

Объединенный институт ядерных исследований

дубна

3230/2-81

29

P4-81-180

Б.А.Аликов, К.М.Муминов, Р.Г.Назмитдинов, Чан Зуй Кхыонг

НИЗКОЛЕЖАЩИЕ ВОЗБУЖДЕННЫЕ СОСТОЯНИЯ ¹³¹ La И ^{131,133} Ba В РАМКАХ КВАЗИЧАСТИЧНО-ФОНОННОЙ МОДЕЛИ

Направлено в "Изв. АН СССР, сер.физ." и на XXXI Совещание по ядерной спектроскопии и структуре атомного ядра /Самарканд, 1981/

В настоящее время ведутся интенсивные экспериментальные и теоретические исследования ядер с $A_{\sim}130^{/1-7/}$. Рассматриваемые нами изотопы 131,133 Ва и 131 La этой области относятся к переходным от сферических к деформированным.

В работе Курияма и др. $^{/3/}$ отмечается, что свойства ядра 133 La можно описать в предположении его неаксиальной деформации (γ =23,5°). Такую же деформацию можно ожидать в 131 La. Проведенные в последние годы теоретические исследования свойств переходных ядер показали, что подход к описанию их низковозбужденных состояний может быть различным:

1/ использование сферического базиса при расчете одноквазичастичных состояний с дальнейшим включением взаимодействия "квазичастица + фонон";

2/ расчет свойств этих ядер в предположении у них неаксиальной деформации;

3/ расчет свойств этих ядер в предположении у них аксиальной деформации с дальнейшим включением взаимодействия "квазичастица + фонон", кориолисова взаимодействия.

Последний подход, однако, применяется лишь в тех случаях, когда в экспериментальных спектрах излучения ядер наблюдаются "квазиротационные" полосы или вращательные полосы с большим коэффициентом развязки.

Использование 1 и 2 подходов при изучении одних и тех же ядер часто приводит к сравнимым результатам. Поэтому в настоящее время нет определенных указаний для выбора возможности использования 1 или 2 подхода в конкретных случаях.

На наш взгляд, этот вопрос можно было бы решить на основе конкретных расчетов не только энергий возбужденных уровней ядер переходных областей, но и расчетов вероятности переходов, разряжающих эти состояния, и сопоставления их с экспериментом. Наши недавние исследования периодов полураспада низковозбужденных состояний ядер ^{131,133} Ва и ¹³¹La позволили получить сведения об их временах жизни и вероятностях переходов с низковозбужденных состояний. Этим исследованиям посвящены работы^{/8,7/}.

МОДЕЛЬ И ПАРАМЕТРЫ РАСЧЕТА

В рамках квазичастично-фононной модели, развитой в группе В.Г.Соловьева^{/8/}, рассчитывались спектры возбужденных состояний ядер ^{131,133} Ва, ¹³¹ La, а также вероятности электромагнитных переходов.

AGT BERE HIS IN BACTLE BUSICE STORES IN THE REAL PORTS WIND IVAN ENA

1

Волновая функция, описывающая возбужденные состояния сферических нечетных ядер, выбирается в виде /8/

$$\Psi_{\nu}(JM) = C_{J}^{\nu} \{a_{JM}^{+} + \sum_{\lambda ii} \hat{T}_{j}^{\lambda i} (J_{\nu}) [a_{jm}^{+}, Q_{\lambda \mu i}^{+}]_{JM} \} \Psi_{0}, \qquad /1,$$

где $a_{\rm IM}^+$ - оператор рождения квазичастицы с квантовым числом Ј / Ј означает 3 квантовых числа, характеризующих одночастичное состояние в сферическом потенциале nlj /; M проекция полного момента; $Q_{\lambda\mu i}^+$ оператор фонона с моментом λ , проекцией μ и номером i; Ψ_0 - волновая функция ос-новного состояния четно-четного ядра. Как и в работе /9/, в волновой функции /1/ нечетного ядра учитываются лишь компоненты. включающие взаимодействие квазичастицы с одним фононом.

Гамильтониан квазичастично-фононной модели включает в себя наряду с потенциалом среднего поля и спаривательным взаимодействием факторизованные мультипольные и спин-мультипольные, с изоскалярной и изовекторной компонентами, силы, которые генерируют в четно-четных ядрах фононные состояния с различными спинами и четностями. В этой модели квазичастично-фононное взаимодействие ответственно за смешивание различных мод возбуждения, что приводит к распределению силы одночастичных состояний по ядерным уровням, т.е. к фрагментации.

В работе / 10/ получены уравнения для энергий и структурных коэффициентов C_{J}^{ν} и $\mathfrak{T}_{i}^{\lambda i}(J_{\nu})$ с учетом точных коммутационных соотношений между операторами рождения и уничтожения квазичастиц a_{IM}^+ и фононов $Q_{\lambda\mu}^+$.

Вид этих уравнений следующий:

$$\epsilon_{\rm J} - \eta_{\rm J\nu} - \frac{1}{2} \sum_{\lambda ij} \frac{\Gamma (Jj\lambda i) \{1 + \mathcal{L}(Jj\lambda i)\}}{\epsilon_{\rm j} + \omega_{\lambda i} - \eta_{\rm J\nu} - R(Jj\lambda i)} = 0, \qquad (2/2)$$

$$\mathfrak{L}_{j}^{\lambda i}(J_{\nu}) = \frac{1}{\sqrt{2}} \frac{\Gamma(Jj\lambda i)}{\epsilon_{j} - \eta_{J\nu} + \omega_{\lambda i} - R(Jj\lambda i)} \cdot /3/$$

Функции R(Jj λi) и C(Jj λi) довольно громоздки. Они зависят от структуры фонона λi, и их вид мы здесь приводить не будем, см. работу^{/10/}.

$$\Gamma(Jj\lambda i) = \left(\frac{2\lambda + 1}{2J + 1}\right)^{\frac{1}{2}} \frac{f_{JJ}^{\lambda} v_{JJ}^{(\mp)}}{\sqrt{\frac{q_{J}\lambda i}{r}}} .$$
 /4/

yλi можно рассчитать из условия нормировки Коэффициент волновой функции:

 $(C_{J}^{\nu})^{2}\left\{1+\sum_{\lambda i j}\left[\pounds_{j}^{\lambda i}(J_{\nu})\right]^{2}\left(1+\pounds(Jj\lambda i)\right)\right\}=1.$ /5/

В уравнениях /2/-/4/ использованы следующие обозначения: с энергия одноквазичастичного состояния; ω_{λ_3} - энергия однофононного состояния; f_{II}^{λ} - одночастичный матричный элемент мультипольного /или спин-мультипольного/ оператора, величина yλi характеризует "коллективность" фонона, она минимальна для нижайшего квадрупольного и октупольного фононов.

 $v_{j_1j_2}^{(\mp)} = u_{j_1} u_{j_2}^{\mp} v_{j_1} v_{j_2}^{*}$, где u_j, v_j коэффициенты преобразования Боголюбова; верхний знак у $v_{j_1j_2}^{(\mp)}$ соответствует мультипольным фононам λ_i ; нижний - спин-мультипольным. Параметры одночастичного потенциала Вудса-Саксона для нейтронов и протонов приведены в табл.1.

Таблица 1

Α	N,Z	r ₀ , Фм	V ₀ ,МэВ	к, Фм ²	а,Фм ⁻¹	С _{N,Z} МэВ
131	N = 74	1,26	44,2	0,346	1,587	0,128
131	Z = 57	1,24	58,8	0,354	1,587	0,124

Расчеты энергий одночастичных состояний и приведенных матричных элементов были выполнены с помощью программы REDMEL, реализующей численный метод решения уравнения Шредингера для сферически-симметричного потенциала, предложенный в работе /11/ При решении уравнений /2/-/4/ учитывались одночастичные связанные и квазисвязанные состояния от дна потенциальной ямы до энергии ~20 МэВ.

Характеристики квадрупольных и октупольных фононов определялись из условия оптимального описания энергий возбужденных состояний ядер 131,133 Ва и 131 La с помощью программы RPAS /12/

При этом энергии 2⁺₁- и 3⁻₁ -уровней в соседних четно-четных ядрах систематически получались завышенными. Это приводило к уменьшению коллективности данных состояний, что обусловило завышенное значение эффективного заряда при вычислении электрических переходов.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Следует сразу подчеркнуть, что рассматриваемые ядра по своим свойствам относятся к переходным, между сферическими и де-

I	Е _{эксп}	E _{reop}	СТРҮКТҮРА		
1	2	3	• 4		
			l31 _{Ba}		
1/2+	0	0	$82.14\% 3_{1/2+} + 9.04\% [2_{3/2}^{\otimes 2_{1}^{+}}]_{1/2+} + 7.35\% [2_{5/2}^{\otimes 2_{1}^{+}}]_{1/2+}$		
3/2+	108	89	$79.99\% 2d_{3/2+} + 8.71\% \left[2d_{3/2}^{\otimes}2_{1}^{+}\right]_{3/2+} + 6.12\% \left[3s_{1/2}^{\otimes}2_{1}^{+}\right]_{3/2+}$		
9/2-	188	148.5	99.90% [lh _{II/2} ^{@2}] 9/2-		
11/2-	287.4	216.7	97.94% lh _{ll/2-}		
5/2+	317	1180.3	47.365 $2d_{5/2+}$ +26.09% $2d_{3/2} \otimes 2^{+}_{1}_{5/2+}$ +12.60% $3s_{1/2} \otimes 2^{+}_{1}_{5/2+}$		
3/2+	285	1704.9	$1.59\% 2d_{3/2+} +72.43\% [2d_{3/2} \otimes 2^+_1]_{3/2+} +25.65\% [3s_{1/2} \otimes 2^+_1]_{3/2+}$		
.5/2+		1765.5	$10.28\% \ 2d_{5/2+} +72.0 \ \% \left[2d_{3/2} \ \% 2_{1}^{+}\right]_{5/2+} +11.62\% \left[3s_{1/2} \ \% 2_{1}^{+}\right]_{5/2+}$		
7/2+	544.2	1827.6	$63.75\% \ 1g_{7/2+} +20.39\% \left[2d_{3/2} \otimes 2\frac{1}{1}\right]_{7/2+} +12.16\% \left[1g_{7/2} \otimes 2\frac{1}{1}\right]_{7/2+}$		
3/2+		2013.2	$10.51\% 2d_{3/2+} +67.80\% [38_{1/2} \otimes 2^{+}_{1}]_{3/2+} +18.46\% [2d_{3/2} \otimes 2^{+}_{1}]_{3/2+}$		
1/2+	360	2187.9	$6.16\% 3_{3_{1/2+}} + 89.65\% [2_{3/2}^{\circ}2_{1}^{+}]_{1/2+} + 3.84\% [2_{5/2}^{\circ}2_{1}^{+}]_{1/2+}$		

Таблица 2 /продолжение/

1	2	3		4	
				133 _{Ba}	· · · · · · · · · · · · · · · · · · ·
1/2+	0	0	73.19% 3s _{1/2+}	+16.0 % [2d _{3/2} 2 ⁺] _{1/2+}	+10.10% [2d _{5/2} ^{@2}] 1/2+
3/2+	12.3	13.1	69.55% 2d _{3/2+}	+14.97% [2d _{3/2} ^{@2} 1] _{3/2+}	+ 9.70% $\left[3s_{1/2}^{\circ}2_{1}^{+}\right]_{3/2+}$
11/2-	288.4	312.9	97.09% 1h _{11/2-}		
5/2+	291.1	1211.5	40.87% 2d _{5/2+}	+32.27% [2d _{3/2} ^{@2}] 5/2+	+14.22% [381/2 ⁸²] 5/2+
3/2+	302.3	1723.9	1.92% 2d _{3/2+}	+64.78% [2d _{3/2} [•] 2 ⁺ ₁] 3/2+	+32.78% [381/2 ^{@21}] 3/2+
5/2+		1893.3	11.13% 2d _{5/2+}	+65.50% [2d _{3/2} @21] 5/2+	+16.29% [381/2 ²] 5/2+
7/2+	577.6	1962.9	56.01% 1g7/2+	+25.81% [2d _{3/2} ®2 ⁺] _{7/2+}	+15.10% [1g7/2 ^{®2}] 7/2+
3/2+		2273	16.60% 2d _{3/2+}	+56.32% [381/2 ⁸²] 3/2+	+19.25% [2d _{3/2} ⁸²] 3/2+
1/2+	539.6	2327	8.90% 3s _{1/2+}	+80.89% [2d _{3/2} ^{©2} 1] 1/2+	+ 9.87% [2d _{5/2} *2 ⁺] 1/2+
9/2-	-	2682.2	99.99% [lh _{ll/2} @2	1]9/2-	

Ś

формированными. Об этом можно судить по относительно низким экспериментальным энергиям 2⁺₁ -уровней в соседних четно-четных ядрах 300-400 кэВ.

Как показано в работах ^{/13,14/}, в таких ядрах плохо выполняется приближение хаотических фаз о малости числа квазичастиц в основном состоянии, поэтому трудно рассчитывать на хорошее количественное согласие наших расчетных данных с экспериментальными. Действительно, сравнение теоретически и экспериментально полученных значений энергий уровней /<u>табл.2</u>/ показывает, что удовлетворительно описываются энергии лишь трех-четырех нижайших состояний. Для высоколежащих состояний получен лишь относительный порядок в расположении уровней.

Чтобы правильнее описывать спектры изучаемых ядер, необходим выход за рамки приближения хаотических фаз. По крайней мере следует включить в волновую функцию /1/ более сложные компоненты ^{/16/} и учесть ангармоничность колебаний четно-четного остова.

В табл.2 приведены значения рассчитанных энергий возбужденных состояний ядер ^{131,133} Ва и соответствующая им структура волновых функций. Из таблицы видно, что уже основное и первое возбужденное состояния в ядрах 131,133 Ва имеют значительный вклад /20-30%/ примесей соответствующих взаимодействий типа квазичастица + фонон, которые могут дать существенный вклад в вероятности Е2-переходов. Состояние 11/2 - как в 133Ва. так и в ¹³¹Ва оказывается практически одноквазичастичным. В спектре ¹³¹ Ва наблюдается низколежащий уровень 9/2⁻ /188 кэВ/, как видно из табл.2, это уровень, относящийся к мультиплету [1h,1/2@2⁺]. Сильное понижение энергии уровня 9/2⁻ в ¹³¹Ва относительно невозмущенного положения объясняется влиянием принципа Паули, учет которого в данном случае резко улучшает согласие с экспериментом. Для высоколежащих состояний наблюдается довольно сложная структура. При этом возможна значительная фрагментация различных состояний, например, состояние $[2d_{3/2} \otimes 2^+_1]_{3/2^+}$ распределилось по трем уровням. Результаты расчетов в ¹³¹La оказались неудовлетворитель-

Результаты расчетов в 101La оказались неудовлетворительными. При выбранных значениях параметров в структуру основного состояния подавляющий вклад дают компоненты a^+Q^+ , что указывает на неприменимость в этом ядре используемого нами относительно простого варианта квазичастично-фононной модели.

С помощью рассчитанных волновых функций вычислялись вероятности электромагнитных переходов, разряжающих первое возбужденное состояние в рассматриваемых ядрах.

факторы задержки Е2-компонента этих переходов в случае 131 Ва и 131 La равны 5,5 и 5,2 соответственно. При этом в расчетах учитывался эффективный заряд для.нейтронов / $e_{9\phi.n}$ = 0,3/.

Попытка рассчитать вероятности М1-компонентов рассматриваемых переходов была предпринята на примере ядра ¹³³ Ва. Необходимо отметить, что переход $3/2^+ \rightarrow 1/2^+/12$, 3 кэВ/ в этом ядре является ℓ -запрещенным типа $2d_{3/2} \rightarrow 1s_{1/2}$ /6/. Это означает, что М1-переходы между этими состояниями в данной модели могут быть обусловлены примесями 1^+ -фононов в волновой функции /1/. Описанный расчет показал, что полученная величина приведенной вероятности чрезвычайно мала. Это говорит о том, что снятие ℓ -запрета данного перехода невозможно объяснить в рамках используемой нами модели с волновой функцией /1/. Снятие ℓ -запрета можно связать либо с влиянием спинквадрупольных сил/^{15/} на структуру 1^+ -фононов, либо с поляризационным членом в операторе М1-перехода/^{17/}.Эти вопросы требуют дополнительных исследований.

В заключение авторы выражают искреннюю признательность Ч.Стоянову и А.И.Вдовину за полезные советы, К.Я.Громову за интерес к работе.

ЛИТЕРАТУРА

- 1. Henry E.A., Meyer R.A. Phys.Rev.C, 1978, vol.18, No.4, p.1814.
- Gizon J., Gizon A., Meyer-Ter Vehn J. Nucl. Phys., 1977, A277, p.464.
- 3. Kurijama A. et al. Suppl.Prog.Theor.Phys., 1975, 58.
- 4. Deleplunque M.A. et al. Nucl.Phys., 1973, A207, p.565.
- 5. Meyer-Ter-Vehn J. Nucl. Phys., 1975, A249, p.111.
- 6. Андрейчев В. и др. ЯФ, 1979, т.29, вып.4, с.849.
- 7. Андрейчев В. и др. ОИЯИ, Р6-12622, Дубна, 1979.
- 8. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- Dambasuren D. et al. J.Phys.G. Nucl.Phys., 1976, vol.2, No.1, p.25.
- 10. Chan Zuy Khuong et al. J.Phys.G. Nucl.Phys., 1981, vol.7, No.1, p.151.
- 11. Bang J. et al., Nucl. Phys., 1976, v.A261, No.1, p.59.
- 12. Стоянов Ч., Юдин И.П. ОИЯИ, Р4-11076, Дубна, 1977.
- 13. Соловьев В.Г. и др. Изв. АН СССР, сер.физ., 1980, 44, с.1938.
- 14. Нестеренко В.О. и др. ЯФ, 1980, т.32, вып.5/11/, с.1209.
- 15. Пономарев В.Ю., Вдовин А.И. ОИЯИ, Р4-80-392, Дубна, 1980.
- 16. Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl.Phys., 1980, A342, No.2, p.261.
- 17. Бор А., Моттельсон В. Структура атомного ядра. "Мир", М., 1971, т.1.

Рукопись поступила в издательский отдел 12 марта 1981 года.

7

6