\Lambda} \\ \\ \overline{J}\Lambda & 1 + J\overline{\Lambda} \end{pmatrix} \begin{pmatrix} \eta & -Z \\ \overrightarrow{-Z} & \overrightarrow{-Z} \\ -\overline{Z} & \overrightarrow{-Z} \end{pmatrix} = \begin{pmatrix} \eta \\ \overrightarrow{-Q} \\ 0 \end{pmatrix}$$
 /8/

Используя решение системы /8/, в /6/ для амплитуд получаем матричные выражения

$$\langle \vec{k} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{++} = \vec{\eta} (\vec{k}) B(E) \eta (\vec{k}'),$$

$$\langle \vec{k} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3}) | \vec{k}' \rangle_{-+} = \vec{\omega} (\vec{k}) C(E) \eta (\vec{k}'),$$
(9)

матрицы В и С приведены в Приложении.

Физические амплитуды определяются следующими матричными элементами:

$$T^{\circ}(\vec{k}, \vec{k}', \vec{p}_{3}) = \int \psi_{3He}(\vec{r}_{12}, \vec{r}_{3}) < \vec{k} | T^{\circ}(\vec{r}_{12}, \vec{r}_{3})E) | \vec{k}' > \times$$

$$\times \psi_{d}(r_{12}) \frac{e^{i\vec{p}_{3}\vec{r}_{3}}}{(2\pi)^{3/2}} d\vec{r}_{12}d\vec{r}_{3}$$
/10/

для процесса "⁸Не→ π + p + d и усреднением Т° по волновой функции ³Не – для упругого π³Не -рассеяния.

§3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТА

Вначале дадим грубую оценку применимости приближенных уравнений /1/. Эти уравнения получены на основе гипотезы об адиабатическом характере движения нуклонов в ядре. Следуя работе /4/, степень адиабатичности будем характеризовать параметром $\tau = \bar{\epsilon} \cdot t$, где t - время пролета пиона через ядерную систему, а $\bar{\epsilon}$ - средняя энергия возбуждения этой системы, определяемая выражением:

$$\frac{1}{\epsilon} = \frac{\int d\mathbf{p}^{\dagger} [\epsilon_{\mathbf{p}} - (\epsilon_{\mathrm{He}} - \epsilon_{\mathrm{d}})]\sigma_{\mathrm{in}}(\mathbf{p}_{3})}{\int \sigma_{\mathrm{in}}(\mathbf{p}) d\mathbf{p}^{\dagger}}, \qquad /11/$$

где р – импульс относительного движения pd системы, σ_{in} (p) – сечение неупругого π^3 Не –взаимодействия:

$$\sigma_{in}(p) = \int |T^{\circ}(\vec{k}, \vec{k'}, \vec{p})|^2 \delta(E_{i} - E_{i}) \frac{dk'}{k} \cdot (2\pi)^4 \mu_{\pi^3 He}$$

В результате для т получаем:

							Таблица
Е "/МэВ/	20	68	100	200	260	300	400
7	0,28	0,24	0,27	0,19	0,24	0,19	0,24

Как видно из <u>табл.1</u>, параметр адиабатичности в широкой области энергий достаточно мал, что является указанием на применимость адиабатического приближения, т.е. уравнений /1/. Отметим, что в работе $^{/4/}$ даже при значении параметра $\tau \sim 0,5$ было обнаружено хорошее согласие адиабатического расчета с точным.

.

<u>Таблица 2</u>

$E_{\pi} = 20 \text{ MaB}$									n an an An An	
<i>θ</i> ∘	do el	÷ .		do _{in} /d	k'			· · · · · · · · · · · · · · · · · · ·	ď <i>o</i> í i	
	dΩk ′	0,037	0,111	0,186	0,260	0,334	0,352	0,360	Ωb	
0 30 90 120 150 180	0,051 0,050 0,045 0,039 0,034 0,031 0,030	0,504 0,503 0,502 0,499 0,496 0,494 0,494	0,602 0,599 0,592 0,581 0,570 0,562 0,559	0,847 0,839 0,815 0,784 0,752 0,729 0,721	I,398 I,369 I,292 I,191 I,096 I,029 0,006	2,354 2,251 1,992 1,687 1,432 1,271 1,217	2,310 2,186 1,886 1,547 1,276 1,111 1,057	2,049 I,93I I,646 I,33I I,083 0,935 0,887	0,028 0,027 0,024 0,021 0,019 0,017 0,017 0,016	
	oel	· · · · · · · · · · · · · · · · · · ·	đơ	in /k *2 đ	k	-			$\sigma_{ m in}$	
	0,08	6,238	7,297	9,849	15,018	2I,65I	20,059	16,621	0,04	
$E_{\pi} = 68 \text{ MaB}$										
θ°	·	0,073	đ. 0,363	″ _{in} ∕đk ′ 0,653	0,653	0,690	0,710	d _σ in 0,7	/ aΩ 7	- .
0 30 60 90 120 150 180	0,40I 0,268 0,033 0,026 0,034 0,082 0,102	0,0I3 0,0I3 0,0I3 0,0I3 0,0I3 0,0I3 0,0I3 0,0I3	0,192 0,145 0,003 0,034 0,052 0,158 0,212	3,441 2,392 0,639 0,323 0,336 0,801 0,983	5,522 3,627 0,843 0,372 0,336 0,742 0,888	6,198 3,883 0,813 0,326 0,269 0,565 0,665	5,632	6 0,32 0,00 0,00 0,00 0,00	888 557 556 332 332 777 95	
	^ö el		ά _σ in	/k ′ ² d	k ´			σ _i	n	
	1,02	0,163	0,900	IO,404	I4,062	13,842		Ι,0	7	_

6

.

Обсудим теперь результаты численного счета. Сечение развала одновременно с сечением упругого рассеяния π ³Не находилось при $E_{\pi} = 20$; 68; 200; 260 МэВ. Как видно из табл.2, при энергии $E_{\pi} = 20$ МэВ неупругое дифференциальное сечение при всех углах вылета π -мезона примерно в 2 раза меньше упругого сечения, сравниваются эти сечения только при $E_{\pi} = 68$ МэВ. Расчеты при более высоких энергиях приводят к неупругому сечению, равному упругому сечению примерно до $E_{\pi} = 150$ МэВ. В области $150 \le E_{\pi} \le 250$ неупругое сечение начинает несколько превышать упругое. Такое поведение неупругого сечения дает основание полагать, что приближение, развитое в работах 2 , 2 , т.е. приближение, при котором полный 4-частичный оператор перехода T(E) заменяется оператором T°(E), может быть достаточно аккуратным не только до порога развала 3 Не, но и в области энергий пиона выше порога развала $/E_{\pi} \sim 20-40$ МэВ/.

На рис.1,2 приведены упругие и проинтегрированные по импульсам протона неупругие сечения при $E_{\pi} = 68$ МэВ и $E_{\pi} = 100$ МэВ. Расхождение с экспериментом в области больших углов следует в значительной степени отнести к опущенному вкладу непрерывного спектра гамильтониана мишени. $d\sigma_{in}$

На рис.3 приведены неупругие дифференциальные сечения $\frac{dvin}{d\vec{k}}$ в зависимости от импульса k' при нулевом угле вылета π^+ -мезона /при разных энергиях налетающего лиона/. Эти сечения могут представить интерес для ведущейся сейчас обработки экспериментальных данных реакции π^{-8} Не \rightarrow pdr.

ПРИЛОЖЕНИЕ

Приведем численные значения коэффициентов $C_{t,N}^{T}$

$$C\frac{\frac{1}{2}}{\frac{1}{2}++} = \frac{5}{9}; C\frac{\frac{1}{2}}{\frac{3}{2}++} = C\frac{\frac{1}{2}}{\frac{3}{2}-+} = \frac{4}{9}; C\frac{\frac{3}{2}}{\frac{1}{2}++} = \frac{2}{9}; C\frac{\frac{3}{2}}{\frac{3}{2}++} = \frac{7}{9}; C\frac{\frac{3}{2}}{\frac{3}{2}-+} = \frac{1}{9}$$

и явный вид матриц Λ , $\overline{\Lambda}$, B и C.

$$\Lambda_{34} = \begin{pmatrix} \Lambda_{34}^{*} & 0 & 0 \\ 0 & \Lambda_{34}^{*} & 0 \\ 0 & 0 & \Lambda_{34}^{*} \end{pmatrix} \tilde{\Lambda}_{34} = \begin{pmatrix} 0 & \tilde{\Lambda}_{34}^{*} & 0 \\ 0 & 0 & \tilde{\Lambda}_{34}^{*} \\ 0 & 0 & 0 \end{pmatrix} \Lambda_{34}^{*} = C_{\underline{3}}^{T} + \begin{pmatrix} \lambda_{33}^{P} & \delta_{11} & 0 \\ 0 & \lambda_{31}^{P} \delta_{11} & 0 \\ 0 & \lambda_{31}^{P} \delta_{11} & 0 \\ 0 & \lambda_{31}^{P} \delta_{11} & 0 \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} \Lambda_{12} & 0 \\ 0 & \Lambda_{34} \end{pmatrix} \tilde{\Lambda} = \begin{pmatrix} 0 & 0 \\ 0 & \bar{\Lambda}_{34} \end{pmatrix} \Lambda_{12} = C_{\frac{3}{2}++}^{T} \begin{pmatrix} \lambda_{11}^{S} \delta_{11} & 0 \\ 0 & \lambda_{31}^{S} \delta_{11} \end{pmatrix},$$

$$\bar{\Lambda}_{34}^{*} = \frac{C_{\frac{3}{2}++}}{C_{\frac{3}{2}++}} \cdot \Lambda_{34}^{+},$$

где λ_{33}^{P} и λ_{31}^{P} - параметры пион-нуклонных потенциалов $^{/6/}$.

$$\mathbf{B}_{34} = \begin{pmatrix} \Lambda_{34}^{*} (1 + \mathbf{J}_{34} \Lambda_{34})_{11}^{-1}, & 0, & \mathbf{K}_{1} \\ 0 & \Lambda_{34} (1 + \mathbf{J}_{34} \Lambda_{34})_{00}^{-1}, & 0 \\ 0 & 0 & \Lambda_{34}^{*} (1 + \mathbf{J}_{34} \Lambda_{34})_{-1-1}^{-1} \end{pmatrix}$$

$$\mathbf{B}_{12} = (1 + \mathbf{J}_{12} \Lambda_{12})^{-1}; \qquad \mathbf{C}_{34} = \begin{pmatrix} 0 & 0 & \mathbf{K}_{3} \\ 0 & 0 & 0 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} \mathbf{B}_{12} & 0 \\ 0 & \mathbf{B}_{34} \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 0 & 0 \\ 0 & \mathbf{C}_{34} \end{pmatrix}$$

$$\begin{split} \mathbf{K}_{1} &= \Lambda^{*} \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{11}^{-1} \cdot \left(\mathbf{J}_{34} \overline{\Lambda}_{34}\right)_{10} \cdot \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{00}^{-1} \left(\overline{\mathbf{J}}_{34} \overline{\Lambda}_{34}\right)_{0-1}^{-1} \times \\ &\times \left(\mathbf{1} + \overline{\mathbf{J}}_{34} \Lambda_{34}\right)_{-1-1}^{-1} - \Lambda_{34}^{*} \left(\mathbf{1} + \overline{\mathbf{J}}_{34} \Lambda_{34}\right)_{00}^{-1} \left(\overline{\mathbf{J}}_{34} \overline{\Lambda}_{34}\right)_{0-1}^{-1} \times \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{2} &= \overline{\Lambda}_{34}^{*} - \Lambda_{34}^{*} \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{11}^{-1} \left(\overline{\mathbf{J}}_{34} \overline{\Lambda}_{34}\right)_{00}^{-1} \mathbf{i} \\ \mathbf{K}_{3} &= \left[\overline{\Lambda}_{34}^{*} - \Lambda_{34}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{3} &= \left[\overline{\Lambda}_{34}^{*} - \Lambda_{34}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{3} &= \left[\overline{\Lambda}_{34}^{*} - \Lambda_{34}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{4} &= \left[\overline{\Lambda}_{4}^{*} - \Lambda_{4}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{5} &= \left[\overline{\Lambda}_{54}^{*} - \Lambda_{54}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{5} &= \left[\overline{\Lambda}_{54}^{*} - \Lambda_{54}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left(\mathbf{1} + \mathbf{J}_{34} \Lambda_{34}\right)_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{5} &= \left[\overline{\Lambda}_{54}^{*} - \Lambda_{54}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda\right)_{00}^{-1} \left(\overline{\mathbf{J}} \overline{\Lambda}\right)_{0-1}\right] \left[\mathbf{1} + \mathbf{J}_{54} \Lambda_{34}\right]_{-1-1}^{-1} \mathbf{i} \\ \mathbf{K}_{5} &= \left[\overline{\Lambda}_{54}^{*} - \overline{\Lambda}_{54}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda_{54}\right)_{00}^{-1} \left(\mathbf{J} \overline{\Lambda}\right)_{0-1}^{-1} \mathbf{i} \\ \mathbf{K}_{5} &= \left[\overline{\Lambda}_{54}^{*} - \overline{\Lambda}_{54}^{*} \left(\mathbf{1} + \mathbf{J} \Lambda_{54}\right)_{00}^{-1} \left(\mathbf{J} \overline{\Lambda}_{54}\right)_{0-1}^{-1} \mathbf{i} \\ \mathbf{i} \\$$

Выпишем

$$\theta = \vec{k} \cdot \vec{k}', \quad \frac{d\sigma_{in}}{d\vec{k}'} = \int \frac{d^2\sigma_{in}}{d\vec{k}'d\vec{p}_3} d\vec{p}_3 ;$$
$$\frac{d\sigma_{in}}{k'^2 dk'} = \int \frac{d\sigma_{in}}{d\vec{k}'} d\Omega_{\vec{k}'}; \quad \frac{d\sigma_{in}}{d\Omega} = \int \frac{d\sigma_{in}}{d\vec{k}'} k'^2 dk'.$$

ЛИТЕРАТУРА

1. Jacob G., Maris A.J. Rev.Mod.Phys., 1973, vol.45, No.1, p.6.

....

- 2. Беляев В.Б., Вжеционко Е. ЯФ, 1978, 28, с.392.
- 3. Belyaev V.B., Wrzecionko J., Sakvarelidze M.I. Phys.Lett., 1979, B83, p.19.
- 4. Amakawa H. et al. Phys.Rev.C, 1981, vol.23, p.583.
- 5. Беляев В.Б., Вжеционко Е., Сапожников М.Г. ЯФ, 1980, 32, c.1276.
- 6. Thomas A.W. Nucl.Phys., 1976, A258, p.417.
- 7. Scherbakov Yu.A. et al. Nuovo Cim., 1976, A31, p.262.

Рукопись поступила в издательский отдел 30 декабря 1981 года.