

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

28/9-81 P4-81-477

О. Стоянова

ВЛИЯНИЕ ВЗАИМОДЕЙСТВИЯ В КАНАЛЕ ЧАСТИЦА-ЧАСТИЦА НА ЧИСЛО КВАЗИЧАСТИЦ В ОСНОВНЫХ СОСТОЯНИЯХ СФЕРИЧЕСКИХ ЯДЕР

В последнее время в нескольких работах $^{/1,2'}$ вычислялось число квазичастиц в основных состояниях сферических и деформированных ядер. В работе $^{/1'}$ высказывалось предположение, что возможно уменьшить количество квазичастиц в основном состоянии, если учитывать взаимодействие в канале частица-частица. Это предположение делалось на основании выводов работы $^{/8'}$ в которой показано, что взаимодействие в канале частица-частицатица в принципе уменьшает коллективность $2^+_1 - и 3^-_1$ -состояний сферических ядер.

В настоящей работе представлены результаты расчетов числа квазичастиц в основных состояниях изотопов самария с учетом взаимодействия в канале частица~частица.

Учесть мультипольное взаимодействие в канале частица-частица в рамках квазичастично-фононной модели можно, включив в гамильтониан ядра дополнительные слагаемые вида ^{/3/}

$$H_{pp} = \sum_{\lambda} G_{\lambda}^{\prime \prime} \sum_{\mu} P_{\lambda \mu}^{+} (r) P_{\lambda - \mu}^{\prime} (r'), \qquad (1/$$

где

$$\mathbf{P}_{\lambda\mu}^{+}(\mathbf{r}) = \sum_{jj}^{\mathbf{r}} \langle jm | \mathbf{i}^{\lambda} \mathbf{r}^{\lambda} \mathbf{Y}_{\lambda\mu} | j'm' \rangle \mathbf{a}_{jm}^{+} \mathbf{a}_{j'm'}^{+},$$

r - изотопический индекс. ∜энстанты G λ , определяющие силу нового взаимодействия, выбирались разными способами ^{/3,5-8/}. Трудности здесь связаны с отсутствием экспериментальных данных, позволяющих непосредственно определить константы G_λ при $\lambda ≠ 0$. В настоящей работе на основании выводов, сделанных в ^{/3,8/}, предполагается, что G_λ(n) = G_λ(nn) = G_λ.

в ${}^{3}.8'$, предполагается, что $G_{\lambda}(n) = G_{\lambda}(p) = G_{\lambda}(np) = G_{\lambda}$. Рассмотрим гамильтониан, включающий силы спаривания, остаточные изоскалярные /с константой κ_0 / и изовекторные /с константой κ_1 / мультиполь-мультипольные силы в канале частицадырка, а также члены /1/, учитывающие мультипольное взаимодействие в канале частица-частица. Используя приближение хаотических фаз, при указанном выше предположении о константах G_{λ} получим, что энергии возбужденных состояний ω являются нулями следующего уравнения:

 $det(\omega) = 0$.

/2/

$$\begin{aligned} \mathbf{rge} & \left[2\lambda + 1 - (\kappa_{0} + \kappa_{1}) \mathbf{F}_{n}(\lambda \mathbf{i}) \right] - (\kappa_{0} - \kappa_{1}) \mathbf{F}_{n}(\lambda \mathbf{i}) - \mathbf{G}_{\lambda} \mathbf{X}_{n}^{(+)}(\lambda \mathbf{i}) - \mathbf{G}_{\lambda} \boldsymbol{\omega} \mathbf{X}_{n}^{(-)}(\lambda \mathbf{i}) \right] \\ - (\kappa_{0} - \kappa_{1}) \mathbf{F}_{p}(\lambda \mathbf{i}) \left[2\lambda + 1 - (\kappa_{0} + \kappa_{1}) \mathbf{F}_{p}(\lambda \mathbf{i}) \right] - \mathbf{G}_{\lambda} \mathbf{X}_{p}^{(+)}(\lambda \mathbf{i}) - \mathbf{G}_{\lambda} \boldsymbol{\omega} \mathbf{X}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ - \left[(\kappa_{0} + \kappa_{1}) \mathbf{X}_{n}^{(+)}(\lambda \mathbf{i}) + - \left[(\kappa_{0} - \kappa_{1}) \mathbf{X}_{n}^{(+)}(\lambda \mathbf{i}) + \right] \mathbf{G}_{\lambda} \mathbf{u} \mathbf{u} \mathbf{u} \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{X}_{p}^{(+)}(\lambda \mathbf{i}) \right] + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{X}_{n}^{(-)}(\lambda \mathbf{i}) \right] \\ - \left[(\kappa_{0} + \kappa_{1}) \mathbf{u} \mathbf{X}_{n}^{(-)}(\lambda \mathbf{i}) + - \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{X}_{n}^{(-)}(\lambda \mathbf{i}) \right] \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{n}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf{x}_{p}^{(-)}(\lambda \mathbf{i}) \right] \\ + \left[(\kappa_{0} - \kappa_{1}) \mathbf{u} \mathbf$$

,

:

Здесь

$$\begin{split} \mathbf{F}_{\tau}(\lambda \mathbf{i}) &= \sum_{\mathbf{j}\mathbf{j}'}^{\tau} \frac{(\mathbf{f}_{\mathbf{j}\mathbf{j}'}^{(\lambda)} \mathbf{u}_{\mathbf{j}\mathbf{j}'}^{(+)})^{2} \epsilon_{\mathbf{j}\mathbf{j}'}}{\epsilon_{\mathbf{j}\mathbf{j}'}^{2} - \omega_{\lambda_{\mathbf{i}}}^{2}}, \\ \mathbf{F}_{\tau}(\lambda \mathbf{i}) &= \sum_{\mathbf{j}\mathbf{j}'}^{\tau} \frac{(\mathbf{f}_{\mathbf{j}\mathbf{j}'}^{(\lambda)})^{2} \mathbf{u}_{\mathbf{j}\mathbf{j}'}^{(+)} \mathbf{v}_{\mathbf{j}\mathbf{j}'}^{(+)}}{\epsilon_{\mathbf{j}\mathbf{j}'}^{2} - \omega_{\lambda_{\mathbf{i}}}^{2}}, \\ \mathbf{X}_{\tau}^{(+)}(\lambda \mathbf{i}) &= \sum_{\mathbf{j}\mathbf{j}'}^{\tau} \frac{(\mathbf{f}_{\mathbf{j}\mathbf{j}'}^{(\lambda)})^{2} \mathbf{u}_{\mathbf{j}\mathbf{j}'}^{(+)} \mathbf{v}_{\mathbf{j}\mathbf{j}'}^{(+)} \epsilon_{\mathbf{j}\mathbf{j}'}^{(+)}}{\epsilon_{\mathbf{j}\mathbf{j}'}^{2} - \omega_{\lambda_{\mathbf{i}}}^{2}}, \\ \mathbf{N}(\lambda \mathbf{i}) &= \sum_{\mathbf{j}\mathbf{j}'}^{\tau} \frac{(\mathbf{f}_{\mathbf{j}\mathbf{j}'}^{(\lambda)})^{2} \mathbf{v}_{\mathbf{j}\mathbf{j}'}^{(-)} \mathbf{v}_{\mathbf{j}\mathbf{j}'}^{(+)}}{\epsilon_{\mathbf{j}\mathbf{j}'}^{2} - \omega_{\lambda_{\mathbf{i}}}^{2}}, \\ \mathbf{N}^{(-)}(\lambda \mathbf{i}) &= \sum_{\mathbf{j}\mathbf{j}'}^{\tau} \frac{(\mathbf{f}_{\mathbf{j}\mathbf{j}'}^{(\lambda)} \mathbf{v}_{\mathbf{j}\mathbf{j}'}^{(+)})^{2} \epsilon_{\mathbf{j}\mathbf{j}'}}{\epsilon_{\mathbf{j}\mathbf{j}'}^{2} - \omega_{\lambda_{\mathbf{i}}}^{2}}, \\ \mathbf{N}^{(+)}(\lambda \mathbf{i}) &= \sum_{\mathbf{j}\mathbf{j}'}^{\tau} \frac{(\mathbf{f}_{\mathbf{j}\mathbf{j}'}^{(\lambda)} \mathbf{v}_{\mathbf{j}\mathbf{j}'}^{(-)})^{2} \epsilon_{\mathbf{j}\mathbf{j}'}}{\epsilon_{\mathbf{j}\mathbf{j}'}^{2} - \omega_{\lambda_{\mathbf{i}}}^{2}}, \end{split}$$

/3/

В формулах /3/ через $f_{jj}^{(\lambda)}$ обозначен приведенный матричный элемент мультипольного оператора; $\epsilon_{jj}^{(\lambda)} = \epsilon_j + \epsilon_j^{(\lambda)}$, где $\epsilon_j^{(\lambda)}$ энергия квазичастицы; $u_{jj}^{(+)} = u_j v_j^{(+)} + u_j^{(+)} v_j^{(+)}$, $v_{jj}^{(\pm)} = u_j^{(\pm)} v_j^{(\pm)}$, $u_j^{(\pm)} = u_j^{(\pm)} v_j$

Уравнение /2/ отличается от соответствующих уравнений работы $^{/8/}$ наличием изовекторной константы κ_1 . Если положить $\kappa_1 = 0$, то порядок определителя /2/ уменьшается на 1 и уравнение /2/ совпадает с уравнением, приведенным в $^{/8/}$.

Формулы для амплитуд ψ и ϕ , входящих в определение фононного оператора /4/, для нейтронов следующие:

$$\psi_{j_{1}j_{2}}^{\lambda i}(\phi_{j_{1}j_{2}}^{\lambda i}) = \frac{1}{\sqrt{2\Upsilon(\lambda i)}} \frac{r_{j_{1}j_{2}}^{(\Lambda)}}{\epsilon_{j_{1}j_{2}} + \omega} \{u_{j_{1}j_{2}}^{(+)}R_{n} + G_{\lambda}[v_{j_{1}j_{2}}^{(-)}F_{13} \pm v_{j_{1}j_{2}}^{(+)}F_{14}]\},$$

$$/4/$$

где $\mathbf{R}_{n} = (\kappa_{0} + \kappa_{1}) \mathbf{F}_{12} + (\kappa_{0} - \kappa_{1}) \mathbf{F}_{12}$.

Для протонных амплитуд R_n необходимо заменить на R_n :

$$\mathbf{R}_{n} = (\kappa_{0} + \kappa_{1}) \mathbf{F}_{12} + (\kappa_{0} - \kappa_{1}) \mathbf{F}_{11} .$$

В формулах /4/ верхний знак относится к ψ , а нижний-к ϕ . Через F_{ij} обозначены алгебраические дополнения определителя /2/. Величина $\Upsilon(\lambda i)$ находится из условия нормировки /4/ Из /4/ видно, что если положить $G_{\lambda} = 0$, получатся хорошо известные выражения для ψ и ϕ , когда фонон генерируется только взаимодействием в канале частица-дырка с учетом монопольного спаривания.

В работе^{/1/} получено следующее выражение для количества квазичастиц на уровне с квантовыми числами \mathfrak{Alj} /в дальнейшем обозначим их одним индексом ј / в основном состоянии четночетного ядра;

$$n_{j} = (2j+1)^{-1} \sum_{\lambda} (2\lambda+1) \sum_{ij} (\phi_{jj}^{\lambda i})^{2} .$$
 (5/

Если в /5/ подставить величины $\phi_{jj}^{\lambda_1}$, вычисленные по формуле /5/, мы учтем влияние взаимодействия в канале частица-частица на количество квазичастиц в основном состоянии.

тица на количество квазичастиц в основном состоянии. Расчеты проводились для $^{144+150}$ Sm. В работе^{/1/} показано, что основной вклад в вј дают первые 2^+ -и 3⁻-состояния, поэтому ограничинся в расчетах только этими состояниями. Использование в расчетах дополнительной константы G_λ дает возможность подогнать энергии и B(E_λ) - величины первых 2^+ -и 3⁻-состояний к экспериментальным значениям. Это показано в <u>табл.1</u>.

Рассчитанные значения /в ℓ для n_j представлены в табл.2 для 2^+_1 -состояния и в табл.3 для 3^-_1 -состояния. Для каждого ядра в первых столбцах показаны результаты, полученные при $G_{\lambda} = 0/т.е.$ без учета мультипольного взаимодействия в канале частица-частица/, в изоскалярная константа κ_0 подбиралась так,

3

Значения и приведенные вероятности возбуждения 2⁺ и 3⁻ -состояний

Ядро	E(2 ⁺ ₁) /MэB/		B[E2,0 ⁺ →	2 ⁺ ₁] e ² ΦM ⁴	E(31) /M3	B/	$B[E3, 0^+ \rightarrow 3_1^-] e^2 \phi_M^6$		
	экспер.	теор.	экспер.	теор.	экспер.	теор.	экспер.	теор.	
144 Sm	I,66 ·	I,59	2,6.10 ³	2,5.10 ³	I,8I	I,7I	-	I,43.10 ⁵	
146 Sm	0,777	0,85	-	5,24,10 ³	I,38I	I ,3I	-	2,26.10 ⁵	
¹⁴⁸ Sm	0,55	0,56	7,0.10 ³	7,35.10 ³	I,162	I,I	2,5.10 ⁵	2,74.10 ⁵	
¹⁵⁰ Sm	0,334	0,34	1,37.10 ⁴	1,61.104	I , 07I	0,997	3,0.10 ⁵	3,07.10 ⁵	

١

and the second second

Таблица 2

Вклад в n j 2⁺ -состояния

	Ядро	M i 144 Sm G-=0		n; 1465m			Ni ¹⁴⁸ Sm			ni 150 Sm			
	$\mathbf{\Lambda}$			_	G==0			G=0			G = 0		
	\$ℓj∖	ω=	B(E2)=	G‡0	W =	B(62)=	G‡0	: W =	B(E2)=	G‡0	W=	8(62)=	G #0
		<i>а эксп.</i>	DEL) MGU.		W JXCH.	O(E2) IKCH		w man.	19(62) 3Kin		W JKCH.	Elez) zren	
	the miz	2,37	0,78	I,93	3,54	1,52	I,44	4,25	I,74	I,44	5,36	3,02	2,99
	2d se	0	0	0,92	0,09	0,04	I,45	0,17	0,07	0,03	0,26 -	0,15	0,006
N	Ih se	0,36	0,11	0,35	1,2I	0,52	0,6I	2,90	I,I4	I ,4 9	6,70	3,64	5,44
	2 <i>f 11</i> 2	2,25	0,71	I, 59	I8 , 7	7,04	8,06	37,9	13,2	I4 . 5	58,6	30,3	37,3
	3 p3/2	0,13	0,04	0,57	5,86	2,36	2,97	16,3	6,I3	7,92	35,0	I8 , 7	26,5
	lidy	0,60	0,20	0,53	I,37	0,60	0,67	2,69	1,10	I,38	5 ,6 9	3,09	4,63
	19912	0,69	0,18	0,25	I,88	0,83	0,75	3,10	I,30	I,I4	5,02	2,82	2,99
	19112	2,91	0,68	0,62	10,2	3,95	3,44	18,4	6,59	5,66	3I,5	16,2	I8,I
7	2, d 5/2	4 . 8I	I,II	1,22	17,3	6,60	6,43	31,4	II,I	II,O	54,3	27,7	33, 8
L	1h+1,	I,89	0,45	0,92	6,26	2,50	2,94	11,1	I4,II	5,25	18,7	9,84	14,4
	35112	3,82	0,90	I,57	12,8	5,09	5,86	22,7	8,38	10,2	38,4	20,I	27, 8°
	2d 3/2	2 . 8I	0,55	1,02	7,54	3,04	3,47	13,2	4,97	5,98	22,3	II,8	16,2
	25 3/2	0,24	0,06	0,24	0,66	0,29	0,34	I,09	0,46	0,57	I , 76	0,99	I,43
								<u> </u>			L		

CJ.

-

Таблица 3 Вклад в п_ј 37 -состояния

Ядро		14; 144 Sm		Nj ¹⁴⁶ Sm			N; 148 Sm			n; 150 sm			
		6=0			6 = 0			6-=0		_	6=0		
_	vej 🔪	W= W JEM .	Б(С3) - Б(С3) заси .	640	ω= 4) που .	0(63)= 0(63) 710M	6 \$ 0	W= WIXIM.	B(E3) = B(E3) 3KGM.	6 ‡0	W= W9XcM.	D(E3)= D(E3)=zm	G ‡0
	Shap	I,55	0,69	2,06	2,64	0,99	I,I5	2,84	1,25	I,2I	2,86	I,34	I,I9
	2d 3/2	3,47	I,47	I,94	5,6I	2,05	I , 99	5,8	2,47	2,0	5,6	I,03	I,88
y	the	I,00	0,43	0,49	I.7	0,63	0,62	I,85	0,8	0,67	I,92	0,89	0,68
	25112	2,22	0,93	I,II	5,95	2,1	I,97	8.82	3,59	3,32	II,I	4,83	4,34
	3pyz	0,15	0,63	0,74	2,72	1,02	I,07	3,28	1,43	I,42	3, 8	I,77	1,72
	1i yz	I,06	0,45	0,53	3,14	1,12	I,27	4,91	2,01	2,I	6,34	2,76	2,68
	1942	I,3	0,47	0,35	2,71	0,92	0,97	3,4	I,4	I,36	3,86	I.74	I,6
	191/2	I,I8	0,42	0,25	2,55	0,83	0,88	3,24	I,28	I,28	3,7I	I,6I	I,56
z	2d 4	6 , 7I	2,23	0,87	I5,5	4,58	5,4	20,3	7,34	8,27	23,6	9,4I	IO , 3
٨	they	3,9	I , 3	0,45	8,99	2,67	3,08	II , 7	4,26	4,71	13,6	5,46	5,9
	351/2	0,64	0,23	0 ,0 8	1,32	0,45	0,55	I,64	0 ,6 8	0,82	I,86	0,85	0,98
	2d.,	0 ,7 I	0,26	0,II	I,46	0,5	0,56	I,82	0,76	0,82	2,07	0,94	0,99
	2 5=/2	0,67	0,24	0,15	1,41	0,47	0,62	I ,7 6	0,72	0,87	2,0	0,9	1,06

4

чтобы рассчитанная энергия 21- и 31 -состояний совпадала с экспериментальной. При таком выборе ко рассчитанные В(ЕА)величины получаются в изотопах Sm больше экспериментальных значений. Большая коллективность первых 2+-и 3-состояний определяет большие значения n, . Для некоторых состояний /например, 217/9 (N) , 2d_{5/2} (Z) / значения n, превышают 10% уже в ¹⁴⁶ Sm. Существенное уменьшение значения в, наблюдается, если уменьшить коллективность первых 2+- и 3- -состояний. что продемонстрировано для каждого ядра во вторых столбцах табл.2 и 3. Эти результаты получены опять-таки для значений $G_{\lambda} = 0$, однако к 0 выбиралось таким образом, чтобы рассчитанные значения В(ЕХ) совпадали с экспериментальными данными. Как показано в работе^{/1/}, такой выбор κ_0 приводит к увеличению в 1,2-2 раза энергии 2^+_1 -и 3^-_1 -состояний для $^{144-150}$ Sm по сравнению с экспериментальными величинами. Из табл.2 и 3 видно, что в получаются лишь для ¹⁵⁰ Sm. Эти этом случае значения $n_1 \ge 15\%$ результаты даны в /1/.

В третьих столбцах для каждого ядра показаны результаты, полученные с учетом взаимодействия в канале частица-частица, т.е. для $G_{\lambda} \neq 0$. Судя по приведенным значениям $B(E\lambda) / \underline{Taбл.1}/$, можно утверждать, что коллективность 2^+ - и 3^-_1 -состояний для этого случая сохранилась такой же, как и в случае, представленном во вторых столбцах <u>табл.2</u> и 3, хотя рассчитанные энергии 2^+_1 – и 3^-_1 -состояний совпадают с экспериментальными. Поэтому значения n_1 близки к тем, которые даны для каждого ядра во вторых столбцах <u>табл. 2</u> и 3.

В заключение можно сделать вывод, что количество квазичастиц в, в основных состояниях четно-четных сферических ядер скоррелировано со значениями $B(E\lambda)$ первых 2^+ -и 3^- -состояний. Подбирая силу взаимодействия таким образом, чтобы согласовать рассчитанные $B(E\lambda)$ величины с экспериментальными данными, мы получим, что количество квазичастиц в основных состояниях полумагических и соседних с ними ядер мало, оно больше для переходных ядер.

Взаимодействие в канале частица-частица при указанном выборе констант G_{λ} дает возможность уменьшить $B(E\lambda)$ -величины первых 2^+ -и 3^- -состояний. Таким образом, его учет уменьшает и количество квазичастиц в основных состояниях рассматриваемых ядер.

Автор благодарит проф. В.Г.Соловьева за интерес к работе и А.И.Вдовина за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Соловьев В.Г., Стоянова О., Стоянов Ч. Изь. АН СССР, сер. физ., 1980, 44, с.1938.
- 2. Нестеренко В.О., Соловьев В.Г., Халкин А.В. ЯФ, 1981, 32, с.1209.
- 3. Вдовин А.И. и др. Изв. АН СССР, сер.физ., 1976, 40, с.2183.
- 4. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- 5. Беляев С.Т. ЯФ, 1966, 4, с.936; Румянцев З.А., Телицын В.Б. ЯФ, 1972, 15, с.690.
- 6. Birbrair B.L., Erochina K.I., Lamberg 1.Kh. Nucl.Phys., 1970, A145, p.129.
- 7. Broglia R.A., Liotta R.J., Nilsson B.S. Nucl.Phys., 1980, A343, p.24.
- Toki H., Sano M. Osaka University, Laboratory of Nuclear Studies Reports, OULNS 73-61.
- 9. Соловьев В.Г. ЭЧАЯ, 1978, 9, с.580.