

объединенный NHCTNTYT ядерных исследований дубна

2682/2.

1/6-81

P4-81-118

Ч.Стоянов

ИЗУЧЕНИЕ

ГЛУБОКОЛЕЖАШИХ ДЫРОЧНЫХ СОСТОЯНИЙ НЕЧЕТНЫХ СФЕРИЧЕСКИХ ЯДЕР

Направлено на XXXI Совещание по ядерной спектроскопии и структуре атомного ядра, Самарканд

1. ВВЕДЕНИЕ

В последние годы появились многочисленные экспериментальные данные, указывающие на проявления структуры ядра при промежуточных и высоких энергиях возбуждения. Большой интерес вызывают реакции одно- и двухнуклонных передач, в которых возбуждаются дырочные состояния. В сечениях этих реакций при энергиях возбуждения ядра 5-8 МэВ наблюдаются резонансоподобные структуры, соответствующие концентрации силы относительно простых /малочастичных/ компонент волновой функции ядра.

В средних и тяжелых атомных ядрах при высоких энергиях возбуждения малоквазичастичные компоненты сильно взаимодействуют с более сложными / 2p1h , 1p2h и т.д./ компонентами. Это взаимодействие приводит к разбросу силы простых конфигураций по многим ядерным уровням в интервале нескольких МэВ, т.е. к их фрагментации.

Настоящая работа посвящена описанию в рамках квазичастичнофононной модели ядра фрагментации малоквазичастичных компонент волновых функций нечетных сферических ядер.

2. КВАЗИЧАСТИЧНО-ФОНОННАЯ МОДЕЛЬ ЯДРА

Квазичастично-фононная модель ядра является дальнейшим развитием сверхтекучей модели ^{/1/}, которая успешно используется для описания свойств низколежащих состояний в деформированных и сферических ядрах. Квазичастично-фононная модель дает возможность ^{/2/} единого описания малоквазичастичных компонент волновых функций ядра при низких, промежуточных и высоких энергиях возбуждения. В этой модели ядро рассматривается как система нуклонов, движущихся в усредненном потенциале и взаимодей-ствующих посредством остаточных сил. Остаточное взаимодействие включает короткодействующие силы спаривания, а также дально-действующие мультипольные $V_{\alpha\lambda}(\vec{r_1},\vec{r_2})$ и спин-мультипольные $V_{\alpha\lambda}(\vec{r_1},\vec{r_2})$

ressources and arrested and a second statements and a

En Carrent Cours

$$\begin{aligned} \mathbb{V}_{\sigma\lambda}^{\mathrm{L}}(\vec{r}_{1},\vec{r}_{2}) &= 1/2(\kappa_{0}^{(\lambda\mathrm{L})} + \kappa_{1}^{(\lambda\mathrm{L})}\vec{r}_{1}\vec{r}_{2})\sum_{\mathrm{M}} r_{1}^{\lambda}[\vec{\sigma}_{1} \mathbb{Y}_{\lambda\mu}(\theta_{1},\phi_{1})]_{\mathrm{LM}} \times \\ &\times r_{2}^{\lambda}[\vec{\sigma}_{2} \mathbb{Y}_{\lambda\mu}(\theta_{2},\phi_{2})]_{\mathrm{L-M}} . \end{aligned}$$

Основные предположения, которые используются в квазичастично-фононной модели следующие ^{/2-4/}:

1. Из ядерного гамильтониана выделяется часть H_{ph}, описывающая как вибрационные, так и двухквазичастичные возбуждения. Волновая функция этих возбуждений строится с использованием оператора Фонона

 $\Psi_{i}(JM) = Q_{IMi}^{\dagger}\Psi_{0},$

где Ψ_0 - волновая функция основного состояния четно-четного ядра, а Q^+_{JMi} - оператор рождения фонона с моментом J, проекцией M и номером i. Таким образом, можно построить однофононные коллективные и неколлективные возбуждения четно-четного ядра с разными моментами и четностями.

2. Из оставшейся части гамильтониана выделяется член H_{qph} связывающий квазичастичные и фононные возбуждения. Следует отметить, что квазичастично-фононное взаимодействие /член H_{qph} / свободных параметров не содержит.

3. Основные приближения выбираются так, чтобы получилось более точное описание малоквазичастичных компонент волновой функции возбужденных состояний.

При расчетах используется метод силовых функций ^{/2,5/}. Этот метод дает возможность вычислить средние значения малоквазичастичных компонент в некотором энергетическом интервале. В качестве усредняющей функции использовалась функция лоренцевского типа:

$$\rho(x) = \frac{1}{2\pi} \frac{\Delta}{x^2 + \Delta^2/4}; \quad \int_{-\infty}^{+\infty} \rho(x) \, dx = 1.$$
 /2/

3. ОПИСАНИЕ ДЫРОЧНЫХ СОСТОЯНИЙ

2

Первые данные о возбуждении глубоколежащих дырочных состояний в нечетных ядрах появились в 1972 году. Они были получены при изучении (p, d) -реакции при $E_p = 52,55$ МэВ на изотопах Mo⁷⁶⁷. Позднее при помощи реакций (p, d), (³He, a), (d, t) удалось расширить область исследуемых ядер и наблюдать новые состояния. Детально изучено нейтронное дырочное состояние $1g_{9/2}$ в изотопах олова⁷⁷. Исследовано также протонное дырочное состояние $1g_{9/2}$ в ¹⁴³ Pm⁷⁸⁷. Вся многочисленная экспериментальная информация была систематизирована в ^{/9,10/}. Основные выводы следующие:

1. В изотопах олова переходы с ℓ = 4 сконцентрированы в районе 5,5 МэВ, и ширина этой области ≈1 МэВ.

2. На 1,0-2,0 МэВ выше первой области наблюдается вторая область концентрации переходов с l = 4. В более легких ядрах (Ni), однако^{/11/}, вторая область не выделяется так четко.

Волновую функцию возбужденных состояний нечетных сферических ядер выберем в виде

$$\Psi_{\nu} (JM) = C_{\nu} (J) \{ a_{JM}^{+} + \sum_{\lambda ij} D_{j}^{\lambda i} [a_{jm}^{+} Q_{\lambda \mu i}^{+}]_{JM} + \sum_{\substack{\lambda_{1}i_{1} \\ \lambda_{1}i_{1}}} F_{jI}^{\lambda_{1}i_{1}\lambda_{2}i_{2}} [a_{jm}^{+} [Q_{\lambda_{1}\mu_{1}i_{1}}^{+} Q_{\lambda_{2}\mu_{2}i_{2}}^{+}]_{IK}]_{JM} \} \Psi_{0}.$$
(3/

Здесь a_{jm}^+ - оператор рождения квазичастицы, $Q\bar{\lambda}_{\mu i}$ - оператор рождения фонона, Ψ_0 - основное состояние четно-четного ядра. Член H_{qph} в гамильтониане имеет отличные от нуля матричные элементы

$$\langle \alpha_{JM} | H_{qph} | [\alpha_{jm}^+ Q_{\lambda\mu i}^+]_{JM} \rangle$$
, /4/

 $< [a_{jm}Q_{\lambda\mu i}]_{JM} |H_{qph}| [a_{j_{1}m}^{+} [Q_{\lambda_{1}\mu_{1}i_{1}}^{+}, Q_{\lambda_{2}\mu_{2}i_{2}}^{+}]_{IK}]_{JM} > .$ /5/

Первый из этих матричных элементов определяет фрагментацию квазичастичного состояния $|JM\rangle$ по конфигурациям"квазичастица + фонон" /1p2h или 1h2p /. Второй матричный элемент распределяет силы компонент "квазичастица + фонон" (a^+Q^+) в /3/ по более сложным конфигурациям.

Пользуясь весовой функцией /2/, определим величину

$$c^{2}(\eta) = \sum_{\nu} C_{J\nu}^{2} \frac{1}{2\pi} \frac{\Delta}{(n-n_{\nu})^{2} + \Lambda^{2}/4}$$

Здесь ν - номер возбужденного состояния; η_{ν} его энергия. Описание метода вычисления с² (η) можно найти в^{/12,13/}. Функция с² (η) связана со спектроскопическим фактором состояния ј /с квантовыми числами nlj /:

$$S_{j} = (2j+1) v_{j}^{2} \int_{E_{1}}^{E_{2}} c^{2}(\eta) d\eta, \qquad (6/)$$

где v_i - коэффициент Боголюбова.

Рассмотрим нейтронные дырочные состояния $1g_{9/2}$ в 119 Sn. На <u>рис.1</u> показана зависимость функции с $^2(\eta)$ этого состояния

3

<u>Рис.1.</u> Распределение силы нейтронного состояния 1g $_{9/2}$ в ¹¹⁹ Sn. a/ Компоненты $a^+Q^+Q^+$ из волновой функции /3/ выключены, а в компоненты a^+Q^+ входят только первые квадрупольные и октупольные фононы. б/ Компоненты a^+Q^+ включают все возможные фононы, а $a^+Q^+Q^+$ выключены. в/ Волновая функция /3/ включает все возможные одно- и двухфононные состояния.

от размеров фононного пространства и от количества компонент типа "квазичастица + два фонона" ($a^+Q^+Q^+$) в волновой функции /3/. На <u>рис.1а</u> показаны значения с²(η) в случае, когда в волновой функции /3/ коэффициенты $F \equiv 0$ /т.е. члены $a^+Q^+Q^+$ отброшены/.Кроме того, из всех возможных компонент a^+Q^+ оставлены только те, в которых участвуют только первые квадрупольные и октупольные фоно-

ны. Это приближение во многом похоже на модель, используемую в работе^{/14/}. На <u>рис.16</u> опять-таки $F \equiv 0$, но фононное пространство расширено и компоненты a^+Q^+ включают мультипольные и спин-мультипольные фононы с моментами от 1 до 7. Расчеты с такой волновой функцией представлены в^{/15/}.На <u>рис.1в</u> показано распределение с $c^2(\eta)$ для случая, когда в волновую функцию /3/ включены все компоненты $a^+Q^+Q^+$ /т.е. все $F \neq 0$ / и фононное пространство включает все уже упомянутые фононы. В работах^{/14,15/} показано, что одна из особенностей, отличающих вариант <u>1a</u> от <u>1в</u>, - это резкое увеличение плотности состояний. В результате состояние <u>1g 9/2</u> сильнее фрагментировано.

Существенно также влияние состояний, образующих низкоэнергетический октупольный резонанс /НЭОР/. Квазичастичная компонента $1g_{9/2}$ имеет большие матричные элементы с конфигурациями [[$1h_{11/2} \otimes 3_1^-]_{9/2}$ +>, где индекс і обозначает 3⁻состояния, образующие НЭОР. В изотопах олова энергия состояний [[$1h_{11/2} \otimes$ НЭОР $1_{9/2}$ +> близка к квазичастичной энергии состояния $1g_{9/2}$. Последовательный учет НЭОР в расчетах приводит к существенному перераспределению силы состояния $1g_{9/2}$ в районе максимумов с² (η). Указанные выше эффекты приводят к сильному изменению зависимости с²(η) от энергии η при переходе от <u>1a</u> к <u>1B</u>. В области главного пика, т.е. в интервале 4,3-6,5 МэВ, сконцентрировано 43% силы состояния, что почти в 2 раза меньше, чем было получено в /14/.

В тяжелых ядрах, поскольку 2⁺₁-состояния в них сильно коллективизированы, матричный элемент <a_{1g_{9/2}} |Hqph|[$a_{1g_{9/2}}^+ \otimes Q_{2+1}^+]_{9/2^+}$ >

Рис.2. Распределение силы нейтронного состояния 1g_{9/2} в изотопах самария. Стрелками указано положение квазичастичной энергии состояния 1g_{9/2}.

по своей величине больше остальных матричных элементов. Это обстоятельство и приводит к появлению второго максимума в распределении силы 1go/o состояния. На рис.2 показано распределение силы 1g9/2 -состояния для изотопов 141-147 Sm. Среди рассматриваемых изотопов встречаются как околомагичесские (^{143,145}Sm) ядра, так и ядра, близкие по своим свойствам к переходным. Эти особенности низколежащих состояний влияют на фрагментацию 1g_{9/2-}компоненты. В ¹⁴³Sm ее сила

сосредоточена в более узком энергетическом интервале, чем в 141 Sm. В более тяжелых изотопах 145,147 Sm нейтронная оболочка с N=82 уже заполнена, и поэтому невозмущенная квазичастичная энергия 19979 почти на 3 МэВ выше, чем в более легких изотопах самария. В этом энергетическом интервале плотность состояний "квазичастица + два фонона" гораздо больше, что приводит к более сильному размытию силы $1g_{9/2}$ в 145 Sm, чем в 143 Sm, хотя количество нейтронов в них отличается лишь на 1 от магического числа N=82. В 145,147 Sm расчеты также указывают на два максимума для с² (η), как и в более легких изотопах. Это говорит о том, что матричный элемент $< a_{1g_{9/2}} |H_{qph}| [a_{1g_{9/2}}^+ \circ Q_{1}^+]_{9/2^+} >$ сильно выделяется среди остальных матричных элементов. Поэтому мы можем в общих чертах понять некоторые особенности фрагментации дырочного состояния 1g 9/2, пользуясь простыми моделями /14,15/ которые учитывают взаимодействия только с квадрупольным состоянием. Для более детального анализа особенностей экспериментальных распределений, как следует из рис.1, необходимо учитывать и взаимодействие с другими состояниями.

В работе^{/13/} получены результаты по фрагментации дырочных состояний в легких, средних и тяжелых ядрах. Они неплохо согласуются с экспериментальными данными. В табл.1 приведены теоретические значения средней энергии E_x , ширина Γ и спектро-

4

5

Таблица

Распределение силы дырочного состояния 1g_{9/2} в некоторых изотопах олова, теллура и самария

Ядро	۵E	Ē, Məb		Г МэВ		Sj	
	МэВ	эксп.	теор.	эксп.	теор.	эксп.	теор.
115 Sn	4,8-5,8	5,47	5,5	0,59	0,63	2,5	2,7
	6,8-8,6	6,7	7,6	2,6	1,3	3,2	2,6
115 Su	4,3-6,5	5,61	5,8	I,05	1,15	2,5	4,3
	6,5-8,6	7,00	7,5	I,90	1,27	2,4	3,4
123 Te	4,2-6,7	5,45	5,3	I,90	0,98	4,0	3,3
	4,2-9,5	5,6	6,3	3,7	2,35	5,5	7,6
143 Sm	6-12	7,6	8,I	2-3	I,64	5,2	5,49
	12–18	>12	10,2	4	-	I,8	I,77 ·

скопический фактор S_j получены в рамках квазичастично-фононной модели. Экспериментальные данные взяты из работ ^{/7,9,10/}.

Данные по распределению силы дырочных состояний в изотопах свинца опубликованы в^{/17/}. В работе^{/18/} рассчитано распределение силы состояний 1i_{13/2}, 1h_{9/2}, 1h_{11/2}, 2f_{7/2} в ^{205,207}Pb.В расчетах использовалась волновая функция, в которой отброшены компоненты $a^+Q^+Q^+$ /т.е. в /3/ все $F \equiv 0$ /. Результаты показали, что такую волновую функцию можно использовать для описания распределения силы низколежащих состояний. С ростом энергии возбуждения роль компонент $a^+Q^+Q^+$ увеличивается.

4. ОПИСАНИЕ ФРАГМЕНТАЦИИ КОМПОНЕНТ ''КВАЗИЧАСТИЦА + ФОНОН''

Распределение силы компонент "квазичастица + фонон" /либо трехквазичастичных компонент, если фонон неколлективный/ волновой функции /3/ существенно для описания у -переходов, идущих с высоковозбужденных состояний в основное состояние '19'. Распределение этих компонент в окрестности энергии связи нейтрона важно для определения вклада механизма входных состояний в реакциях с нейтронами 20. Компоненты a^+Q^+ также определяют спредовые ширины гигантских мультипольных резонансов в нечетных ядрах. В квазичастично-фононной модели распределение силы компоненты типа $[a^+_{jm} Q^+_{\lambda \mu i}]_{JM}$ волновой функции /3/ сводится к вычислению величины

$$d^{2}(\eta) = \sum_{\nu} [C_{J\nu} D_{J}^{\lambda i}]^{2} \frac{\Delta}{2\pi} \frac{1}{(\eta - \eta_{\nu})^{2} + \Delta^{2}/4}.$$
 /7/

Как уже отмечалось, матричные элементы /5/ определяют фрагментацию компонент "квазичастица + фонон" по более сложным -"квазичастица + два фонона". Если в волновой функции /3/ выключить члены $a^+Q^+G^+$, то невозможно, в принципе, вычислить распределение силы компонент a^+Q^+ по более сложным конфигурациям. Однако в случае, когда в /3/ все $F \equiv 0$, из-за матричного элемента /4/, смешивающего квазичастичные состояния a^+ с a^+Q^+ , происходит некое распределение силы компонент "квазичастица + фонон". Этот эффект тем сильнее, чем больше степень коллективности фонона, входящего в конфигурацию a^+Q^+ .

На <u>рис.3</u> показано распределение силы $[1g_{9/2} \otimes 2_1^+]_{9/2}^+$ и $[2d_{5/2} \otimes 2_1^+]_{9/2+}$ компонент волновой функции /3/ для ядра ¹¹⁹ Sn. Вертикальными линиями обозначено распределение силы этих компонент в случае, когда из /3/ выключены члены $a^+Q^+Q^+$ /т.е. все F=0 /. Так как 2_1^+ -состояние в ¹¹⁸ Sn – коллективное, то компонента $[1g_{9/2} \otimes 2_1^+]_{9/2+}$ фрагментирована также и за счет взаимодействия с одноквазичастичной компонентой. На <u>рис.3а</u> вертикальными линиями показан вклад в % $[1g_{9/2} \otimes 2_1^+]_{9/2+}$ в разные состояния.

На рис.36 представлено распределение компоненты $[2d_{5/2} \otimes 2_7^+]_{9/2}^+$ Поскольку седьмое 2⁺-состояние (2⁺7), рассчитанное в приближении хаотических фаз, неколлективное, в случае, когда из /3/ выключены члены $a^+Q^+Q^+$, сила этой компоненты сконцентрирована в основном на одном состоянии /большая вертикальная линия/.

Сплошная кривая на <u>рис.3</u> показывает ход функции d²(η) /7/. Для обоих случаев характерны заметные сдвиги максимумов распределений по сравнению со случаем $F \equiv 0$. Значительная часть силы выталкивается вверх.

Результаты показывают, что сила компонент "квазичастица + фонон" при высоких энергиях распределена в большом энергетическом интервале. На основании этого можно ожидать значительных отличий в вероятностях между у -переходами при высоких энергиях, рассчитанными с волновой функцией /3/,и более простыми моделями, такими, как, например, модель валентного нейтрона.

Рис.3. Распределение силы компонент $[1g_{9/2} \otimes 2^+_1]_{9/2^+}$ и $[2d_{5/2} \otimes 2^+_7]_{9/2^+}$. Вертикальные линии показывают распределение для случая, когда компоненты $a^+Q^+Q^+$ выключены из /3/. Сплошная кривая – все компоненты $a^+Q^+Q^+$ входят в /3/.

5. ЗАКЛЮЧЕНИЕ

8

Экспериментальная информация о распределении силы однодырочных состояний дает нам возможность сделать на сегодняшний день определенные выводы о закономерностях фрагментации этих простых компонент волновой функции ядра. Результаты, полученные в рамках квазичастично-фононной модели, удовлетворительно воспроизводят эти закономерности. Поэтому можно считать, что идеи модели о важности взаимодействия со сложными конфигурациями и о влиянии низколежащих коллективных состояний на фрагментацию находятся в соответствии с реальными физическими процессами, происходящими при рассматриваемых энергиях возбуждения ядра.

Интересно провести подобные исследования и в четно-четных сферических ядрах. Экспериментальная информация /в основном данные (p,t)-реакции/ уже начала появляться ^{/10,21}. В рамках квазичастично-фононной модели в четно-четных ядрах было достигнуто хорошее описание фрагментации частично-дырочных состояний по более сложным двухфононным конфигурациям ^{/22-24/}.

В (p,t)- и (t,p) -реакции, однако, заметную роль может играть фрагментация частично-частичных компонент $^{/25/}$. Описание таких процессов, по-видимому, возможно осуществить, пользуясь результатами работ $^{/26/}$.

Автор выражает благодарность проф. В.Г.Соловьеву за постоянный интерес к работе и ценные замечания, а также А.И.Вдовину и В.В.Воронову за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971.
- Соловьев В.Г. ЭЧАЯ, 1978, 9, с.810; Nucleonika, 1979, 23, р. 1149.
- 3. Соловьев В.Г. Изв. АН СССР /сер.физ./, 1971, 35, с.666; 1977, 38, с.1580.
- Soloviev V.G. Selected Topics in Nucl.Struct., JINR, D-9920, Dubna, 1976, v.2, p.146; Soloviev V.G. Journ.Phys. Soc. of Japan, Suppl., 1978, 14, p.323.
- 5. Бор О., Моттельсон Б. Структура ядра. "Мир", М., 1971, т.1.
- 6. Sakai M., Kubo K.T. Nucl.Phys., 1972, A185, p.217.
- 7. Tanaka M. et al. Phys.Lett., 1978, 78B, p.221; Gerlic F. et al. Phys.Rev., 1980, C21, p.124.
- 8. Doll P. et al. Phys.Lett., 1979, 82B, p.357.
- 9. Crawley G.M. Inst. of Phys.Conf.Ser., 1980, No.49, Ch.1, p.127.
- 10. Gales S. Preprint of Inst. de Phys.Nucl., Orsay, IPN PhN 80-23, 1980.
- 11. Fortier S., Gales S. Nucl. Phys., 1979, A321, p.137.
- 12. Стоянов Ч. ТМФ, 1979, 40, с.422.
- 13. Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl.Phys., 1980, A342, p.261.

9

- 14. Koeling T., lachello F. Nucl. Phys., 1978, A295, p.45.
- 15. Вдовин А.И., Стоянов Ч., Чан Зуй Кхыонг. Изв. АН СССР, /сер.физ./, 1979, 43, с.998.
- 16. Scholten O. et al. Nucl.Phys., 1980, A348, p.301.
- 17. Guillot J. et al. Phys.Rev., 1980, C21, p.879.

- 18. Воронов В.В., Чан Зуй Кхыонг. ОИЯИ, Р4-81-69, Дубна, 1981.
- 19. Воронов В.В., Соловьев В.Г. ЯФ, 1976, 23, с.942.
- 20. Feshbach H. Ann.Phys. (N.Y.), 1958, 5, p.357.
- 21. Crawley G.M. et al. Phys.Rev., 1980, C22, p.316.
- Soloviev V.G., Stoyanov Ch., Vdovin A.I. Nucl.Phys., 1977, A288, p.376.
- Soloviev V.G., Stoyanov Ch., Voronov V.V. Nucl.Phys., 1978, A304, p.503.
- 24. Ponomarev V.Yu. et al. Nucl.Phys., 1979, A323, p.446.
- 25. Toki H., Sano M. Osaka Univ.Lab. of Nucl.Study Report (OULNS73-6).
- 26. Вдовин А.И. и др. Изв. АН СССР, /сер.физ./, 1976, 40, с.218; Вдовин А.И., Дамбасурен Д., Стоянов Ч. ОИЯИ, Р4-10546, Дубна, 1977.

Рукопись поступила в издательский отдел 17 февраля 1981 года.