

Объединенный институт ядерных исследований дубна

P4-81-800

1981

Л.И.Пономарев

МЮОННЫЙ КАТАЛИЗ ЯДЕРНЫХ РЕАКЦИЙ СИНТЕЗА В СМЕСИ ДЕЙТЕРИЯ И ТРИТИЯ

Направлено на X Европейскую конференцию по управляемому термоядерному синтезу и физике плазмы /Москва, 14-19 сентября 1981 г./

1. ВВЕДЕНИЕ

Ранняя история изучения явления мюонного катализа подробно изложена в обзорах /1-2/. Она началась в 1947 году с гипотезы Франка^{/3/}, высказанной им в связи с интерпретацией экспериментов Латтеса, Оккиалини и Пауэлла/4/, в которых был идентифицирован распад $\pi^- \rightarrow \mu^-$. В 1954 году Я.Б.Зельдович/5/ рассмотрел различные стадии μ -катализа и оценил их скорости. Этот начальный период завершился в 1957 году экспериментами Альвареца и др. ^{(8/}, в которых наблюдали процесс μ -катализа и смеси $H_{g+}D_{g}$.

В период с 1957 по 1963 год были выполнены основные экспериментальные /Л.Ледерман и др., В.П.Джелепов и др., А.Ашмор и др., Дж.Дод и др./ и теоретические /Я.Б.Зельдович, С.С.Герштейн, Дж.Джексон, С.Коэн и др./ работы /см. обзоры $^{1-2/}$ /, в которых подробно изучен процесс мюонного катализа, в основном в смеси H_2+D_2 и чистом дейтерии D_2 .Из этих работ следовал пессимистичный вывод: для производства ядерной энергии мюонный катализ неэффективен $^{1,8/}$.

Интерес к идее мюонного катализа возродился в 1977 году, когда была предсказана его большая эффективность в смеси дейтерия и трития 9 , которая в 1979 году была подтверждена экспериментально В.П.Джелеповым, В.Г.Зиновым и др. 10 . Данный обзор посвящен этому последнему периоду изучения явления μ -катализа, а также изложению сути работ Ю.В.Петрова 11 , в которых показано, что μ -катализ в сочетании с урановым бланкетом позволяет, в принципе, получить положительный выход энергии:

Во всем дальнейшем изложении мы не касаемся технических и инженерных аспектов этой проблемы, поскольку они могут стать актуальными лишь после выяснения физической осуществимости самой идеи мюонного катализа. Для этого, прежде всего, надо ответить на три основных вопроса:

Сколько актов катализа способен осуществить один µ-мезон?

Какую энергию нужно затратить на получение одного µ⁻-мезона?

Какую энергию он освобождает /с учетом дальнейшего размножения нейтронов синтеза в урановом бланкете/?

Основная идея μ -катализа хорошо известна: μ -мезон с массой $m_{\mu} = 206, 8m_{e}$, образуя с ядрами d и t мезомолекулу dt μ *, сближает их до расстояний ~5·10⁻¹¹ см и тем самым настолько увеличивает вероятность проникновения ядер через барьер кулоновского отталкивания, что реакция синтеза

*Согласно установившейся традиции мезомолекулярные ионы $(dt_{\mu})^+$, $(dd_{\mu})^+$ и т.д., то есть системы, состоящие из двух ядер изотопов водорода и μ^- -мезона, мы будем в дальнейшем называть мезомолекулами dt_{μ} , dd_{μ} и т.д.

 $d+t \rightarrow {}^{4}He + n + 17,6 M \rightarrow B$

происходит в мезомолекуле за ~ 10^{-12} с, то есть практически мгновенно по сравнению с временем жизни μ^- мезона: $\tau_0 =$ = 2,2.10⁻⁶ с. С вероятностью 0,99 μ^- мезон при этом освобождается и может осуществить следующий акт μ^- катализа. Общее число актов μ^- катализа, которое может осуществить один μ^- мезон, зависит от всей совокупности мезоатомных и мезомолекулярных процессов, происходящих в смеси дейтерия и трития.

Заметим сразу же, что в отличие от термоядерного синтеза, где реакция /1/ должна происходить при высокой температуре $\sim 10^8$ К и малой плотности $\sim 10^{14}$ см⁻³ смеси $D_2 + T_2$, наиболее благо-приятные условия для осуществления μ -катализа реализуются при температурах $10^2 \div 10^3$ К и плотностях $\sim 4 \cdot 10^{22}$ см⁻³, то есть при давлениях в смеси $\sim 10^3$ атм.

2. КИНЕТИКА ПРОЦЕССОВ МЮОННОГО КАТАЛИЗА

 μ^- мезоны образуются при распаде π^- мезонов, которые, в свою очередь, рождаются при столкновении ускоренных протонов /дейтронов, тритонов и т.д./ с ядрами мишени. При энергии ис-ходного пучка $T_0{\sim}1$ Гэв/нуклон распадные μ^- -мезоны образуются со средней энергией ~200 Мэв. Попадая в плотную смесь $D_2{+}T_2$, они за время ~10 $^{-8}$ с тормозятся там до энергий ~2 кэв/12,13/ и затем за 10 $^{-11}{\rm c}$ переходят на К-орбиты мезоатомов d_μ

Общая схема происходящих после этого процессов представлена на <u>рис.1</u>. Мезоатомы d_{μ} и t_{μ} с начальной энергией ~0,1 эВ, сталкиваясь с ядрами молекул D_2 и T_2 , образуют с ними мезомолекулы dt_{μ} , dd_{μ} и tt_{μ} со скоростями $\lambda_{dt\mu}$, $\lambda_{dd\mu}$ и $\lambda_{tt\mu}$ соответственно. Кроме того, поскольку основной уровень t_{μ} атома на 48 эВ глубже, чем уровень d_{μ} -атома, то при столкновении d_{μ} -атома с ядром трития происходит необратимый процесс изотопного обмена

 $d\mu + t \rightarrow t\mu + d$

со скоростью λ dt

В образовавшихся мезомолекулах dtµ, ddµ и ttµ происходят реакции синтеза ядер мезомолекул, представленные на рис.1, со скоростями λ_f , λ_{fd} и λ_{ft} соответственно.

Общее число циклов μ -катализа x_c , которое один μ -мезон успевает осуществить за время жизни $r_0 = \lambda_0^{-1} = 2,2.10^{-6}$ с,

$$\mathbf{x}_{c}^{-1} = \omega_{s} + \frac{\lambda_{0}C_{d}}{\lambda_{dt}C_{t}} + \frac{\lambda_{0}}{\lambda_{dt\mu}C_{d}} + \frac{\omega_{d}}{2} \frac{\lambda_{dd\mu}}{\lambda_{dt\mu}} + \omega_{t} \frac{\lambda_{tt\mu}C_{t}}{\lambda_{dt\mu}C_{d}}, \quad /3/$$

/2/

где C_d и C_t - относительные концентрации ядер дейтерия и трития ($C_d+C_t=1$); все скорости соответствуют заданной температуре и плотности смеси D_2+T_2 ; ω_8 , ω_d и ω_t - вероятности "прилипания" μ^- -мезона к ядрам гелия в реакциях синтеза: (4a/

$$dt_{\mu} \rightarrow \mu^{4} He + n, \qquad /46/$$

$$dd_{\mu} \rightarrow \mu^{3} He + n, \qquad /46/$$

$$tt_{\mu} \rightarrow \mu^{4} He + 2n. \qquad /4B/$$

Рис.1. Схема процессов мюонного катализа в смеси дейтерия и трития.

Число циклов \mathbf{x}_{c} зависит в основном от значений ω_{s} , λ_{dt} и $\lambda_{dt\mu}$. Легко видеть, что даже при бесконечно больших скоростях λ_{dt} и $\lambda_{dt\mu}$ величина $\mathbf{x}_{c} = \omega_{s}^{-1}$, то есть ограничена относительной вероятностью ω_{s} процессов /4a/ и $dt_{\mu} \rightarrow {}^{4}\text{He} + \mathbf{n} + \mu^{-1}$. Долгое время теоретические оценки скорости образования dt_{μ} молекул приводили к значению $\lambda_{dt\mu} \sim 10^{4}$ с ${}^{-1/1}$, откуда в соответствии с /3/ следовало, что $\mathbf{x}_{c} < 1$, то есть вывод о неэффективности процесса μ -катализа.

Таблица 1

Скорости мезоатомных и мезомолекулярных процессов в смеси $\mathrm{D}_2 + \mathrm{T}_2^{-*}$

Процесс	Теория	<u> </u>	
Атомный захват:)		эксперимент	Источник
$\mu^{-} + D_2 \rightarrow d\mu + D + e$	~ 10 ¹¹	/3,06+0,07/.10 ^{11*}	Kopeнман / 13/ Маркушин / 14/ Cohen et al /41/
$\frac{d\mu + t \rightarrow t\mu + d}{dt}$	2.108	/2,9+0,4/-108	Пономарев / 17/ Быстрицкий и пр / 10/
Образование молекул $dd_{\mu}: \lambda_{dd\mu}^{\circ}, s^{-1} **$ $d_{\mu} + D_{2} \rightarrow [(dd_{\mu})^{+} d2e]_{\nu}$	0,8·10 ⁶	/0,85+0,11/,106	Виницкий и др. / 19/
Образование молекул dt_{μ} : $\lambda_{dt_{\mu}}^{\circ}$, s ⁻¹ ** $t_{\mu} + D_{g} \rightarrow [(dt_{\mu})^{+} d2e]_{\nu}$	≥10 ⁸	>10 8	Виницкий и др. /9/
Образование молекул $tt\mu : \lambda_{tt\mu}^{\circ}$, s ⁻¹ $t\mu + T_2 \rightarrow [(tt\mu)^+ te]^+ + e$	3.10 ⁶		Пономарев
lepeвopor спина λ_d° , s ⁻¹ $\mu(\uparrow \uparrow) + d \rightarrow d\mu(\uparrow \downarrow) + d$	4,6.107	> 4.107	и Файфман / 19/ Пономарев и др. /20/ Быстриника
*Без учета времени каскада в мезоа	TOME KOTON	/4,26+0,17/.107	Breunlich et al. /39/
**Значения λ ^ο и λ ^ο приведены при	и резонансно	не согласно работе ^{/14/} ой энергии столкновени	составляет 1,5·10 ⁻¹¹ с. я.

Переворот спина λ_t° , s ⁻¹ tu (tt) + t \rightarrow tu (\uparrow t) + t	0,9.109		Матвеенко и др. /21/
Прилипание: ω _d	0,15		Герштейн и др. /22/ Fiorentini and
$dd\mu \rightarrow \mu^{3}He + n$		<0,13 0.14+0.01	Bracci ^{7,237} Джелепов и др./33/ Балин и др./40/
Прилипание: ω_t ttu $\rightarrow u^4$ He + 2n	~0,1	_	Герштейн и др./22/
Прилипание: ω_s dt $\mu \rightarrow \mu^4$ He + n	$0,86 \cdot 10^{-2}$ $0,91 \cdot 10^{-2}$		Герштейн и др. ^{/22/} Fiorentini and Bracci ^{/23/}
Ядерная реакция: λ_f , s ⁻¹ dt ₄ , ⁴ He + n + 4	1,1.10 ¹²		Богданова и др. /24/
Ядерная реакция: λ_{fd} , s ⁻¹ ddu \rightarrow ³ He + n + μ^{-1}	5 • 10 ¹⁰	_	Весман /25/
Ядерная реакция: λ_{ft} , s ⁻¹ tt _u \rightarrow ⁴ He + 2n + μ ⁻	-	_	
Молекулярная перезарядка λ_m , s ⁻¹ t _u + ³ He \rightarrow t _u ³ He \rightarrow μ ³ He + t	5,6·10 ⁸	_	Аристов и др. 267

.

Таблица I /продолжение/

ćπ

Ситуация изменилась в 1977 году, когда в мезомолекуле $\mathrm{d} t \mu$ было установлено существование слабосвязанного состояния /9/ и вычислена обусловленная им большая скорость $\lambda_{d\mu} >> \lambda_0$ резонансного образования dtu -молекул. Это позволило возвратиться к идее µ∽катализа на новом уровне и рассмотреть возможно≁ сти его практического использования для производства ядерной энергии.

3. СКОРОСТИ ПРОЦЕССОВ µ-КАТАЛИЗА

Как правило, скорости мезоатомных и мезомолекулярных процессов пропорциональны плотности смеси: $\lambda_{dt} = \lambda_{dt}^{o} \phi$, $\lambda_{dy} =$ = $\lambda_{dt_{u}}^{\circ} \cdot \phi$ и т.д., где $\phi = \rho/\rho_0; \rho$ - плотность смеси; $\rho_0 = 4,25 \cdot 10^{22} \text{ см}^{-5}$ - плотность жидкого водорода, а λ_{dt}° , $\lambda_{dt_{u}}^{\circ}$ и т.д. - скорости процессов, приведенные к плотности р₀.Их теоретические и экспериментальные значения представлены в табл.1.

Mesoмолекулы ddµ и dtµ могут образовываться в пяти, а мезомолекула ttµ - в шести состояниях вращательного (J) и колебательного (v) движений, энергии связи которых заключены в пределах от ~360 эВ до 0,7 эВ. Мезомолекула ttµ образуется преимущественно в состоянии (J=1, v=1) с энергией связи – с₁₁=45,2 эВ путем дипольного Е1-перехода с конверсией на электроне молекулы T₂ согласно схеме

 $t\mu + T_{\rho} \rightarrow [(tt_{\mu})^+ te]^+ + e.$

Мезомолекулярный ион $(\mathtt{tt}_{\mu})^+$ становится при этом тяжелым "ядром" обычного молекулярного иона, а выделившуюся энергию связи - ϵ_{11} уносит электрон конверсии. Скорость этого нерезонансного процесса сравнительно невелика: $\lambda_{ttr} \approx 3.10^{8} \text{ c}^{-1/19/3}$

Образование мезомолекул ddµ и dtµ благодаря существованию у них слабосвязанных состояний (J=1, v=1) с энергиями связи - ϵ_{11} (dd μ) = 1,91 эВ и - ϵ_{11} (dt μ) = 0,64 эВ^{/27/} происходит согласно резонансному механизму, впервые рассмотренному Весманом⁷⁸⁸⁷ применительно к реакции образования **dd**µ-молекул:

$$\psi + D_2 \rightarrow [(dd_{\mu})^{\top} d2e]_{\nu}^{*}$$

В этом процессе отсутствует электрон конверсии, а энергия связи $-\epsilon_{11}$ (dd μ) передается на возбуждение колебательного состояния ν образовавшегося молекулярного комплекса, одним из ядер которого является мезоион (ddµ)⁺.После экспериментов /18/и теоретических расчетов /9,2?/ существование такого резонансного механизма можно считать твердо установленным.

Скорость аналогичной реакции резонансного образования $\mathrm{dt}_{\!\mu}$ – молекул /см. рис.2/:

6

 $t\mu + D_2 \rightarrow [(dt\mu)^+ d2e]_{\nu}^*$,

вычисленная в работе $^{/9/}/\lambda_{dtu}^{\circ} > 10^8 \text{ c}^{-1}/,$ оказалась много больше скорости λ_{dtu}° и прежних оценок / $\lambda_{dtu}^{\circ} = 10^4 \text{ c}^{-1}/1/$ Экспериментальная оценка снизу $\lambda_{dtu}^{\circ} > 10^8 \text{ c}^{-1}$, полученная недавно в Лаборатории ядерных проблем ОИЯИ $^{/10}$, находится в согласии с результатами вычислений.

Коэффициенты прилипания мюона ω_{s} , ω_{d} и ω_{t} /см. <u>рис.1</u>/ вычислены в работах /7,8,22,23/. В табл.1 приведены их значения с учетом "стряхивания" мюонов с ядер гелия при столкновениях:

He)⁺ + d
$$\longrightarrow$$
 He⁺⁺ + d+ μ^{-} .

Согласно вычислениям / 22,23/ эти процессы уменьшают исходное значение $\omega_{\rm s}$ на 20-25%.

Рис.2. Схема резонансного образования мезомолекул $dt\mu$. Условие резонанса: $\epsilon_0 + |\epsilon_{11}| =$ $= |E_{\nu} - E_0|$, где $\epsilon_0 - кинетиче$ $ская энергия <math>t\mu$ -атомов; $|\epsilon_1|$ энергия связи состояния (J = 1, v=1) $dt\mu -$ молекулы; E_0 энергия основного состояния молекулы D₂; E_{ν} - энергия колебательного состояния ν молекулярного комплекса [($dt\mu$) + d2e].

4. ЧИСЛО ЦИКЛОВ И-КАТАЛИЗА

Как видно из табл.1, бо́льшая часть процессов мюонного катализа до сих пор не изучена экспериментально. Поэтому для числа циклов **x**_c сейчас можно дать лишь нижнюю оценку.

Из выражения /3/ следует, что наибольшее число циклов достигается при концентрации трития C $_{\rm t}$ в смеси D $_2+{\rm T}_2$, равной

$$C_t \approx (1+\gamma)^{-1}$$
, $\gamma = (\lambda_{dt}/\lambda_{dt\mu})^{\frac{1}{2}}$, $/7a/$

причем

(µ)

$$\mathbf{x}_{c}^{-1} \approx \omega_{s} + \frac{\lambda_{0}}{\lambda_{ct}^{o}\phi} \gamma(2 + \gamma + 0.7\phi).$$
 (76)

При плотности жидкого водорода ($\phi = 1$) с учетом /7/ и данных табл.1 отсюда следует нижняя оценка:

/5б/

Оценка /8/ получена для скорости $\lambda_{dt\mu}^{\circ} = 10^8 \text{ c}^{-1}$, которая соот-ветствует энергии связи $-\epsilon_{11}(dt\mu) = 1,09$ эВ. Последующие вычисления $\frac{12}{27}$ привели к значению $-\epsilon_{11}(dt_{\mu}) = 0,64$ эВ, которому соответствуют значительно большие скорости λ αμ и соответствующие им величины \mathbf{x}_c : при $\lambda_{d\mu}^{\circ} = 3.10^8 \text{ c}^{-1} \mathbf{x}_c \approx 70$, при $\lambda_{d\mu}^{\circ}$ $= 10^9 c^{-1} x_c = 100.$

Значение ω_с≃0,9·10⁻²,принятое в настоящее время, вычислено в предположении, что реакция /4/ происходит из основного dt_{μ} -мезомолекулы (J=v=0). Однако резонансное обсостояния разование dtµ ~молекул происходит не в основном, а в пятом возбужденном состоянии (J = 1, v = 1) /см. табл.2/. В процессе каскадных переходов из состояния (J=1, v=1) в состояние (J=0,в каждом из промежуточных состояний (Jv) возможна реакция синтеза /4а/, причем во вращательных состояdtµ-молекулы ниях J=1 вероятность "прилипания" мюона может оказаться существенно меньше. Эффективно это приведет к некоторому дополнительному уменьшению величины ω_{s'}.

Для детального описания процесса μ -катализа надо учесть ряд дополнительных эффектов, таких, как релятивистские поправки к уровням энергии мезомолекул /29-82/, молекулярная перезарядка^{:/28/}, кинетика замедления мезоатомов и т.д.

Соответствующие вычисления уточненных значений $\omega_{\,{
m s}}$ и $\lambda_{\,{
m d}t\mu}$ в настоящее время проводятся, однако для окончательного определения числа циклов x_с настоятельно необходимы эксперименты по измерению величин ω_s и $\lambda_{d \mu}$, а также "интегральный опыт", то есть непосредственные измерения величин х_е ком интервале значений ϕ и C $_{t}$. в широ-

Энергии связи – є Jv /эВ/ состояний (Jv) мезомолекул * (Jv) /00/ /01/ /10/ /11/ /20/ /30/ đđµ 325,0 35,8 226,6 1,91 86,3 đtμ 319,2 34,9 232,4 0,64 102,5 ttμ 363.0 83.9 289.2 45.2 172.7 48.7

Таблица 2

*Данные работы /27/Для мезомолекулы dtµ энергия связи отсчитывается от основного состояния мезоатома 🚧

5. ЭНЕРГЕТИЧЕСКИЙ БАЛАНС µ-КАТАЛИЗА

На рис.3 представлена одна из мыслимых схем мюонно-каталитического гибридера /МКГ/^{/35/} для производства ядерной энергии.

8

Рис.3. Схема мюонно-каталитического гибридера.

Пучок дейтронов с энергией ~1 ГэВ/нуклон направляется на мишень из легких элементов (Ве, В, С), в которой рождаются π⁻ ~ мезоны в количестве 0,25π⁻/ГэВ-нуклон и теряется ≈20% энергии исходного пучка^{/38/}*.

Известно $^{/37/}$, что при попадании быстрых нуклонов с энергией 1 ГэВ в мишень из 238 U в ней происходит 20 делений ядер 238 U и образуется 60 ядер 239 Pu, причем их выход растет линейно с энергией нуклонов в интервале энергий 0,5÷2 ГэВ. Поэтому при попадании в мишень из 238 U пучка дейтронов, имеющих на выходе из легкой мишени энергию ~0,8 ГэВ/нуклон, в ней происходит 0,8·20=16 делений ядер 238 U и образуется 0,8·60·0,85=41 ядро плутония $^{/11}/\theta = 0,85$ - коэффициент использования медленных нейтронов/, которые при последующем сжигании на АЭС обеспечат еще 41.1,6=65 делений / $\psi = 1,6$ - коэффициент размножения Ри в АЭС $^{/11}/$. Таким образом, в рассматриваемой схеме

*Поскольку т рождаются в основном при столкновении нейтронов с нейтронами, то наибольший выход ...0,5 т /ГэВ-нуклон следует ожидать для пучка ускоренных ядер трития при пропускании его через тритиевую мишень /38/В качестве мишени легкие элементы предпочтительнее, поскольку при этом минимальны ядерное поглощение и радиационные потери т -мезонов.

9

электроядерный канал в итоге может обеспечить 16+65=81 деление, то есть 81.0,2 ≈ 16 ГэВ тепловой или 16.0,35=5,6 ГэВ электрической энергии /η_е = 0,35 - к.п.д. тепловых АЭС/.

В мюонно-каталитическом канале π^- -мезоны, родившиеся в легкой мишени, распадаются в конверторе на μ^- -мезоны и антинейтрино с вероятностью $\phi_{\mu'}$. Принимая достаточно оптимистичное значение $\phi_{\mu}=0.8$, найдем,что в смесь $D_2 + T_2$ попадает 0.25.0.8= = 0.2 μ^-/Γ ЭВ.нуклон, которые после 100 циклов μ -катализа освобождают в реакции /1/ 0.2.100.17,6 МэВ = 0.35 ГЭВ энергии и 20 нейтронов на каждый затраченный ГэВ энергии ускорителя.

В толстом бланкете из 238 U каждый нейтрон синтеза из реакции /1/ с энергией 14,1 МэВ вызывает 1 деление и генеридо затратить на воспроизводство трития. С учетом коэффициента использования нейтронов найдем, что из 4 образовавшихся нейтронов остается $4 \cdot 0,85 - 1 = 2,4$ товарных нейтрона, которые образуют 2,4 ядра 339 Pu. Таким образом, на каждый затраченный ГэВ энергии ускорителя в МК-канале происходит 20 делений, к которым следует добавить /с учетом коэффициента размножения $\psi = 1.6$ в АЭС/ 20-2,4-1,6 = 77 делений 239 Pu, всего 97 делений, то гии.

Суммарное энерговыделение в электроядерном /ЭЯ/ и МК-каналах составляет 35 ГэВ тепловой или 12 ГэВ электрической энергии на 1 ГэВ энергии пучка, из которых 45% выделяется в ЭЯканале и 55% - в МК-канале. Аналог так называемого коэффициента усиления в плазме для МК-канала равен Q = 0,35, а с учетом ЭЯ-канала для МКГ в целом эффективное значение Q = 0,6.

Полагая к.п.д. ускорителя равным $\eta_a = 0,6$, что представляется достаточно реалистичным ⁷⁸⁸, найдем, что, затратив 1/0,6=1,7 ГэВ на входе МКГ, получим на выходе 12 ГэВ, то есть доля энергии, затраченная на собственные нужды системы, составляют $\alpha = 0,13$.

6. ЗАКЛЮЧЕНИЕ

Серьезное изучение явления μ -катализа в смеси дейтерия и трития сейчас, по существу, только начинается. До сих пор не измерены даже основные его характеристики: общее число циклов μ -катализа \mathbf{x}_c и коэффициент прилипания $\omega_{\rm g}$, а для скорости образования $\lambda_{\rm dt}$ —молекул известна лишь нижняя оценка: $\lambda_{\rm dt\mu}^{\circ} > 10^{8} {\rm c}^{-1}$. Кроме того, не измерен выход π -мезонов из легкой мишени, облучаемой дейтронами /или тритонами/, и неизвестен коэффициент конверсии пионов в мюоны ϕ_{μ} , достиНеобходимо измерить также ряд других характеристик процесса: скорость λ_{ttu} ; величины ω_d и ω_t ; скорости λ_{td} и λ_{tt} ; скорости λ_m молекулярной перезарядки t_{μ} -атомов на ядрах ⁸Не и 4Не/26/ и т.д.

Тем не менее уже сегодня можно достаточно определенно утверждать, что μ -катализ ядерной реакции $d+t \rightarrow {}^{4}\text{He}+n$ в сочетании с банкетом из ${}^{238}\text{U}$ может обеспечить положительный выход энергии. Экономическая эффективность такого способа производства ядерной энергии и его техническая реализация зависят, конечно, от успешного решения многочисленных инженерных проблем.

В любом случае несомненно то, что само явление мюонного катализа заслуживает дальнейшего всестороннего изучения.

Я глубоко признателен Д.И.Блохинцеву, а также И.И.Гуревичу и В.П.Джелепову за внимание и поддержку; я благодарен всем непосредственным участникам работ по проблеме µ-катализа, вместе с которыми получена большая часть представляемых теоретических результатов: Л.Н.Богдановой, С.И.Виницкому, С.С.Герштейну, В.Е.Маркушину, В.С.Мележику, Ю.В.Петрову, Н.П.Попову, Л.П.Преснякову, И.В.Пузынину, Т.П.Пузыниной, Л.Н.Сомову, Н.Ф.Трусковой, М.П.ФайФману.

ЛИТЕРАТУРА

- 1. Зельдович Я.Б., Герштейн С.С. УфН, 1960, 71, с.581.
- Gerstein S.S., Ponomarev L.I. In: Muon Physics (eds. V.Hughes and C.S.Wu), Academic Press, N.Y., 1975, vol.111,p.141.
- 3. Frank F.C. Nature, 1947, 160, p.525.
- Lattes C.M.G., Occhialini G.P.S., Powell C.F. Nature, 1947, 160, p.453; 1947, 160, p.486.
- 5. Зельдович Я.Б. ДАН СССР, 1954, 95, с.493.
- 6. Alvarez L.W. et al. Phys.Rev., 1957, 105, p.1127.
- 7. Зельдович Я.Б. ЖЭТФ, 1957, 33, с.310.
- 8. Jackson J.D. Phys.Rev., 1957, 106, p.330.
- 9. Gerstein S.S., Ponomarev L.I. Phys.Lett., 1977, 72B, p.80; Виницкий С.И. и др. ЖЭТФ, 1978, 74, c.839; Ponomarev L.I. In: VII Int.Conf. on High Energy Phys. and Nucl.Struct., Burkhäuser Verlag, Basel and Stutgart, 1977, Zürich, 28 August - 3 Sept., 1977.
- 10. Быстрицкий В.М. и др. Письма в ЖЭТФ, 1980, 31, с.249; ЖЭТФ, 1981, 80, с.1700.
- 11. Petrov Yu.V. Nature, 1980, 285, р.466; Петров Ю.В. Труды XIV Зимней школы ЛИЯФ, 1979, с.139.
- 12. Leon M., Bethe H. Phys.Rev., 1962, 127, p.636.
- 13. Коренман Г.Я. ЯФ, 1980, 32, с.916.

- 14. Маркушин В.Е. ЖЭТФ, 1981, 80, с.35.
- 15. Герштейн С.С. и др. ЖЭТФ, 1980, 78, с.2099.
- 16. Anderhub P.G. et al. SIN Newsletters, 1980, No.8, p.136; Phys.Lett., 1981, 101B, p.151.
- 17. Ponomarev L.I. In: Proc. VI Int. Conf. on Atomic Phys., 17-22 Aug., 1978, p.182, "Zinante", Riga; Plenum Press, New York.
- 18. Быстрицкий В.М. и др. ЖЭТФ, 1979, 76, с.460.
- 19. Пономарев Л.И., Файфман М.П. ЖЭТФ, 1976, 71, с.1689.
- 20. Пономарев Л.И. и др. ЯФ, 1979, 29, с.133.
- 21. Матвеенко А.В. и др. ЖЭТФ, 1975, 68, с.438.
- 22. Герштейн С.С. и др. ЖЭТФ, 1981, 80, с.1690.
- 23. Bracci L., Fiorentini G. Nucl.Phys., 1981, A364, p.383. 24. Богданова Л.Н. и др. ЖЭТФ, 1981, 81, с.829; JINR, E4-80-819, Dubna, 1980; 90, 1981, 34, c.1191.
- 25. Vesman E.A. Eesti NSV Teaduste Acd. Fuusika Astron., Inst. Uurimused (ESSR), 1969, 18, p.429.
- 26. Аристов Ю.А. и др. ОИЯИ, Р4-80-378, Дубна, 1980; Kravtsov A.V. et al. Phys.Lett., 1981, 83A, p.379.
- 27. Виницкий С.И. и др. ЖЭТФ, 1980, 79, с.698.
- 28. Весман Э.А. Письма в ЖЭТФ, 1967, 5, с.113.
- 29. Bakalov D. Phys.Lett., 1980, 93B, p.265.
- 30. Бакалов Д. ЖЭТФ, 1980, 79, с.1149.
- 31. Melezhik V.S., Ponomarev L.I. Phys.Lett., 1978, 77B,
- 32. Бакалов Д. и др. ЖЭТФ, 1980, 79, с.1629.
- 33. Джелепов В.П. и др. ЖЭТФ, 1964, 46, с.2042.
- 34. Быстрицкий В.М. и др. ЖЭТФ, 1981, 81, с.839.
- 35. Герштейн С.С. и др. Авт.свид. №713373, м.кл. G21G1/00. Бюлл. ОИПОТЗ, 1981, 10, с.297.
- 36. Петров Ю.В., Шабельский Ю.М. ЯФ, 1979, 30, с.129; Препринт ЛИЯФ, №699, 1981.
- 37. Васильков Р.Г. и др. АЭ, 1978, 44, с.329.
- 38. Sriber S.O. et al. В кн.: Х Межд. конф. по ускор. заряж. част. выс.эн. ИФВЭ, Серпухов, 1977.
- 39. Breunlich W.H. et al. IX Int.Conf. High Energy Physics and Nucl.Struct., Versailles, 6-10 July, 1981.
- 40. Балин Д.В. и др. Препринт ЛИЯФ, №715, 1981.
- 41. Cohen J.S., Martin R.L., Wadt W.R. Phys.Rev., 1981, 24A,

Рукопись поступила в издательский отдел 16 декабря 1981 года.

-