СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P4

C36 K-658

> 3977/2-77 В.А.Копцик, И.Н.Коцев

> > К ТЕОРИИ И КЛАССИФИКАЦИИ ГРУПП ЦВЕТНОЙ СИММЕТРИИ.

II. W -СИММЕТРИЯ

1974

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ В.А.Копцик, И.Н.Коцев

К ТЕОРИИ И КЛАССИФИКАЦИИ ГРУПП ЦВЕТНОЙ СИММЕТРИИ.

И. W-СИМЕТРИЯ

- 1. Общая постановка задачи цветной симметрии /I/ дана в первой части работи /2/. Там же указани главние отличия между основними типами P/3/, Q-/4-6/,и W-симметрии, изложена теория P-симметрии и приведени таблици точечних кристаллографических групп этого типа. В этой части излагаются теоретико-групповие основи нового, значительно более широкого класса групп цветной симметрии W-симметрии. В конкретной интерпретации все группи W-симметрии являются подгруппами своих старших групп сплетений /7,8/ P_2 G групп G (дискретних ели непреривных, действующих в геометрических пространствах R некоторыми группами нагрузок P (осуществляющих преобразования "цветов" $f_{V} \in \mathcal{F}$, приписанных точкам $f_{V} \in \mathcal{R}$).
- 2. Рассмотрим правильную систему цветных точек /2/, состоящую из уперядоченных пар $(f_u, \vec{\tau}_i) = \vec{\tau}_i^{(f_u)} \in \mathcal{FR} = \mathcal{F} \times \mathcal{R}$, где $\vec{\tau}_i \in \mathcal{R} = \mathcal{G} \vec{\tau}_i$ рассматриваются как координаты эквивалентных точек в трехмерном пространстве, образующие орбиту $\mathcal{R} = G \vec{\tau}_i$ классической кристаллографической группы \mathcal{G} порядка n; $\{f_u/=\mathcal{F}\}$ есть совокупность $p=|\mathcal{F}|$ разимченых значений некоторой бункции $f(\vec{\tau})$ в точках $\vec{\tau}_i \in \mathcal{G} \vec{\tau}_i$ (f_k называются условно "цветами" точек).

Наибольший практический интерес представляет случай групп $\mathcal{C}_{r,t}^{P}$ (см. американское издание /I/), когда с каждой точвой $\vec{\tau}_{i} \in \mathcal{R}$ связан один и только один цвет $f_{k} \in \mathcal{F}$, т.е. $p \leq m$. Все цветные группы f_{i}^{P} , описываниме симметрию такой системы, относятся к младшим по илассификации /3/. В общем случае число точек цвета f_{ik} равно $\hat{\mathcal{C}}_{ik}^{P}$, где $\hat{\mathcal{C}}_{ik}^{P}$ (и.г., 2,..., p) - любие положительные целне чесла, удовлетворяющие условию $\sum_{ik} \hat{\mathcal{C}}_{ik} = n$. Для перечисления всех возможных праскрасок системы из n точек удобно воспользоваться дваграммами Инга /9/. В n —ой строке дваграммы, состоящей на $\hat{\mathcal{C}}_{ik}^{P}$ цвета $\hat{\mathcal{C}}_{ik}^{P}$. Ванку произвола в

нумерации строк всегда вноирается $\lambda_* > \lambda_* > \cdots > \lambda_* > \cdots > \lambda_* > \cdots > \lambda_* > \cdots$ С каждым разомением $[\lambda] = [\lambda, \lambda, \lambda, \lambda, \lambda]$ числа и на положительные цедые числа связана одна и только одна диаграмма ынга. число заведомо равличных раскрасок не меньше числа диаграмм Онга, а число этих диаграмм для данного ус совпадает с числом неприводимых представлений симметрической грудии S_n степени n . Каждую диаграмму Юнга из nклеток можно заполнить числами i=1,2,...,n-n! способами. Очевидно, сэхраняя эбстрактную структуру цветной группы, перестановки чисел в каждой стр. ке приводят к эквивалентным раскраскам, а одновременные перестановки всех чисел любых м, строк одинаковой длины - к цзетным полиморфным модификациям /1,2/ той же группы. Следовательно. каждой р-строчной диаграмме Онга из и клеток соответствует котя бы одна, но не более $N_{[1]} = n!/2!2! \dots \lambda_n!m_i!$ равличных раскрасок системы из n точек $p \le n$ цветами. Рассматривая систему из n цветных точек как орбиту некоторой цветной группи $\mathcal{G}^{(w)} \hookrightarrow \mathcal{G}$ можно заключить. что для каждой р-строчной диаграммы Юнга и любого выбора с значений цветов р в наиболее общем случае существует хотя бы одна, но не более ${}^{\prime\prime}$, различных (младших) групп ${\cal G}^{(w)}$, изоморфных группе ${\cal G}$.

В соответствии с данным в /2/ определением эквивалентности составных групп, две группи W -симметрии, $G^{(w)}$ и $G^{(w)}$, данного семейэтва будем считать различными тольно если они не являются сопряженными подгруппами сплетений $P_2G = W \oplus G$, т.е. $G^{(w)} \neq q_i^{(w_i)} e^{(w_i)} (q_i^{(w_i)})^{-1} q_i^{(w_i)} e^{(w_i)} e^{(w$

нимальное число групп $\mathcal{C}^{(w)}$ порядка n равно числу различных диаграмы Вига, т.е. возрастает экспоненциально с n. При больших n число этих диаграмы приблизительно равно /9/ $\mathcal{N}(n) \approx e^{\frac{2\pi\sqrt{2n}}{3}/4n\sqrt{3}}$. (Для точечной группы $O_k = m \ 3m$, $iO_k = 48$, например, $\mathcal{N}(48) \approx 1.5 \cdot 10^5$).

Одним из удобных критер ев для классийжкацие групи W-семетрие является тип соответствующих ем диаграмм быта. В общем случае $G^{(w)} = G^{(w)}_{\{\lambda_1,\lambda_2,\dots,\lambda_p\}}$, где $\lambda_i \neq \lambda_{\kappa}$. Среди огромного массива диаграмм, виделяется относительно небольшое число прямоугольных диаграмм, имеющих структуру $\begin{bmatrix} \lambda^p \end{bmatrix} = \begin{bmatrix} \lambda_i,\lambda_2,\dots,\lambda_p \end{bmatrix}$, где $\lambda_i = \lambda_i = \dots = \lambda_p = \lambda = \frac{22}{P}$. Группы W-симметрие, которые могут иметь классическую поргруппу $H^{(\kappa)}$ порядка $H^{(\kappa)} = 1$, отличную от тривиальной $H^{(\kappa)} = 1$, соответствуют только диаграммам типа $\begin{bmatrix} \lambda^p \end{bmatrix}$. Во всех группах $G^{(w)}_{\{\lambda_1,\dots,\lambda_p\}}$, где $\lambda_i \neq \lambda_{\kappa}$, всегда $H^{(\kappa)} = 1$ — см. рис. 5).

Группы $G^{(w)}$, соответствующие прямоугольным диаграммам $[\lambda^p]$, можно подразделять на тря вида:

- а) Группы с инвармантной классической подгруппой $H \stackrel{(i)}{\sim} G \stackrel{(w)}{\sim}$, которые естественно отнести к группам Р-симметрии /2/.
- о) Группы $G^{(w)}$ с тривиальной классической подгруппой $H^{(c)} = 1$ или с $H^{(c)} \supseteq G^{(w)}$, несводимые к Р-симметрии. Возможность существования таких групп была указана впервые одним из авторов данной статьм (это группы $G^{(r)}_{p^2}$ цветной псевдосимметрии в работах /1,13/).
- в) Группы W-симметрии с неинвариантной классической под-группой $\mathcal{H} = \mathcal{H} \subset \mathcal{G}^{(w)}$ в цветной W-симметрии эти группы пока наиболее изучены. В данной работе им посвящены пп.4.5.
- 8. Элементи $g_i^{(w_i)} \in \mathcal{G}^{(w)}$ цветних групп W-симметрие являются комбинированным преобразованиями $g_i^{(w_i)} = w_i g_i = (w_i \mid q_i)$, где $g_i \in \mathcal{G} \leftarrow \mathcal{G}^{(w)}$ действуют только на координати $\overrightarrow{\tau_i}$ цветних точек $\overrightarrow{\tau_i}^{(f_k)} = (f_k, \overrightarrow{\tau_i})$, а нагрузки $w_i \in W$ только на цвет $f_k \in \mathcal{F}$. Однако, в отличие от

Р-симметрии, преобразования цвета $\int_{\mathbb{R}}$ точки $\vec{r}_i^{(f_i)}$ существенно зависят от того, в какой точке локализован этот цвет*). Один и тот же цвет $\int_{\mathbb{R}}$ в двух разных точках $\vec{r}_i^{(f_i)}$ и $\vec{r}_i^{(f_i)}$, может по-разному преобразоваться нагрузкой \vec{w}_i данного элемента $g_i^{(w)} \in \mathcal{G}^{(w)}$. Нагрузки такого типа, очевидно, имеют более сложную структуру по сравнению с $p \in \mathcal{P}$ в Р-симметрии /2/. Для описания этих нагрузок в /1,10/ были применени предложение одним из авторов данной работи "позиционные подстановки". В ослей теории \mathcal{W} -симметрии нагрузки \vec{w}_i элементов $g_i^{(w)} \in \mathcal{G}^{(w)}$ могут быть получены из "элементарных" нагрузок $p \in \mathcal{P}$ с помощью сплетений групп p и p /2,7/, где p выбранные преобразования цветов (подстановки, ортогональные, аффинные и т.д.). Для конкретности выберем $p \in \mathcal{P} \subseteq \mathcal{S}_p$.

Напомним определение понятия сплетения (wreath product) групп Р и G /7,8/. Пусть $W = P^{g_0} \odot P^{g_0} \sim p^{g_0} \sim n$ прямое произведение n изоморфиих копий групп Р, индексированных элементами группы G порядка n (или декартово произведение для бесконечных n). W есть группа относительно покомпонентного умножения

$$w_i \otimes w_i = (p_i^{q_i}, p_i^{q_i}, \dots, p_i^{q_n}) \otimes (p_i^{q_i}, p_i^{q_i}, \dots, p_i^{q_n}) =$$

$$= (p_i^{q_i}, p_i^{q_i}, \dots, p_i^{q_n}, \dots, p_i^{q_n}, \dots, p_i^{q_n}) =$$

$$= (p_i^{q_i}, p_i^{q_i}, \dots, p_i^{q_n}, \dots, p_i^{q_n}) = w_i \in W, \quad p_i^{q_i}, p_i^{q_i} \in P.$$
Здесь все $P^{q_i} = \{(e, e, \dots, p_i^{q_i}, \dots, e)\}$ изоморфии $P = \{p_i\}, \dots, p_i^{q_i} \in P,$
и умножение компонент осуществляется по действующей в P групповой операции. Верхний индекс в $p_i^{q_i}$ фиксирует позицию $p_i \in P$ в $w_i \in W$, нижний — только принадлежность $p_i^{q_i}$ к w_i , т.е. $p_i^{q_i}$ и $p_i^{q_i}$ могут бить различными $p_i \in P$.

ж) это позволяет включить в W-симметрию неоквативаемие теорией Р-симметрии группи "комплексной симметрии" Бинепстока-Эвальда /II/ и Вайнштейна-Эвягина /I2/, группи Витке-Гарридо /I3/ и др.

Полупрямое произведение $W \otimes G$ называется прямым сплетением групп Р и G (обозначается $P \circ G$), если $W = P \otimes P \otimes ... \otimes P$ — прямое произведение групп Р, или декартовым сплетением $P \circ G$, если W — декартово произведение. Конечные группы W—симметрии $G^{(w)}$ нвляют—ся подгруппами прямого сплетения

$$G^{(w)} \subseteq P \circ G = (P^{\mathfrak{q}_{-g}} \otimes P^{\mathfrak{q}_{-g}}) \otimes G = W \otimes G. \tag{2}$$

Элементи сплетения $P \circ G = W \circ G$ записиваются в виде

$$g_{i}^{(w_{i})} = w_{i} g_{i} = \langle w_{i} | g_{i} \rangle = \langle p_{i}^{g_{i}}, p_{i}^{g_{i}}, \dots, p_{i}^{g_{n}}, \dots, p_{i}^{g_{n}}$$

и умножаются по закону (в разных обозначениях (3)):

$$g_i^{(\omega_i)} g_i^{(\omega_i)} = g_i g_i^{(\omega_i i_j \omega_i)}, \qquad (4a)$$

$$\langle w_i | g_i \rangle \langle w_j | g_j \rangle = \langle w_i^{g_j} | w_j | g_i g_j \rangle,$$
 (4B)

 $\langle p_i^{g_i},...,p_i^{g_n},...,p_i^{g_n}|g_i\rangle\langle p_i^{g_i},...,p_i^{g_n},...,p_i^{g_n}|g_i\rangle\rangle=\langle p_i^{g_i},...,p_i^{g_n},...,p_i^{$

$$w_{i}^{q_{i}} = (p_{i}^{q_{i}}, \dots, p_{i}^{q_{n}}, \dots, p_{i}^{q_{n}})^{q_{i}} = (p_{i}^{q_{i}^{q_{i}}}, \dots, p_{i}^{q_{i}^{q_{n}}}, \dots, p_{i}^{q_{i}^{q_{n}}}).$$
 (5)

В группах $\mathcal{P} \circ \mathcal{C}$ элемент, обратный $g_{i}^{(w_{i})}$, имеет вид

$$(g_i^{(w_i)})^{-1} = g_i^{-1}(([w_i^{(i)}]^{-1})),$$
(6a)

$$\langle w_i | g_i \rangle^{-i} = \langle [w_i^{g_i}]^{-i} | g_i^{-i} \rangle$$
 (6B)

 $\langle p_i^{g_i}, p_i^{g_i}, p_i^{g_i} | g_i \rangle^{-1} = \langle (p_i^{g_i^{-1}g_i})^{-1}, (p_i^{g_i^{-1}g_i})^{-1}, (p_i^{g_i^{-1}g_i})^{-1} | g_i^{-1} \rangle$, (6c) т.е. в $(g_i^{(w_i)})^{-1}$ в g_i^{-1} -ой позиции находится элемент $(p_i^{g_i^{-1}g_i})^{-1}$, обратний элементу $p_i^{g_i^{-1}g_i}$, занимающему в исходном $g_i^{(w_i)}, g_i^{-1}g_i^{-1}$ -ую позицию.

Действие элементов $g_j^{(w_i)}$ цветной группи $\mathcal{C}^{(w)}$ на цветние точки $\overrightarrow{r_u}^{(f_\ell)}$, где $\overrightarrow{r_u} = g_u \overrightarrow{r_i} \in \mathcal{R}$, определяется равенством

 $g_i^{(w_i)}\vec{r}_i^{(f_\ell)} \equiv \langle p_i^{g_i},...,p_i^{g_i},...,p_i^{g_i}|g_i\rangle (f_u,\vec{r}_i) = (p_i^{g_u}f_{\ell_i},g_i\vec{r}_i),$ (7) т.е. цветная нагрузка w_i действует на цвет f_ℓ точки $\vec{r}_i^{(f_\ell)}\vec{r}_i=f_u\vec{r}_i$ компонентой $p_i^{g_u}$ из $g_u^{g_u}$ —ой позиции. На тот же цвет f_ℓ , локализованный в точке $\vec{r}_s=g_s\vec{r}_i\in\mathcal{R}$, та же нагрузка w_i действует $g_s^{g_u}$ —ой компонентой $p_i^{g_u}$, в общем случае отличной от $p_i^{g_u}$.

Сплетение \mathcal{P}_2 $G=W \otimes G$ содержит инвариантную подтруппу $\widetilde{W}=\{\langle w_{j,1} \rangle\} \mapsto W$. Разложение по подгруппе \widetilde{W} записивается в виде

$$\mathcal{P}_{\mathcal{Z}} \mathcal{G} = \bigcup_{i=1}^{n} \langle P_i^{g_i}, ..., P_i^{g_n} | g_i \rangle \overline{W}; \tag{8}$$

фактор-группа РаG по \overline{W} изоморфна G:

$$(\operatorname{PeG})_{\overline{W}} \longleftrightarrow G . \tag{9}$$

Система представителей смежных классов в разложения (8) образует группу или группу по модулю /I/, изоморфную группа \mathcal{C} (9). В первом случае это будет младшая группа \mathcal{W} -симметрии $\mathcal{C} \stackrel{(w)}{\longrightarrow} \mathcal{C}$, во втором — "цветная группа по модулю". Если в полученной таким образом группе во всех элементах $p_i^{q_i} = p_i^{q_i} = \dots = p_i^{q_i} = p_i \in \mathcal{P}$, то закон умножения (4) сводится к закону группового умножения в Р-симметрии /2/, т.е. Р-симметрия может рассматриваться как частний случай \mathcal{W} -симметрии.

4. Группн $G^{(w)}$ с неинвариантной классической подгруппой $H' \subset G^{(w)}$, $G \cap G^{(v)} = H'$, порождаются только неабелевыми группами $G \hookrightarrow G^{(w)}$. Для вывода групп этого типа и выяснения их структуры удобно для каждой G и $H' \subset G'$ составить "четырехчленный символ"

$$G/N/H'/H$$
, $G\supset N \bowtie H' \bowtie H$. (10)

Здесь H' — неинвариантная в G подгруппа индекса p = [G: H']; $N_G(H')$ — нормализатор подгруппи H' э G , **т**.е. максимальная подгруппа группи G', в которой H' мирариантна /7-9/

$$H' \subseteq \mathcal{N} = \left\{ g_i \mid g_i \in \mathcal{G}, \ g_i H' g_i^{-\prime} = H' \right\} \subset \mathcal{G} \ . \tag{II}$$

Пересечение всех r=[a:N] подгрупп $H_i'=g_i H'g_i^{-1}$, сопряженных с H' в C есть максимальная инвариантная подгруппа группы H' (в всех H_i'), которая инвариантна также в C , т.е.

$$H = \bigcap_{g \in \mathcal{G}} g \cdot H' g \cdot \uparrow^{-1}, H \triangle \mathcal{G}, H \triangle H', H \triangle H'.$$
 (I2)

Из (8), (9) видно, что все младшие группы W-симметрик $G \overset{(w)}{\leftrightarrow} G$ могут бить получени как системы представителей смежных классов в

- разложения (8). При этом каждый 4-членный символ С/У/Н/Н определяет (абстрактнур) структуру элементов $g_i^{(w_i)} \in \mathcal{G}^{(w)}$ (3) (независимо от конкретного вида преобразований $p \in \mathcal{P}$ в $g_i^{(w_i)}$), а именно:
- а) Все элементи $g_i \in H \subset \mathcal{G}$ комбинируются только с единицей группи W и обравуют максимальную классическую подгруппу \mathcal{H}' группн $G^{(w)}$ (обозначим ее тем же символом $H=G^{(w)}\cap G$):

$$H' = H \stackrel{(l)}{=} \left\{ \langle e^{g_l}, e^{g_l}, ..., e^{g_n} | g_j \rangle \mid g_j \in H' = G, e^{g_n} = e \in \mathcal{P} \right\}. \tag{I3}$$

$$6) \text{ Из инвариантности } H' \text{ B } \mathcal{N}^{(w)} \rightarrow \mathcal{N} = \mathcal{N}_G(H') \text{ in } H = \bigcap_{i=1}^n q_i H' g_i^{-i} \text{ B } G^{(w)} \text{ , r.e.}$$

$$g_{i}^{(w_{i})}H'=H'g_{i}^{(w_{i})}$$
, $\forall g_{i}^{(w_{i})}\in N^{(w)}\rightarrow N$, $H'=G^{(w)}$, $N^{(w)}\in G^{(w)}$, (I4)

 $g_{\kappa}^{(w_{\kappa})}H = Hg_{\kappa}^{(w_{\kappa})}$, $\forall g_{\kappa}^{(w_{\kappa})} \in G^{(w)}$, $H \bowtie G^{(w)}$. (15)

BHTCKac

$$\langle ..., p_i^{\ell_i j_e} = p_i^{j_e}, ... | j_j \rangle , \forall g_i \in N , \forall k_i' \in H' \triangle N, \forall g_e \in G$$
 (16)

$$\langle \dots, p_i^{k_{g_u}}, p_i^{g_u} \dots | g_i \rangle$$
, $\forall g_i \in G$, $\forall k_{\ell} \in \mathcal{H} \triangle G$, $\forall g_u \in G$ (I7) Следовательно, в любом элементе $\langle p_i^{g_u}, \dots, p_i^{g_u}, \dots, p_i^{g_u} | g_i \rangle \in G^{(w)}$

число различных компонент $p^{*} \in \mathcal{P}$ не более [c:H], а в элементах $\langle ..., p_i^{q_i}, ...|q_i \rangle \in \mathcal{N} \subset \mathcal{G}^{(w)}$ не более $p \in [\mathcal{G}: \mathcal{H}']$. Более детальное рассмотрение, с учетом транвитивности группи Р на множестве р цветов $\mathfrak{f}_z \in \mathcal{F}$, показывает, что множество всех $p^{3} \in P$ в любом из элементов $\langle p^{3} | g_i \rangle \in \mathcal{C}^{(w)}$ разбивается на s = [#': #] различных совокупностей, по n/s одинаковых p_s в каждой из них. Исключение составляют элементи (16), принадлежащие нормализатору $\mathcal{N}^{(w)}$ подгруппи \mathcal{H}' и элементи подгрупп $\mathcal{H}_i^{(w)} = g_i^{(w)} \mathcal{H}'(g_i^{(w)})^{-4}$, где в каждом из них все $p_j^{q_k}$ одинакови, т.е. $p_j^{q_j} = p_j$. Таким образом, по своей структуре и типу групповой операции $\mathcal{N}^{(\omega)}$ и $\mathcal{H}_{i}^{(\omega)}$ относятся к группам Р-симметрии. Нагрузки $p_i^{\mathfrak{I}_k}$ в $\langle -p_i^{\mathfrak{I}_k} - p_j^{\mathfrak{I}_k} \rangle \in \mathcal{N}^{(w)}$ и $\mathcal{H}_{\epsilon}^{(w)}$ изоморфин нагрузкам групп Р-симметрик, рассмотренных в /2/, однако имеют B k pas dozee bucokyo chenens, k = P/[N:H'] N k = P/[H':H]

Полученный выше результат позволяет рассматривать группы $\mathcal{C}^{(w)}$ \mathcal{C} кан последовательные расширения /I/ классической группы $\mathbb{H}'_{=k}^{(w)}$ до группы Р-симметрии $\mathcal{N}^{(p)}$, а $\mathcal{N}^{(p)} = \mathcal{N}^{(w)}$ до $\mathcal{C}^{(w)}$. В данной работе (для определенности) применяются нагрузки $p_i \in \mathcal{P} \subseteq \mathcal{S}_p$. В этом случае (см. /2/) возможни два типа групп Р-симметрии — с регулярными, $\mathcal{G}_R^{(p)}$, и нерегулярными, $\mathcal{G}_I^{(p)}$, подстановками $p_i \in \mathcal{P}$. Следовательно, возможни два типа расширения $\mathcal{H}' \cong \mathcal{N}' \stackrel{\mathcal{W}}{\cong} \mathcal{G}^{(w)}$ и два типа групп $\mathcal{G}^{(w)} \to \mathcal{G}$:

$$G_R^{(w)} \supset N_R^{(w)} \triangleright H', (N_R^{(w)} \equiv N_R^{(P)}),$$
 (18)

$$\mathcal{G}_{I}^{(w)} \supset \mathcal{N}_{I}^{(w)} \geqslant H', \quad (\mathcal{N}_{I}^{(w)} \equiv \mathcal{N}_{I}^{(p)}). \tag{19}$$

5. В качестве примера рассмотрим группи $\mathcal{C} \stackrel{(w)}{\longleftrightarrow} \mathcal{C}$ с неинвариантной классической подгруппой (I3), изоморфине кристаллографическим точечным группам \mathcal{C} . Из 32 групп \mathcal{C} неаселевы I6, а именно: 422, 4 mm, $\bar{4}2$ m, 4/mmm, 32, 3 m, $\bar{3}$ m, 622, 6 mm, $\bar{6}$ m2, 6/mmm 23, m $\bar{3}$, 432, $\bar{4}3$ m, m $\bar{3}$ m. Для каждой из них разнекиваются все неинвариантные подгруппы $\mathcal{H} \subset \mathcal{C}$, (по одной из класса неэквивалентных сопряженных подгруппы, их нормализаторы \mathcal{N} (II), пересечения \mathcal{H} (I2), и составляются 4-членные (I0) и 5-членные символы. Каждому такому символу, как было указано в п.4, соответствует определенная группа $\mathcal{C}_{\mathbb{R}}^{(w)}$ их список сведен в таблицу на стр. I2-I3.

Возможность существования цветных групп с неинвариантной классической подгруппой била указана в /13/, где для точечных групп G били перечислены 72 пари G, H', H'=G, соответствующие цветным группам.Полный вывод всех 73 групп типа G (W) бил осуществ-

лен в /10/, где они били названи "группами Виттке-Гарридо", $\mathcal{C}_{WG}^{(p)}$. Там же приведени стереографические проекции и список этих групп в "интернациональных" обозначениях (эм. также американское издание/I/). В данной работе впервие показано, что группы $\mathcal{G}_{WG}^{(p)}$ относятся к W - симметрии, т.е. являются подгруппами сплетения P_2 с и групповое умножение в них определяется законом (4). В результате проведенного нами теоретико-группового анализа, проверен и подтвержден список /10/73 групп типа $\mathcal{C}_{R}^{(w)} = \mathcal{C}_{WG}^{(p)}$ (18) и показано, что существует еще один класс групп W -симметрии с неинвариантной классаческой подгруппой — $\mathcal{C}_{I}^{(w)}$ (19). Среди групп $\mathcal{G}^{(w)}$, изоморфных кристаллографическим точечным группам, имеется только один представитель класса $\mathcal{C}_{I}^{(w)}$ — "12-цветная" кубическая группа с $\mathcal{H}=m_2$ (см. в конце табл. I).

В таблице приведены полученные нами 4— и 5—членные символы групп $\mathcal{C}^{(\omega)} \to \mathcal{C}'$. Штрихами различаются изоморфные, но незквивалентные подгруппы $\mathcal{H}' \subset \mathcal{C}$. Взаимная ориентация \mathcal{H}' и \mathcal{C} легко спределяется из приведенных рядом "интернациональных" символов групп $\mathcal{C}^{(\omega)}$, заимствованных из /1,10/. В последних генераторы без верхнего индекса выделяют классическую подгруппу \mathcal{H}' (13), у генераторов подгрупп Р-симметрии $\mathcal{N}^{(\omega)} \subset \mathcal{C}^{(\omega)}$ и $\mathcal{H}^{(\omega)}_i \to \mathcal{H}^{(\omega)}_i = g_i \mathcal{H}' g_i^{-1}$ верхний индекс (n_i) состоит из одной цифри, указивающей порядок нагрузки ω_i элемента $g_i^{(\omega)}$. Специфические для групп \mathcal{W} —симметрии генераторы (17) отличаются верхним индексом типа $(n_i \pm)$ или $(n_i \times m_i)$, где n_i также задает порядок элемента ω_i , (знаки \pm соответствуют $< \rho_i$, $\rho_i = q_i$, а m_i — числу цветных подсистем в $\mathcal{F}\mathcal{R}$).

Удобний алгоритм построения всех $\langle ..., p_j^{q_w} | q_j \rangle \in \mathcal{C}_R^{(w)}$, где $p_j^{q_w}$ — подстановки степени p_j , состоит в следуищем. Пусть $\mathcal{C}_R^{(w)} = \mathcal{C}/M/H/H$ — p_j —претная группа M_j —симметрии с неинвариантной классической подгруппой M_j индекса $p_j = [g_j:H_j]$ и подгруппой M_j —симметрии $\mathcal{N}_R^{(w)} \to \mathcal{N}_R$ регулярного типа (18). Запишем разложение (по правим смежним классам) группы G_j

Таол. I. Символы групп $G_R^{(w)} = G_{wG}^{(P)}$ и $G_E^{(w)}$ типа $G_{3,0}^{1P}$

	 				
Nº	GIN/H'IH	$G_R^{(W)} \longleftrightarrow G$	N≘	G/N/H'/H	$G_{\mathbf{R}}^{(w)} \longleftrightarrow G$
1	Du, 1D, 10; 10,	(4 ⁽⁴²⁾ 22 ⁽²⁴²⁾) ⁽⁴⁾	19	D3k /C2v/C2 / C,	(6(61) m(2 22) 2) (6)
~	CHUICOVICSIC,	(4 (4±) m m (2+2)) (4)	20	Don / Con / Co / Co	(6 ⁽⁶²⁾ m 2 ^(2,2))(6)
3	Dzd/Dz/C2'/C4	(4 2 m(2x21)(4)	21	D6k /D2k /D2k /C2k	$\left(\frac{6^{(32)}}{m} \frac{2}{m} \frac{2^{(2+3)}}{m^{(2+3)}}\right)^{(3)}$
4	Dadler lesie,	$(4^{(42)}2^{(2*2)}m)^{(4)}$	22	Doh / Doh / Do / Co	$\left(\frac{6^{(32)}}{m^{(2)}}, \frac{2}{m^{(2)}}, \frac{2^{(2)}}{m^{(2)}}\right)$
5	Dani Dan / Cor/Cs	$\left(\frac{4^{(41)}}{11}\frac{2^{(2)}}{m}\frac{2^{(2+2)}}{m^{(2+2)}}\right)^{(4)}$	23	DGL/DZL/CZV/CZ	$\left(\frac{6^{(32)}}{m^{(2)}}\frac{2^{(2)}}{m}\frac{2^{(2\times 2)}}{m^{(2\times 2)}}\right)^{(6)}$
6	D44/D24/G//Ci	$\left(\frac{4^{(12)}}{m^{(2)}}\frac{2}{m}\frac{2^{(2+2)}}{m^{(2+2)}}\right)^{(4)}$	24	D64 /D24 /C2V/C5	$\left(\frac{6^{(62)}}{m}\frac{2^{(2)}}{m}\frac{2^{(2\times2)}}{m^{(2\times2)}}\right)^{(6)}$
7	D44 /D24 / C; / C,	$\left(\frac{4^{(42)}}{m^{(2)}}\frac{2}{m^{(2)}}\frac{2^{(2x2)}}{m^{(2x2)}}\right)^{(8)}$	25	Don/Don/Con/Ci	$\left(\frac{6^{(62)}}{m^{(2)}}\frac{2}{m}\frac{2^{(2-2)}}{m^{(222)}}\right)^{(6)}$
8	D, /D, /C'/C,	$\left(\frac{4^{(4z)}}{m^{(2)}}\frac{2^{(2)}}{m}\frac{2^{(2z2)}}{m^{(2z2)}}\right)^{(8)}$	26	D64/D24/C3//C4	$\left(\frac{6^{(6z)}}{m^{(2)}}\frac{2}{m^{(2)}}\frac{2^{(2z2)}}{m^{(2z2)}}\right)^{(12)}$
9	$D_3/C_2'/C_2'/C_1$	(3(3±)2)(3)	27	Dob /Deh /C'/C,	$\left(\frac{6^{(62)}}{m^{(2)}} \frac{2^{(2)}}{m} \frac{2^{(22)}}{m^{(22)}}\right)^{(12)}$
10	C3v/Cs/Cs/C,	$(3^{(3t)}m)^{(3)}$	28	$T/C_3/C_3/C_4$	(2(2*3)3)(4)
"	$D_{3d}/C_{2h}/C_{2h}/C_{i}$	$\left(\bar{\mathfrak{Z}}^{(3\underline{\imath})}\frac{2}{m}\right)^{(3)}$	29	T/D2/C2/C4	(2 3(324))(4)
12	D32 1C24 1C2 1C1	$\left(\overline{\mathfrak{Z}}^{(62)}\frac{2}{m^{(2)}}\right)^{(6)}$	30	$T_h/C_{si}/C_{si}/C_i$	$\left(\frac{2^{(2x3)}}{m^{(2x3)}}\overline{3}\right)^{(4)}$
13	D3d /C2h /C5/C1	$\left(\tilde{\mathfrak{Z}}^{(6\underline{t})}\frac{2^{(2)}}{m}\right)^{(6)}$	31	Th/Dzh/Czh/Ci	(2 3 (3x4)) (6)
14	C61/C21/C21/C2	(6 ⁽³⁵⁾ m m ⁽²⁴³⁾) ⁽³⁾	32	7 /D24/Czv/Cq	$\left(\frac{2}{m^{(2)}},\overline{3}^{(6\times 4)}\right)^{(6)}$
15	C60/C20/C5/C,	(6 m m (2121) (6)	33	The /C3: /C3 /C4	$\left(\frac{2^{(2*3)}}{m^{(2*3)}}\ \bar{\mathfrak{Z}}^{(2)}\right)^{(8)}$
16	Dc/D2/D2/C2	(6 ^(3±) 2 2 ^(2±3)) ⁽³⁾	34	$T_{k}/D_{2k}/C_{z}/C_{z}$	$\left(\frac{2}{m^{(2)}}\bar{3}^{(6\kappa4)}\right)^{(12)}$
17	$D_{\epsilon}/D_{\epsilon}/C_{\epsilon}'/C_{\epsilon}$	(6 (62) 2 2 (2 × 21) (6)	35	Th /D2h/C /C1	$\left(\frac{2^{(2)}}{m}\bar{\mathcal{J}}^{(6x4)}\right)^{(12)}$
18	D34/C20/C20/C5	$(\bar{6}^{(3t)}_{m} 2^{(2t3)})^{(3)}$	36	0/D4 1.D4 / D2	$(43^{(3\pm)}2)^{(3)}$

Табл. 1 (продолжение)

N:	G/N1H'/H	$G_R^{(W)} \rightarrow G$	Nŧ	С /№/н′₁н	G(W)
37	0/D, /D, /C,	(4 ⁽⁴⁼⁶⁾ 32) ⁽⁴⁾	56	Oh / Du / Da / C.	$\left(\frac{4^{(2)}}{m!}\frac{3}{3}(3*8)\frac{2}{rr}\right)^{-k}$
38	0/0,/0,/0,	(43(324))(6)		2/D4 /D2 1C,	$\left(\frac{\pi^{(n)}}{m^{(n)}} \tilde{\mathcal{J}}^{(643)} \frac{\mathcal{L}}{m^{(2)}}\right)^{(643)}$
39	0/D'/D'/C,	(44213(3*8)2)(6)	58	Oh / Dad / Cz. / C.	(2/1923) 3 2/21 8)
40	0/D3/C3/C4	(4(4,3) 3 2(2))(8)	59	O. /D. /D. /C.	(4196) 3121 2 nies) 18,
41	0/0,10,10,	(4(2) 3(3:4) 2(2))(12)	60	$O_{\mathbf{k}}/D_{\mathbf{3d}}/C_{\mathbf{3d}}/C_{\mathbf{r}}$	$\left(\frac{4^{(4+6)}}{m^{(2+3)}} \overline{3}^{(e)} \frac{2^{(2)}}{m^{(2)}}\right)^{(8)}$
42	0/2//0//0,	(4(41)3(31)2)(12)	61	Ok / Dan / C. 1C,	(\frac{4}{m^{(2)}} \bar{3}^{(627)} \frac{2^{(2)}}{m^{(2)}} \)
43	Ta /D2d /D2d /D2	(4 3(35)2)(3)	62	Ok , D4k , S4 , C.	$\left(\frac{4^{(2)}}{m^{(2)}}, \overline{3}^{(6x4)}, \frac{2^{(2)}}{n_1^{(2)}}\right)^{(12)}$
44	$T_d/C_{3\nu}/C_{3\nu}/C_{\epsilon}$	(4 (4 = 6) 3 m) (4)	63	0, 10, 10, 10, 10,	$\left(\frac{4^{(2)}}{m^{(2)}}\frac{3^{(684)}}{3^{(684)}}\right)^{(12)}$
4:	$\int_{\mathcal{L}} T_{d} D_{2d} S_{4} C_{4} $	$(4 3^{(3x4)}m^{(2)})^{(6)}$	64	Ok /D46/Cr/C1	$\left(\frac{4^{(2)}}{m^{(2)}},\overline{3}^{(6)},\frac{2^{(2)}}{m^{(2)}}\right)^{12}$
4	6 Td /Czv /Czv /C,	(4(2)3(3:4)m)(6)	6.5	0 / D4k / C20/C1	$\left(\frac{4^{(2)}}{m^{(2)}}, \overline{3}^{(688)}, \frac{2^{(2)}}{m}\right)^{12}$
4	7 Ta /C3v /C3 /C,	(4(4x3)3 m(2))(8)	6	6 OL /D'24 /C"/C,	$\left(\frac{4^{(4t)}}{m} \frac{3}{3} \frac{(6z8)}{m} \frac{2^{(2t)}}{m}\right)^{(12)}$
4	8 Ta/Dza/Cz/C,	$(4^{(2)}3^{(3x4)}m^{(2)})^{(12)}$	6	7 O4 / D44 / C24 / Ci	$\left(\frac{4^{(2)}}{m!} \bar{3}^{(3)} + \frac{2^{(2)}}{m^{(2)}}\right)^{(12)}$
.;	9 Ta/Czv/Cs/C,	$(4^{(41)}3^{(31)}m)^{(12)}$	6	8 0h/D' /Czh /Ci	$\left(\frac{4^{(4z)}}{m^{(2)}} \overline{3}^{(3z)} \frac{2}{rn}\right)^{(12)}$
5	O C. /D44 /D44 / D24		6	9 0 103d 1C3 1C1	$\left(\frac{4^{(4i3)}}{m^{(2i3)}} \overline{3}^{(2)} \frac{2^{(2)}}{m^{(2)}}\right)^{(16)}$
5	$O_k/D_{3d}/D_{3d}/C_i$	1		Oh /Dak / Cz / Cs	$\left(\frac{4^{(2)}}{m^{(2)}}\bar{3}^{(6x4)}\frac{2^{(2)}}{m^{(2)}}\right)^{(24)}$
3	52 Oh /D44 /C44 /Ci	i	n	1 0, 1 D'zh / C'z / C,	$\left(\frac{4^{(42)}}{m^{(2)}} \bar{3}^{(62)} \frac{2}{m^{(2)}}\right)^{(27)}$
	53 O4 /D44 /C40 /C1	$\left(\frac{4}{m^{(2)}}, \overline{3}^{(6*4)}, \frac{2^{(2)}}{m}\right)^{(6)}$	' ?	12 0h/D4h/Cs/C4	$\left(\frac{4^{(4)}}{m}\frac{3}{3}^{(6x4)}\frac{2^{(2)}}{m^{(2)}}\right)^{(24)}$
3	54 0, 1D4, 1D4/D2		1	75 Oh /Din /C's / C.	$\left(\frac{4^{(42)}}{m^{(2)}} \frac{3}{3}^{(62)} \frac{2^{(2)}}{177}\right)^{(24)}$
	55 Oh / D46 / D2d / D2	$\frac{1}{2} \left[\left(\frac{4^{(2)}}{m^{(2)}} \overline{\mathcal{J}}^{(64)} \frac{2^{(2)}}{m} \right)^{(6)} \right]$		GI OHD44/C20/C5/C	$\int_{1}^{\infty} \left(\frac{4^{(4)}}{m} \tilde{\mathfrak{Z}}^{(3x4)} \frac{2^{(2)}}{m^{(2)}} \right)^{(12)}$

по H , а затем H' по H :

$$G = \bigcup_{k=1}^{p} H'g_{k} = \bigcup_{k=1}^{p} \bigcup_{\alpha'=1}^{s} H R_{k} g_{k} = \bigcup_{\alpha'=1}^{s} R_{k} R_{k} g_{k} = \bigcup_{\alpha'=1}^{s} g_{\alpha'=1} A_{\alpha'} A_{\alpha$$

Построим регулярное представление группи $\mathcal G$ подстановками тройных индексов элементов $\mathcal J_{\alpha\alpha'\nu}=k_{\alpha'}k_{\alpha'}\mathcal J_{\nu}\in\mathcal G$:

$$g_{\beta\beta'} \longleftrightarrow \pi(g_{\beta\beta'}) = \begin{pmatrix} g_{\alpha\alpha'\mu} \\ g_{\beta\beta'} g_{\alpha\alpha'\mu} \end{pmatrix} = \begin{pmatrix} \alpha \alpha'\mu \\ \gamma \beta' \ell''_{\mu} \end{pmatrix} \in \Pi \longleftrightarrow G. \tag{21}$$

В первой строке годстановки (21) сгруппируем элементи $f_{\alpha\alpha'4}, \dots, f_{\alpha\alpha'p}$ для каждой пары индексов $\alpha\alpha'$ и выпишем отдельно подстановки их третьих индексов (представителей смежных классов $g_{\mu} \in \mathcal{H}_{q_{\mu}}^{f}$ в (20)):

$$f_{\beta\beta',j}^{\alpha'} = \begin{pmatrix} \frac{1}{\ell_{\alpha'}^{\alpha'}} & \frac{2}{\ell_{\alpha'}^{\alpha'}} & \frac{\kappa}{\ell_{\alpha'}^{\alpha'}} & \rho_{\alpha'}^{\alpha'} \end{pmatrix}, \alpha'=1,2,...,s, s=[H',H].$$
 (22)

Эти подстановки (степени p) не зависят от α = 1,2,...,|H| и совпадают со всеми $n/_5$ компонентами $p_{\rho \rho' j}^{g_{\sigma \sigma' k}}$ в $\langle \cdot, P_{\rho \rho' j}^{g_{\sigma \sigma' k}}, |g_{\rho \rho' j}\rangle \in \mathcal{G}_R^{(w)}$, т.е.

$$P_{\rho\rho'_{i}}^{\alpha'} = p_{\rho\rho'_{i}}^{g_{1\alpha'_{i}}} = p_{\rho\rho'_{i}}^{g_{1\alpha'_{i}}} = p_{\rho\rho'_{i}}^{g_{1\alpha'_{i}}} = p_{\rho\rho'_{i}}^{g_{2\alpha''_{i}}} = p_{\rho\rho'_{i}}^{g_{2\alpha''_{i}}}$$

Группи типа $C_I^{(w)} = G/N/H''/H'$ (19) строятся подобным же образом, однако "цветность" группы P' = [G:H''] и вместо (20) применяется разложение

$$G = \bigcup_{t=t}^{\tau} N g_t = \bigcup_{t=t}^{\tau} \bigcup_{\ell=t}^{\tau} \eta_{\ell} H g_t = \bigcup_{\ell=t-t} \bigcup_{\ell=t-t}^{\tau} H \eta_{\ell} h_{\alpha''} g_t = \bigcup_{\alpha \alpha' \ell \alpha'' \ell} g_{\alpha \alpha' \ell \alpha'' \ell} , \qquad (23)$$
 где подстановкам "цветов" типа (22) соответствуют пары индексов ℓt .

6. Виходящие за рамки Р-симметрии "комплексние группи пространства турье" /II, I2/ являются конкретним примером применения групп W-симметрии в физике. Система "цветних точек" состоит из узлов $\vec{K}_i = (\hat{h}_i \, \hat{k}_i \, \hat{\ell}_i)$ "обратной" решетки, нагруженных комплексними значениями Фурье-компонент $F(\vec{k}_i)$ функции $F(\vec{\tau})$, заданной на "прямой" решетке кристалла. При $|F(\vec{k}_i)| = \omega_{mi} t$ "цветам" точек соответствуют фавовне множители $\exp i\varphi(\vec{k}_i)$ комплексних величин $F(\vec{k}_i) = |F(\vec{k}_i)| \exp i\varphi(\vec{k}_i)$. В этом случае $g_i^{(w_i)} = \varphi_i / g_i > \varepsilon G^{(w)}$, где f_i действуют только на коор-

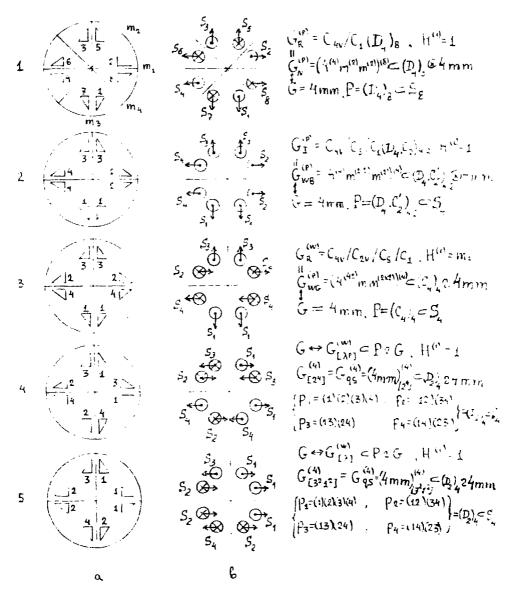


Рис. I-5. "Цветная" (а) и "магнитная" (в) инперпретации групп \mathcal{N} -симметрии различных типог. Дифры у треугольников обозначают "цвета", стрелки — аксиальные векторы S_i с компонентами $S_z > C(\odot)$ и $S_z < C(S)$

езти $\vec{k_\ell}$ точек обратной решетки, а зависящее от $\vec{k_\ell}$ изменение $\vec{\xi}(\vec{k_\ell})$ фази $\varphi(\vec{k_\ell})$ в каждой точке $\vec{k_\ell} = g_\ell \vec{k_\ell}$ осуществляется осответствующей $g_\ell = g_\ell \vec{k_\ell}$ осуществляется осуществ

7. Іля описания симметрии стапионарных магнитных ("спиновых") конфигураций в магнитоупорядоченных кристаллах /14/. наряду с шубнь ювскими /І/, применялись группи так называемой "конфигурационной симметрии" /14-16/, а также "спиновне" или "обобщенные магнитные" группы /17-20/. Все эти группы являются жиль различными конкретными интерпретациями групп Р-симметрик /2/, причем группы "конфигурационной симметрик соответствуют классическим подгруппам (типа (13)) цветных групп. Как было показано в /4-6/. для описания магнитной симметрии наиболее удобни группи Q-симметрии, однако адекватное описание "спиновых структур" возможно также в рамках Исимметрии. B этом случае $\{(\vec{r}) = \vec{S}(\vec{r}), \ \mathcal{F} = \{\vec{S}_i, \vec{S}_j, \dots, \vec{S}_p \}$, $p \leq n$, где $f_i = \vec{S}_i$ — равличные зна чения векторной функции $\vec{\mathcal{G}}(\vec{r})$, определенной в точках равновесных положений магнитных атомов. На рисунках І+5 показава часть элементарной ячейки кристалла с симметрией $P4mm=\mathcal{C}_{4v}^{4}$. Начало координат внорано в узде с точечной симметрией G=4mm , а магнитные атожн Различным спиновым структурам (рис. 18-58) соответствуют различные систомы "цветных точек" $\{[\vec{S}_i,\vec{r}_i]\}$ (рис. [a-5a], цифры у треугольников обозначают "номера цветов"), которые могут быть описаны цветными группами Р- и W-симметрии. Символи этих групп приведени рядом. Для сравнения отдельно выписани символы "одноцветны" (или "иласовческих")подгрупп. соответствующке группам"конфигурационной симметрии" этих структур.

ШИТЕРАТУРА

- I. A.B. Шубников, В.A. Копцик. Симметрия в науке и вскусстве.
 "Наука", М., 1972. A.V. Shubnikov, V.A. Кортвек. Пушшетту ін Полет и.
 Art and Nature. Plenum-Press, N.Y., 1974.
- 2. В.А.Кочцик, И.Н.Коцев. Сообщения ОИЯИ, Р4-1067, Куона, 1974.
- 3. A.M. Sаморзаев. Кристаллография, <u>12</u>, SI9 (1907).
- 4. В.А.Концик, И.Н.Коцев, Ж.-Н.М.Кужукеев, Сообщения ЖИИ, Р4-7513 и Р4-7514, Дубна, 1976.
- 5. В.А.Копцик, И.Н.Коцев. Н.-Н.М.Кужукеев. Труди Международной конференции по магнетизму МКМ-73 (август 1973 г.). "Паука", М., 1974, том Ш. стр. 474.
- 6. И. Н. Коцев, В. А. Копцик. Вторая национальная конференция молодых физиков, апрель 1974, София. Тезиси, стр. 55.
- 7. А.Г.Курош. Теория групп. "Наука". М., 1967.
- 8. М.И.Картаполов, Ю.И.Мервляков. Основы теории групп. "Наука". М., 1972.
- 9. J.S. Lomont. Applications of Finite Groups. N.Y., 1959.
- 10. В.А.Копции, Ж.-Н.М.Кужукеев. Кристаллография, 17,705(1972).
- II. A. Bienenstock, P. Eweld. Acta Cryst., 15, 1253 (1962).
- 12. Б. К. Вайнитейн, Б. Б. Звягин. Кристаллография. 8, 147 (1963).
- I3. O.Wittke, J. Garrido. Bul. Soc. franç. Min. Cryst., 82,223 (1959).
- 14. Ю.А.Изимов, Р.П.Озеров. Магнитная нейтронография, "Наука", М., 1966.
- I5. G. Shirane. Acta Cryst. , 12,282 (1959).
- I6. C.Wilkinson, E.J.Lisher. Acta Cryst., A29,453 (1973).
- 17. В.Е.Найм. ФММ, <u>14</u>, 315 (1962); Изв. АН СССР, с.физ., 27, 1496 (1963).
- 18. A.Kitz. Phis. status solidi, 10,455 (1965).
- 19. W. Brinkman, R. J. Elliott. Proc. Roy. Soc., A294, 343 (1966).
- 20. P.B.Litvin. Acts Cryst., A29,651 (1973).

Рукопись поступила в издательский отдел 4 июля 1974 года.