СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА



C36 K-658 P4 - 8067

3976/2-74 В.А.Копцик, И.Н.Коцев

> К ТЕОРИИ И КЛАССИФИКАЦИИ ГРУПП ЦВЕТНОЙ СИММЕТРИИ.

I. Р - СИММЕТРИЯ

1974

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

P4 - 8067

В.А.Копцик, И.Н.Коцев

К ТЕОРИИ И КЛАССИФИКАЦИИ ГРУПП ЦВЕТНОЙ СИММЕТРИИ.

**І. Р** -СИММЕТРИЯ

І. Теория обобщенных (составных) групп, иначе называемых цветными, тесно связанная с теориями расширении и индуцированных представлений групп, находит широкое приложение в математике и физике. Этот метод является мощным средством конструирования новых групп и новых представлений, с помощью которых производится учет свойств симметрии составных (геометро-физических) объектов (см. например, /1, ./).

По самому общему определению, составная группа РС есть множество бинарных элементов (конечное или бесконечное)

$$PG = \{ P.S., P.S., \dots, P.S., \dots \}$$
. (1) в котором введена групповая операция и выполняются все групповые аксисмы. Способы введения групповой операции на множестве (1) обсуждаются у А.Г.Курона  $^{/1/}$  (стр. 484-488). Каждый из этих способов задает специфическую конструкцию  $PG$ -групп.

Оставляя в стороке их рассмотрение, остановимся на наиболес важном для приложений случае, определив впервые цветные группи как подгруппи сплетений двух групп /3/:

$$G^{(w)} = WG \subseteq P \circ G = (P \circ P \circ G) \circ G \qquad (2)$$

В силу теореми Калужнина и Краснера (см.  $^{11}$ , стр. 482) конструкция (2) охвативает все до сих пор рассматривавшиеся случаи цветной симметрии: так называемие группи Q-симметрии  $^{14-6}$ 

$$G^{(V)} = QG \subseteq Q \oplus G$$
 (где Q. замещает  $P$ ), (3) грушин  $P$ -симметрии Заморваева  $7.87$ 

 $C^{(P)} = PC \subseteq P \otimes C$  (4) и не сводящиеся к случаям (3), (4) группы Виттке-Гарридо /9/, компмексной симметрии Биченстока-Эвальда /10/ и Вайнштейна-Звягина
а также все другие случаи, объединенные в работе /12/ под общик именем цветной псевдосимметрии.

Группи РС-типа (4) по сравнению с другими наиболее пол/7,8/
но изучени, однако лишь недавно была построена их общая теория
и для кристаллографических цветных групп предложена их первая классификация /13/. Настоящая работа ставит себе целью построение
более общей теории – теории групп W-симметрии (2), разработку
принципов их классификации и, в качестве примера, подробное рассмотрение кристаллографических цветных групп Р- и W-типа. Теории
W-групп посвящена вторая часть статьи /3/. В настоящей первой
части издагаются основы теории Р-симметрии и предлагается более
разработанная классификационная схема.

2. Для каждого из указанных више типов составных групп (2)-(4), следуя А.М.Заморзаеву  $^{\prime 7,8\prime}$ , будем считать, что все подгруппы  $G^{(2)} \in P_2$  G (или  $G \subseteq Q \otimes G$ ,  $G^{(2)} \in P \otimes G$ ) принадлежат одному семейству групп W-симметрии" (Q- и P-симметрии, соответственно), порождаемому группами G и P (или G и Q). Назовем группы  $G = P_2G$ ,  $G^{(2)} = Q \otimes G$ ,  $G^{(2)} = P \otimes G$  "старшими группами данного семейства", а их подгруппы, выделяемые по изоморфизмам  $G \xrightarrow{(w)} G$ ,  $G \xrightarrow{(p)} G$ ,  $G \xrightarrow{(p)} G$   $G \xrightarrow{(p)} G$  "младшими" группами. Остальные группы семейства (с некоторыми модификациями) будем относить к "средним" группами. Условимся называть входящие в (2)-(4) группы G группами основы, а  $P_1Q = P_2G$   $Q = P_3G$   $Q = P_$ 

До сих пор не делалось никаких предположений о конкретной природе элементов групп G, P и Q, т.е. они рассматривались как абстрактние группи. Соответствующие им составние группи, абстрактные по обоим сомножителям в (2)-(4), можно назвать "абстракт-

но-абстрактными" группами W-, Q- или Р-симметрии. В случае конкретизации одного или обоих сомножителей в (2)-(4), можно различать "абстрактно-конкретные", "конкретно-абстрактные" и "конкретноконкретные" составные группы. Более детальную классификацию составных групп целесообразно проводить на том или ином конкретном уровне, определяя их эквивалентность в рамках преобразований автоморфизмов — как внутренних, так и внешних для данного семейства, но ограниченных фиксированной надгруппой [-{ } ].

Будем считать (по определению) две группы  $G^{(a)}$  и  $\overline{G^{(a)}}$  эквивалентными (точнее, Г-эквивалентными, эквивалентными на уровне Г),
если они являются сопряженными подгруппами некоторой старшей группы  $\Gamma = \{Y_i\}$  данного типа P-, Q-, W-симметрии, r-с. эсли

$$\overline{\mathcal{G}^{(a)}} = \gamma \mathcal{G}^{(a)} \gamma^{-1} \quad , \quad \gamma \in \Gamma , \quad a = p, q, w . \tag{5}$$

Например, среди федоровских групп, являющихся дискретными подгруппами евклидовой группы  $\mathcal{E}$ , неэквивалентны 219 на уровне  $\Gamma = \mathcal{E}$  и 230 – на уровне  $\Gamma = \mathcal{E}^+$  ( $\mathcal{E}^+$  — подгруппа собственных движений в  $\mathcal{E}$  ).

В дальнейшем, в качестве групп основи G в (2)-(4) всегда берутся конкретные кристаллографические группи – 32 точечных и 230 пространственных, а "Г-эквивалентность" составных групп (если особо не оговорено) определяется на уровне

$$\Gamma^{(w)} = P \hat{z} \mathcal{E}^+$$
,  $\Gamma^{(q)} = Q \otimes \mathcal{E}^+$ ,  $\Gamma^{(P)} = P \otimes \mathcal{E}^+$ , (6) где  $P$  и  $Q$  — абстрактные или конкретные группы. (В последнем случае возможна некоторая детализация уровней экнивалентности — например, выделение диморфных и полиморфных модификаций цветных групп, и  $\tau_* g_* = \frac{2 \cdot 14}{3}$ .

3. Группы цветной Р- и W-симметрии являются группами автомерфизмов правильных систем цветных точек, определяемых следующим образом. В трехмерном геометрическом пространстве задана система из п симметрически эквивалентных точек (звезде векторов  $\{\vec{r}_i\}$ ),образующих полную орбиту  $\mathcal{R} = G \vec{r}_i$ , группы G порядка |G| = n (n - конечное или бесконечное):

 $\mathcal{R} = G \vec{r}_i = \{ \vec{r}_i \mid \vec{r}_i = g, \vec{r}_i, g_i \in G \}$ . (7)
Кажцое значение  $f(\vec{r})$  некоторой заданеой на орбите  $\mathcal{R}$  функции (включан  $f(\vec{r}) = 0$ ) назовем "цзетом" точки  $\vec{r}_i$ , а упорядоченние пари  $\{f(\vec{r}_i), \vec{r}_i\} = \vec{r}_i^{(f_n)} -$  цзетники точками в "геометрофизическом" (или цветном) пространстве. Пусть

 $\mathcal{F} = \{f_{\kappa} \mid f_{\kappa} = f(\vec{r_i}), \vec{r_i} \in \mathcal{G}\vec{r_i}\}$  (8) есть множество всек различних вначений  $f_{\kappa}$  функции  $f(\vec{r})$  мощности  $|\mathcal{F}| = \mathcal{P}$ , а  $P = \{p_{\kappa}^2\}$  — некоторая транзитиеная на этом множестве группа (т.е.  $p_i f_{\kappa} = f_j \in \mathcal{F}$  для камдого  $p_i \in P$  и  $f_{\kappa} \in \mathcal{F}$ ; к тому же для любой пари  $f_{\kappa}, f_j \in \mathcal{F}$  существует такое преобразование  $p_i \in P$ , что  $f_j = p_i f_{\kappa}$ ). Всегда существует котя оч одна такая группа — симпетрическая группа  $\mathcal{S}_{\mathcal{P}}$  стененя p порядка  $p_i^2$ , состоящая из всех возможных подставовок  $p_i^2 = \begin{pmatrix} 1 & 2 & -K & -P \\ i_1 & i_2 & i_3 & -i_p \end{pmatrix}$  индексор "цветое"  $f_{\kappa} \in \mathcal{F}$ . В различных конкретных случаях P может быть группой соответствующим образом вноранных операторов, например оргогональных или аффиники преобразований и т.д., для которых  $\mathcal{F}$  есть одна на орбыт. В общем случае P — абстрактная группа. Для определенности (исходя на теоремы Кали) эдесь будем пользоваться группама подстановок неденсов глантов  $f_{\kappa} \in \mathcal{F}$ .

Комоннированине влементе  $g_i^{(P_i)}$   $p_i^{(P_i)}$   $p_i^{(P_i)}$  групп  $P_i$   $W_i$  симметрии, в отмачие от  $Q_i$ -симметрии  $Q_i^{(P_i)}$ , осуществияют преобразования цветенх точек  $Q_i^{(P_i)}$ , где элементи основи  $Q_i^{(P_i)}$  действуют только на  $q_i^{(P_i)}$ , а нагрузки  $q_i^{(P_i)}$  — только на  $q_i^{(P_i)}$ . При этом, в  $Q_i^{(P_i)}$  в  $Q_i^{(P_i)}$  при отом, в  $Q_i^{(P_i)}$  при отом приписан двет  $Q_i^{(P_i)}$  при отом существенно зависят от докализации данного цвета в системе  $Q_i^{(P_i)}$  .

В структуре групп  $\mathcal{G}^{(p)}$  это отличие проявляется в том, что их максимальная классическая полгруппа

 $H^{(1)} = G^{(p)} / G = \{ h_j^{(1)} / h_j^{(1)} = h_j^{(p)}, h_j \in H, p = e \in P \}$ (9) (т.е. совокупность всех элементов группы  $\mathcal{C}^{(P)}$ , сохраняющих неизменными все цвета  $f_{\mathbf{k}} \in \mathcal{F}$  ) в группах Р-симметрии всегда инвариантна,  $\mathcal{H}^{(\prime)} \supset \mathcal{G}^{(P)}$ , а в W-симметрии – неинвариантна  $\mathcal{H} \subset \mathcal{G}^{(w)}$  (за исключе– нием тривиальной  $H_{=}^{(a)}$ 1).

4. Рассмотрим сначала группы  $\mathcal{G}^{(p)}$  цветной Р-симметрии. Груписвое умножение в  $\mathcal{C} \overset{(p)}{\subseteq} \mathcal{P} \otimes \mathcal{C}$  производится по закону прямого произведения групп

 $J_{i}^{(p)}J_{i}^{(p)} = (p,g_{i})\otimes(p_{i},g_{i}) = (pp_{i},g_{j}g_{i}) = g_{i}^{(p)}J_{i}^{(p)} = g_{m}^{(p)}$  (10) Элементи  $g_{i}^{(p)}\in\mathcal{G}^{(p)}$  действуют на  $\overline{\tau}_{i}^{(f_{u})}$ следующим образом:  $g_{j}^{(p)}\overline{\tau}_{i}^{*}(f_{u}) = (p,g_{j})(f_{u},\overline{\tau}_{i}) = (pf_{u},g_{j}\overline{\tau}_{i}) = g_{j}\overline{\tau}_{i}^{*}(f_{e}f_{u})$  (11) Если функция  $f(\overline{\tau}_{i})$  в любой точке  $\overline{\tau}_{i}\in\mathcal{R}$  принимает все p различных зна-

чений  $f_{\mathbf{k}} \in \mathcal{F}$  , то система цветных точек  $\{\vec{\tau}^{(f_{\mathbf{k}})}\}$  принадлежит декартовому произведению  $\mathcal{F}_{\times}\mathcal{R}_{-}$  и ее симметрия задается старшей  $\mathcal{P}_{-}$ цвет-HOM PRINTER G(P) Spe G.

В большинстве практически интересных случаев (г) - однозначная функция на  $\mathcal R$  . т.е. с каждой точкой  $ec au \in \mathcal R$  связан один и только один цвет  $f_{\mathbf{z}} \in \mathcal{F}$  . В этом случае  $p \in n$  , а совокупность n цветных точек  $\tau_i^{(f_k)}$  принадлежит некоторому подмножеству  $\mathcal{FR} \subset \mathcal{F} \times \mathcal{R}$ Ее симметрия задается младшими группами  $\mathcal{G}^{(p)}$ , изоморфинми  $\mathcal{G}$  , т.е.  $G^{(p)} \leftarrow G$ . Общий случай произвольной системы  $\mathcal{FR} \subset \mathcal{F} \times \mathcal{R}$  описывается группами W-симетрии /3/. Рассматриваемые здесь группи Рсимметрии накладивают жесткие ограничения на способи "раскраски" Torek  $\vec{\tau}_{i}^{(f_{u})} \in \mathcal{FR}$  . T.e. на позможные значения любой функции  $f(\vec{\tau})$ , задажной на симметрически эквивалентной системе точек  $\mathcal{C} \vec{r} = \mathcal{R}$  . Вопервых, число точек  $\vec{\tau}^{(f_u)}$  каждого цвета  $f_u \in \mathcal{F}$  одинаково и равно порядку максимальной классической подгруппи  $H^{(2)}G^{(p)}$ , инварилнтной в  $G^{(p)}$  Во-вторых, одинаковый "цвет"  $f_{\mathbf{k}} \in \mathcal{F}$  имеют все те и только те точки  $\overrightarrow{\tau}_{\mathbf{k}} \in \mathcal{R}$ , которые составляют подмножество орбити  $\mathcal{R}$ , порожденное некоторым смежным классом  $g_{\mathbf{k}}H$  группы  $\mathcal{G}$  по инвариантной подгруппе  $H \supseteq \mathcal{G}$ , совпадающей с максимальной классической подгруппой  $H^{(4)} \supseteq G^{(p)}$ . Инвариантность классической подгруппы  $H^{(4)} \trianglerighteq G^{(p)}$  следует с необходимостью из определений группового умножения (10), действия (11) элементов  $g_{ij}^{(p)}$  групп Р-симметрии на точки  $\overrightarrow{\tau}_{ij}^{(p)}$ и требования однозначности" раскраски" цветной системы точек  $\mathcal{F}\mathcal{R}$ 

Из основной теоремы Р-симметрии /7/ следует, чтс совокупность пли рузок Р в младших группах  $G^{(P)}$  образует группу, изомор эную факторите  $G^{(P)}$  . Нагрузки присоединены к элементам сновы  $g \in G$  гомоморфизму  $G \to \mathcal{G}_{H} \to P$  . Таким образом, задача внвода всех младых групп  $G^{(P)}$ , изоморфизм заданной классической группе G, может быть лабита на два этапа: а)разискание всех неэквивалентих инварименных подгрупп  $H \bowtie G$ , перечисление соответствующих фактор-групп,  $G_H$  . Гановление естественных гомоморфизмов  $E:G \to \mathcal{G}_{H}$  и изоморфизмов  $G \to \mathcal{G}_{H}$  и из

Всем элементам  $q_{x,z} = g_{\kappa} h_{x} \in g_{\kappa} H$  смежных классов  $g_{\mu}$  и в разложении  $f_{\kappa} = f_{\kappa} H \Leftrightarrow G^{(p)}$  приписивлется нагрузка  $g_{\kappa} = f_{\kappa} (g_{\kappa} H)$ , где

φ: G→P, φ=μ·ε + 1 + 4 μ· 4 μ· 4 μ· 1 (C(P) = H Δ G G ↔ C(P) (12)

Аля 32 кристаллографических гочечных групп первий этап осудествлялся разными методамы (см. ). В этом случае и о С и С/Н изоморфия 18 абстранти из группам и порядка n=1,...,3,4,...,8,12,16,2448 (табл. I). Установлением изоморфизмов рантор-группи  $\mathcal{C}/H$  на соответствующие абстрактные группи Р, получается I7I кристаллографическая (конкретко-абстрактная) точечная группа Р-симметрии  $\mathcal{C}_{3,0}^{4,\,P}$  /2/. Из нях 32 одноцветние совпадают с классическими, 58 двущестних соответствуют шубниковским. Остальные — 8I группа  $\mathcal{C}^{(P)}$ для числа цветов р=3. ..., 48 (см. табл. I8 в /2/) — приведены в табл. 2. Эти группи игракт родь базисных для младших точечых групп Р-симметрии, т.к. из них, могут быть получены все возможные интерпретации точечных групп Р-зимметрии путем установки изоморфизмов абстрактной группы Р с различными конкретными группами преобразований цветов. Так как любое преобразование цветов  $f_{c} \in \mathcal{F}$  может быть интерпретировано как подстановка их индексов, целесообразно найти все неэквивалентные точные представления I8 абстрактных групп Р транзитивными группами подстановок степения Р (Подобная задача решалась в работе / I3/ с целью классификации групп Р-симметрии).

Но теореме Кэли  $^{/1/}$  двоая группа Р порядка |P|-p изоморфна некоторой подгруппе симметрической группи  $S_p$  степени p. Таких подгрупп в  $S_p$  может бить несколько, но среди них всегда имеется одна регулярная группа подстановок степени p-|P|, которую обозначим символом  $(P)_p \subseteq S_p$ ,  $(P)_p \mapsto P$ . Регулярние группи являются единственними точными представлениями абелевых групп транзитивными группами подстановок. Для неабелевих групп P, однако, кроме регулярных  $(P)_p \subseteq S_p$ , существуют и нерегулярние изоморфние им транзитивные группы подстановок степени p' . Точние представления группы <math>P (нерегулярными) транзитивными группами подстановок степени p' модехируются подстановоками.

становками  $(p) = \begin{pmatrix} \dots & p & P' & \dots \\ \dots & p & p' & \dots \end{pmatrix} = \begin{pmatrix} \dots & k & \dots \\ \dots & j_k & p' & \dots \end{pmatrix} \in (P, P')_{p',m} \longrightarrow P$  (13) девых смежных влассов p P' группы P по нежнварывантной подгруппе  $P \subset P$ 

индекса p'=[P:P'] при левом сдвиге, если, и только если, единственный общий элемент для всех сопряженных с Р' в Р подгрупп  $P_i'=p_i\,P'_{p_i}^{-1} \subset P$  есть единица группы Р, т.е.  $\bigcap_{p_i\in P} p_i^{-1}=e$  (см. /15/ §5 и /16/). Для P'=e , подстановки (I3) образуют регулярное представление (P)  $p^{\pm}(P,e)_p$ степени p = |P|. Рассмотрим структуру этих групп подстановок. В регулярной группе  $(\mathcal{P})_{p} \longleftrightarrow \mathcal{P}$  степень р всегда равна порядку группи  $|\mathcal{P}|$  и все ее элементи  $p \in (\mathcal{P})_p$  состоят из подстановок р чисел, разбиваемых на независимые циклы одинаковой длины, равной порядку  $|m{\gamma}|$  элемента  $p_i$  ,  $p_i$ В группах  $(P\!P')_{p^{(m)}}$  подстановки, соответствующие элементам неинвариантной подгруппы P = P и сопряженных с ней подгрупп  $P' = P P' p^{-1}$  перегулярны: состоят из независимых циклов разной длины и содержат, по крайней мере, т>1 единичных циклов (т.е.сохраняют неизменными котя бы т>1из всех р чисел). Число  $m_{z}[N_{p}(P'):P']$  равно индексу (неинвариантной в P) под-подстановках  $p \in P' = P$  отвечают номера тех m смежных классов  $p \in P'$ в (I3), которые составляют нормализатор  $\mathcal{N}_{p}(P') = \bigcup_{k=1}^{n} p_{k} P' \in P$ . Номера mсмежных классов  $p_{\mathbf{k}}^{P'} \in \mathcal{N}_{P}(P')$  в группе  $(P,P')_{p',m}$ выделяются еще тем, что они преобразуются одинаковим образом во всех элементах p данного смехного класса  $pP'\in P$  . В любом элементе каждой из  $r=[P:N_p(P')]$  сопряженных с Р'подгрушт  $P_i = P_i P_{p_i}^{-1}$  также имеются хотя бн  $m \geqslant 1$  единичных циклов. Один из них в каждом  $p\in \mathcal{P}'_{i}=p\mathcal{P}'_{p}^{-1}$  есть цикл (i) , где i соответствует номеру смежного класса  $pP \notin \mathcal{N}_{\mathcal{P}}(P')$  , содержащего сопрягающий элемент  $p \in p$  P' . Поэтому целесообразно указать в обозначении нерегулярной транзитивной группы подстановок  $(P,P')_{P',m}$  символы изоморфной ей абстрактной группы Р и неинвариантной подгруппы Р, степень р'=[P:P'] группы, и число  $m = [N_p(P'): P']$  "особых" индексов.

Все транзитивные группы подстановок для 18 абстрактных точечных групп, изоморфных 32 кристаллографическим группам, приведены в табл. I (см. также  $^{/13/}$ ). С помощью (12) и изоморфизма  $\mu: P \leftrightarrow (P)_p$ из 81 базисной (конкретно-абстрактной) точечной группы Р-симметрии (p>3) подучается  $\otimes 1$  регулярная цветная группа  $G_{R}^{(p)}$  (эти группи названы в /2/ "нормальными",  $G_N^{(P)}$ ). Изоморфизм  $\mu: P \mapsto (P.P')_{P'm}$  (табл. 1) приводит к 7. нерегулярным точечным группам Р-симметрии  $\mathcal{G}_{I}^{\,(\mathcal{P})}$ . (В /2,12/ они названы группами Ван-дер-Вардена-Буркхарта, $\mathcal{G}_{WB}^{(P)}$  , т.к. были получени методом, указанным этими авторами /16/).

ми группами Хееша-Шубникова установленный в/20, табл. 7/, позволяет с помощью (1 $\scriptstyle \perp$ ) вывести все "обобщенные магнитные"  $^{/17/}$  или "спиновне"  $^{/18-19/}$  точечные группы Р-симметрии из 58  $\mathcal{G}'$  и 81  $\mathcal{G}^{(p)}$  базисных групп, приведенних в таблицах 15 и 18 в работе /2/.

Каждому гомоморфизму  $\mathcal{G} \to \mathcal{P}$  соответствует только одна репулярная группа Р-симметрии. Для обозначения групп типа  $\mathcal{G}_{\mathsf{p}}^{(p)}$  можно использовать "двучление символи" - краткие или полине: G/H ; G/H (P(табл. 2). Число групп  $(P,P')_{p'_{1m}}$ , изоморфных G/H, может онть больше сдиницы (см. табл.І), а некоторые (Р.Р') $_{p'm}$  могут быть по-разному ориенти ровани относительно  ${m G}$  . Для однозначного задания нерегулярних  ${m v}_1$  но  $\mathcal{G}_{\mathbf{r}}^{(\mathbf{r}')}$  Р-симметрии удобно использовать "трехчленные символы" /2,  $\mathbb{R}^{(\mathbf{r}')}$ краткие C/H'/H или полные C/H'/H (Р.Р') $_{P'M}$  Символы C/H'/H для 50 из 73 групп  $G_{1}^{(p')}$  приведены в  $^{/13}/$  в табл. 3 приводятся полные трехчленные символы для всех 73  $\mathcal{G}_{I}^{(r')}$ -групп, вместе с интернациональными символами этих групп /2,12/

Трехчленний символ С/Н'/Н однозначно задает нерегулярную группу  $\mathcal{C}_{\mathbf{I}}^{(P')}$  и содержит следующую информацию о структуре цветной группы:

- a)  $G \leftrightarrow G_I^{(P')}$ ; (I of choba Irregular)) 6)  $H \leftrightarrow H^{(1)} \triangle G_I^{(P')}$ ,  $H \triangle G \cap H \triangle H'$ ;
- $H = Ker \varphi , (\varphi: G \rightarrow P, \varphi: H' \rightarrow P', P' \subset P \leftrightarrow (P, P')_{P'm});$

$$\mathbf{r}) \quad \mathbf{H}' \longleftrightarrow \mathbf{H}_{i}^{(p)} \subset \mathcal{G}_{\mathbf{I}}^{(p)} \,, \quad \mathbf{H}' \subset \mathcal{G} \,\,, \quad [\mathcal{C} \colon \mathbf{H}' \,] = p' \,.$$

I) 
$$G/H \Leftrightarrow P$$
,  $H/H \Leftrightarrow P'$ ,  $G/H \Leftrightarrow (P,P')_{P'm}$ .

В полном символе добавлена информация о структуре нерегулярной транзитивной группы подстановок  $(P,P')_{p',m} \mapsto {}^{G}/_{H} : P' = [P : P'] = [G : H'] : m = [N_{G}(H') : H']$ . В интернациональных символах /2, 12/ регулярных групп  $\mathcal{C}_{R}^{(P)} = \mathcal{C}_{N}^{(P)}$ 

В интернациональных символах  $(P_{i}^{(p)}, P_{i}^{(p)})$  регулярных групп  $(P_{i}^{(p)}, P_{i}^{(p)})$  (табл.2) верхним индексом у каждого из генераторов  $(P_{i}^{(p)}, P_{i}^{(p)})$  группы указан порядок нагрузки  $(P_{i}^{(p)}, P_{i}^{(p)})$ , совпадающий для регулярных подстановок с длиной составляющих ее циклов. Индекс над скобками указывает степень группы подстановок  $(P_{i}^{(p)}, P_{i}^{(p)})$  "Шветность" группы  $(P_{i}^{(p)}, P_{i}^{(p)})$  совпадающув в данном случае с индексом максимальной классической подгруппы  $(P_{i}^{(p)}, P_{i}^{(p)})$  нак как все 73  $(P_{i}^{(p)}, P_{i}^{(p)})$  могут быть получены из 32 регулярных групп  $(P_{i}^{(p)}, P_{i}^{(p)})$  их интернациональные символы  $(P_{i}^{(p)}, P_{i}^{(p)})$  их интернациональные символы  $(P_{i}^{(p)}, P_{i}^{(p)})$  их интернациональные символы  $(P_{i}^{(p)}, P_{i}^{(p)})$  общая "цветность"  $(P_{i}^{(p)}, P_{i}^{(p)}, P_{i}^{(p)})$  у генераторов  $(P_{i}^{(p)}, P_{i}^{(p)}, P_{i}^{(p)})$  нагрузкой которых служит нерегулярная подстановка, добавляен второй верхний индекс, обозначающий число сохраняемых этим элементом "цветов" (число единичных циклов нерегулярной подстановки  $(P_{i}^{(p)}, P_{i}^{(p)})$  или сопряженным ей подгруппам. (первый индекс по-прежнему указывает порядок подстановки и одинаков в  $(P_{i}^{(p)}, P_{i}^{(p)})$  .

5. В работе  $^{/13/}$  в других обозначениях предложена классификация групп Р-симметрии – по каждой из 45 групп подстановок І8 (Р) и 27  $(P,P')_{P,m}$ . В табл. І указано число всех точечных,  $G_{5,0}^{4,P}$ , и выведенных до сих пор  $^{/8,12/}$  пространственных групп  $C_3^{4,P}$  Р-симметрии каждого такого типа.

В заилочение авторы выражают благодарность Ж.-Н.М.Кужукееву за полезные обсуждения и А.М.Заморзаеву за предоставление работи/13/.

## JIMTEPATYPA

- І. А.Г.Курош. Теория групп. "Наука", М., 1967.
- 2. A.B.Шубников, B.A.Копцик. Симметрия в науке и искусстве. "Наука", M., 1972. A.V.Shubnikov, V.A.Кортвік. Symmetry in Science, Art and Nature. Plenum-Press. N.Y.. 1974.
- 3. В.А.Копцик, И.Н.Коцев. Сообщения ОИНИ. Р4-8068, Дуона, 1974.
- 4. В.А.Копцик, И.Н.Коцев, Ж.-Н.М.Кужукеев. Сообщекия ОИЯИ, Р4-7513, Р4-7514, Дубна, 1973.
- 5. В.А.Копцик, И.Н.Коцев, Ж.-Н.М.Кужукеев. Труди Международной конференции по магнетизму МКМ-73 (Москва, август 1973). "Наука", М. 1974. том 3. стр. 474.
- 6. В.А. Копцик, И.Н. Коцев. II Национальная конференция молодых физиков, (София, апрель 1974), Тезисы, стр. 53.
- 7. А.М.Заморзаев. Кристаллография, <u>12</u>, 819 (1967).
- 8. А.М.Заморзаев. Кристаллография, <u>14</u>, 195 (1969)
- 9. O.Wittke, J. Garrido. Bul. Soc. franç. Min. Crist., 82,223 (1959).
- IO. A. Bienenstock, P. Ewald. Acta Crist., 15, 1253 (1962).
- II. Б.К.Вайнштейн, Б.Б.Звягин. Кристаллография, 8, 147 (1963).
- В.А.Копцик, Т.-Н. И.Кужукеев. Кристаллография, 17, 705(1972)
- 13. А.М.Заморзаев, И.С.Туцул, А.П.Лунгу. "К теории и классификации квазисимметрий". В сб. "Исследования по дискретной геометрии", год ред. А.М.Заморзаева. Изд. "Штиинца", Кишинев, 1974, стр.З.
- I4. D. Harker. Preprint R. P.M., Buffalo, N. Y., 1974.
- М.Холл. Теория групп. ИЛ, М., 1962.
- I6. B. L. van der Waerden, J. Burckhardt. Z. Krist., 115, 231 (1961).
- 17. В.Е. Найш. №М, <u>14</u>, 315 (1962); Изв. АН СССР, с. физ., <u>27</u>, 1497 (1963)
- I8. A. Kitz. Phis. status solidi, 10,455 (1965).
- I9. D.B. Litvin. Acta Crist., A29, 651 (1973).
- 20. В.А.Копцик. Шубниковские группы. Изд-во МГУ, Москва, 1966. Рукопись поступила в издательский отдел 4 игля 1974 года.

Таол. І. (P) $_{P}$  и (P, P') $_{P',m}$  представления абстрактных групп P

| P → G<br>H                  | (P) <sub>p</sub><br>(P,P') <sub>p'm</sub> | 44CAO<br>G1.P<br>G3.0 |      | Fas GH          | (P) <sub>P</sub><br>(P,P') <sub>P',m</sub>         | 44CAO<br>G3,0 | P ← G<br>H | $(\mathcal{F})_{p}$<br>$(\mathcal{P}\mathcal{F}')_{p'_{i}m}$ | число<br>С1Р<br>3,0 |
|-----------------------------|-------------------------------------------|-----------------------|------|-----------------|----------------------------------------------------|---------------|------------|--------------------------------------------------------------|---------------------|
| $c_1$                       | $(C_i)_i = S_i$                           | 32                    | 230  | $D_{6}$         | $(D_6)_{12}$                                       | 8             |            | (0,C3)8,2                                                    | 3                   |
| $\mathcal{C}_{\mathcal{Z}}$ | $(\mathcal{C}_2)_2:\mathcal{S}_2$         | 58                    | 1191 |                 | $(\mathcal{D}_{6},\mathcal{C}_{5})_{6,2}$          | 12            |            | (0, C4)6,2                                                   | 3                   |
| $\mathcal{C}_3$             | $(C_3)_3 - A_3$                           | 7                     | 111  | $D_{Gh}$        | (D64)24                                            | 1             |            | (0, D' <sub>2</sub> ) <sub>6,2</sub>                         | 3                   |
| C4                          | $(\mathcal{C}_4)_4$                       | 4                     | 327  | ŧ.              | (D <sub>6h</sub> ,C <sub>2</sub> ) <sub>12,4</sub> | 2             |            | (0,D3)4,1 = S4                                               | 3                   |
| $C_{6}$                     | (i'6)6                                    | 7                     | 379  | $\mathcal{T}$   | (T) <sub>12</sub>                                  | 2             | Oh         | (O <sub>h</sub> ) <sub>48</sub>                              | 1                   |
| C4h                         | (C4h)8                                    | 1                     |      |                 | $(T, C_2)_{6,2}$                                   | 2             |            | (Oh, C2)24, 8                                                | 2                   |
| C <sub>6h</sub>             | (C6L)12                                   | 1                     |      | <b> </b>        | (T, C3)4.1=A4                                      | 2             |            | (Oh, Cs)24,8                                                 | 1                   |
| $D_2$                       | $(\mathcal{D}_2)_4$                       | 26                    | 1843 | $\mathcal{T}_n$ | $\left( T_{k} \right)_{24}$                        | 1             |            | (Oh, C') 24,4                                                | 1                   |
| $D_{2h}$                    | $(D_{2k})_g$                              | 3                     |      |                 | (Th. C2)12,4                                       | 1             |            | (0k, C3)16,4                                                 | 1                   |
| $D_3$                       | $(D_3)_6$                                 | 10                    | 282  |                 | $(T_{k}, C_{S})_{12,4}$                            | 1             |            | (O4, C4)12,4                                                 | 2                   |
|                             | $(D_3, C_2')_{3,1} = S_3$                 | 10                    |      |                 | $(T_h, C_3)_{\delta,2}$                            | 1             |            | (O4, C2V) 12,4                                               | 1                   |
| $D_4$                       | (D4)8                                     | 5                     |      |                 | (Th, C2v)6,2                                       | 1             |            | (Oh. Czr) 12,4                                               | 1                   |
|                             | (D4.C2)4,2                                | 6                     |      | 0               | (0)24                                              | 3             |            | $(O_h, C_{2V}^{"})_{12,2}$                                   | 2                   |
| $D_{4h}$                    | (D4h)16                                   | 1                     |      |                 | (0, C2)12,4                                        | 3             | 1          | $(O_h, D_3)_{8,2}$                                           | 2                   |
|                             | (D4k,C')8,2                               | 2                     |      |                 | $(0, C_2')_{12,2}$                                 | 3             |            | (On, C4V)6,2                                                 | 2                   |

Таол. 2. Символи цветных групп  $G_R^{(p)} = G_N^{(p)}$  типа  $G_{3,0}^{(p)}$ 

| N: | G/H   | (P) <sub>P</sub>    | GR G                                                                 | Ν÷ | G/H    | (P) <sub>p</sub>               | $G_R^{(p)} \longleftrightarrow G$                                                          | N: | G/H (P) <sub>P</sub> | $G_R^{(p)} \hookrightarrow G$                                        |
|----|-------|---------------------|----------------------------------------------------------------------|----|--------|--------------------------------|--------------------------------------------------------------------------------------------|----|----------------------|----------------------------------------------------------------------|
| 1  | Can/C | $(D_2)_4$           | $\left(\frac{2^{(2)}}{m^{(2)}}\right)^{(4)}$                         |    |        |                                | $\left(\frac{2^{(2)}}{m^{(2)}}\frac{2^{(2)}}{m^{(2)}}\frac{2^{(2)}}{m^{(2)}}\right)^{(4)}$ | 9  | 5,/0,(4)4            | (4))(4)                                                              |
| 5  | 12/6  | $(\mathcal{D}_2)_4$ | (2 <sup>(2)</sup> 2 <sup>(2)</sup> 2 <sup>(2)</sup> ) <sup>(4)</sup> | 6  | D24/C2 | ( <del>1</del> 2) <sub>4</sub> | $\left(\frac{2^{(2)}}{m^{(2)}},\frac{2^{(2)}}{m^{(2)}},\frac{2}{m^{(3)}}\right)^{(4)}$     | 10 | $D_4/C_4(D_4)_g$     | (4 <sup>(4)</sup> 2 <sup>(2)</sup> 2 <sup>(2)</sup> ) <sup>(8)</sup> |
| 3  | Golc. | $(D_2)_{\mu}$       | (m(2)m(2)2(2))(4)                                                    | 7  | Doute  | (B)                            | (2(2) 2(2) 2(2) (4)                                                                        | 11 | D,/C, (D,)           | (4(2)2(2)2(2))(4)                                                    |
| 4  | D. C. | (D <sub>216</sub> ) | (2(2) 2(2) 2(2) )(8)                                                 | 8  | C4/C,  | (C4)4                          | (4(4))(4)                                                                                  | 12 | C44/C1 (C44)8        | $\left(\frac{4^{(4)}}{m^{(2)}}\right)^{(8)}$                         |

Табл: 2 (прс: элжение)

| N:   | G/H (P) <sub>P</sub>                                                         | $G_R^{(P)} \longrightarrow G$                                                                                                                                                                                                       | N: | G/H (P) <sub>P</sub>                                          | $G_R^{(p)} \longrightarrow G$                                                           | N:   | G/H (P) <sub>P</sub>       | $G_R^{(P)} \longrightarrow G$                                                                            |
|------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|------|----------------------------|----------------------------------------------------------------------------------------------------------|
| 13   | C4 /C. (C4)4                                                                 | (4(4)<br>(m(2))(4)                                                                                                                                                                                                                  | 36 | $D_{3,i}/C_{s}$ $(D_{2})_{ij}$                                | (2) 2(2) (4)                                                                            | -    | <del></del>                | (616) 212 212) (12)                                                                                      |
| 14   | $C_{4k}/C_2(D_2)_4$                                                          | $\left(\frac{4^{(2)}}{m^{(2)}}\right)^{(4)}$                                                                                                                                                                                        |    | C6/C, (C6)6                                                   | (6 <sup>(6)</sup> ) <sup>(6)</sup>                                                      |      |                            | 16131 (2) 2121 (16)                                                                                      |
| 15   | C44/C5 (C4)4                                                                 | $\left(\frac{4^{(4)}}{m}\right)^{(4)}$                                                                                                                                                                                              | 38 | C <sub>6</sub> /C <sub>2</sub> (C <sub>3</sub> ) <sub>3</sub> | (6 <sup>(3)</sup> ) <sup>(3)</sup>                                                      | 61   | $D_{ah}/C_{a}(D_{2h})_{8}$ | ( miles , 12) 111(2)                                                                                     |
| 16   | C40 /C, (D4)8                                                                | (4(4)m(2))(8)                                                                                                                                                                                                                       | 39 | C34 /C, (C6)6                                                 | (6")(6)                                                                                 | 62   | Det / D. (D.),             | ( ( mill mill mill ) (4)                                                                                 |
|      |                                                                              | 1 1                                                                                                                                                                                                                                 | 40 | C31 /C5 (C3)                                                  | (6(3))(3)                                                                               |      |                            | (66) 212 (E. 14)                                                                                         |
|      |                                                                              | 1                                                                                                                                                                                                                                   | 41 | CGAIC, (CGE) 12                                               |                                                                                         | 64   | Den 16 (2)4                | ( 6 2(2) 2(2) (4) (m/2) m/2) (4)                                                                         |
| 19   | $D_{24}/C_5(D_2)_4$                                                          |                                                                                                                                                                                                                                     |    | G. /C. (G)6                                                   | $\left(\frac{6^{(6)}}{m^{(2)}}\right)^{(6)}$                                            |      |                            | ( ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                  |
|      |                                                                              | 14(4) 2(2) 2(2) (6)<br>(m(2) m(2) m(2) (6)                                                                                                                                                                                          | Í  |                                                               |                                                                                         | 11   | 1                          | ( 661 - 12 762) (41)                                                                                     |
| 21   | $D_{4k}/C_i(D_4)_8$                                                          |                                                                                                                                                                                                                                     |    | C64/C5 (C6)6                                                  | $\left(\frac{6^{(6)}}{\nu n}\right)^{(6)}$ $\left(\frac{6^{(2)}}{m^{(2)}}\right)^{(4)}$ | II.  |                            | (2161 - 1116                                                                                             |
|      |                                                                              | $\begin{pmatrix} \frac{4^{(2)}}{m^{(2)}} & \frac{2^{(2)}}{m^{(2)}} & \frac{2^{(2)}}{m^{(2)}} \end{pmatrix}^{(8)}$ $\begin{pmatrix} \frac{4^{(4)}}{m^{(2)}} & \frac{2^{(2)}}{m^{(2)}} & \frac{2^{(2)}}{m^{(2)}} \end{pmatrix}^{(8)}$ |    | 1                                                             | (1) (1)                                                                                 | fi   | i                          | (2 3(2) 363                                                                                              |
|      |                                                                              | $\left(\frac{m \ m^{(2)} m^{(2)}}{m^{(2)} m^{(2)}}\right)^{(4)}$                                                                                                                                                                    | 11 | $C_{GL}/C_{ZL}(C_3)_3$                                        | 1                                                                                       | Н    |                            | (4(2)3131712714                                                                                          |
|      |                                                                              | $\frac{\left(\frac{4^{(2)}}{m^{(2)}}\frac{2^{(2)}}{m^{(2)}}\frac{2^{(2)}}{m^{(2)}}\right)^{(q)}}{m^{(2)}}$                                                                                                                          |    |                                                               |                                                                                         |      |                            | $(\overline{4}^{(4)}3^{(3)}m^{(2)})^{(24)}$                                                              |
| - 13 | 1                                                                            | $\left(\frac{4^{(2)}}{m^{(2)}} \frac{2}{m^{(2)}} \frac{2^{(2)}}{m^{(2)}}\right)^{(4)}$                                                                                                                                              |    |                                                               | (6 <sup>(2)</sup> 2 <sup>(2)</sup> 2 <sup>(2)</sup> ) <sup>(4)</sup>                    |      | ,                          | (4 (2,3 - m (2) (6.                                                                                      |
|      |                                                                              | \(\left(\frac{4^{(2)}}{m}\frac{2^{(2)}}{m^{(2)}}\right)^{(4)}                                                                                                                                                                       |    |                                                               | (6 m (2) m (2)) (12)                                                                    | 73   | T /C, (T)                  | ( 2121 3 (61) (24)                                                                                       |
|      |                                                                              | 4 (4(2) 2(2) 2(2) (4) (4) (4) (4)                                                                                                                                                                                                   | 51 | Cov/Cz (Dz)                                                   | (6 m (2) m (2)) (6                                                                      | 74   | $T_{i}/C_{i}$ $(T)_{i}$    | $\left(\frac{2^{(2)}}{m^{(2)}}, \overline{3}^{(3)}\right)^{(12)}$                                        |
| - 11 | 1                                                                            | (3(3))(3)                                                                                                                                                                                                                           |    |                                                               |                                                                                         |      |                            | $\left(\frac{2}{m^{(2)}}, \overline{3}^{(6)}\right)^{(6)}$                                               |
|      |                                                                              | (3(6))(6)                                                                                                                                                                                                                           | 5  | D34/C, (D)                                                    | 2 (6 m (2)2(2) (12                                                                      | 76   | 7 /D (C)                   | $\left(\frac{2}{m}\bar{3}^{(3)}\right)^{(3)}$                                                            |
|      |                                                                              | $(\bar{3}^{(3)})^{(3)}$                                                                                                                                                                                                             | 5  | D34 /C5 (D3)                                                  | (6 m (22 212)) (6                                                                       | 7    | 7 0x1C, (0x)               | $\left(\frac{4^{(4)}}{m^{(2)}}\right)^{(4)} = \frac{2^{(2)}}{m^{(2)}} $                                  |
|      |                                                                              | (3(3)2(2))(6)                                                                                                                                                                                                                       | 5  | 5 D31, /C3 (D3)                                               | (6 22) m(2) 2(2))                                                                       | 7    | 8 0,1C; (0)2               | $4\left(\frac{4n}{m^{(2)}}\tilde{3}^{(3)}\frac{2n}{m^{(2)}}\right)^{(27)}$                               |
| 3    | 3 C3v/C, (D3)                                                                | $(3^{(1)}m^{(2)})^{(6)}$                                                                                                                                                                                                            | 5  |                                                               | 16 (6) 2(2) 2(2) (2) (2) (4) (6) (2) (2) (2) (2)                                        |      | 9 0, 12, (D)               | $\frac{\left(\frac{4^{(2)}}{m^{(2)}}\right)^{(6)} \frac{2^{(2)}}{m^{(2)}}}{(4^{(2)}-(3))^{2^{(2)}}} (6)$ |
| 3    | 4 Dade, (De)                                                                 | $\left(\frac{3^{(6)}2^{(2)}}{m^{(2)}}\right)^{(12)}$                                                                                                                                                                                | 5  | 7 De 10 (De)                                                  | 1661 2(2) 2(2) )(1<br>16(3) 2(2) 2(2) )(1<br>16(3) 2(2) 2(2) )(1                        | 2) 8 | O C, D, (D,                | $\frac{1}{2} \left( \frac{4^{(2)}}{m}  \overline{3}^{(5)}  \frac{2^{(2)}}{m^{(2)}} \right)^{(6)}$        |
| 1    | $\int_{\mathbb{R}}  D_{\mathfrak{g}}  f(C_{\mathfrak{g}}(D_{\mathfrak{g}}))$ | (3(3) 2(2) )(6)                                                                                                                                                                                                                     | 5  | 8 14 162 (De 14)                                              | 2 (m(2) m(2) m(2)                                                                       | 8    | 1 0/19 (2)                 | $\frac{4^{(2)}}{m^{(2)}} \frac{3^{(2)} 2^{(2)}}{m^{(2)}}$                                                |

Гаол. 3. Символы цветных групп  $G_1^{(e)} = G_{we}^{(e)}$  типа  $G_{3,0}^{1,0}$ .

| Nº | G/H'/H (P.P') <sub>p:m</sub>                                                                              | $G_1^{(p)} \hookrightarrow G$                                                                                       | N: | G/H′/H          | (P.P') <sub>p',m</sub>                   | 1(P')<br>1 ←→ G                                                                                  |
|----|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----|-----------------|------------------------------------------|--------------------------------------------------------------------------------------------------|
|    | $D_{q}(c_{+}/c_{+}^{2}) \left(D_{q}(C_{+}^{2})_{q,2}^{2}\right)$                                          | (4(4),12,2)(2)) (4)                                                                                                 | 1  |                 |                                          | (6 m 2 (2,21) (6)                                                                                |
|    | $C_{4x}/C_{5}/C_{\epsilon}$ $(D_{4},C_{5})_{4,2}$                                                         | (4"m"222212")(4)                                                                                                    |    |                 | $(D_6,C_2')_{6,2}$                       | 1 1                                                                                              |
|    | 1 4 (D, C)4,2                                                                                             | (712/22) m(2) (4)                                                                                                   | 21 | D6h/D24/0       | C24 (B3, C2)3,1                          | $\left(\frac{6}{m}, \frac{2^{(2,l)}}{m^{(2,l)}}, \frac{2^{(2,l)}}{m^{(2,l)}}\right)^{(3)}$       |
| 4  | D. C. (P. Q. Q)                                                                                           | (7 2(2) m(22))(4)                                                                                                   | 22 | Don Doll        | C2 (D6,C2)6,2                            | $\left(\frac{6^{(1)}}{m^{(1)}} \frac{2^{(2,2)}}{m^{(2)}} \frac{2^{(2,2)}}{m^{(2)}}\right)^{(6)}$ |
| -  | Dun 1. / C. (Du, C) 4,2                                                                                   | $\left(\frac{\eta^{(4)}}{m} \frac{2^{(2,2)}}{m^{(2,2)}} \frac{2^{(2)}}{m^{(2)}}\right)^{(4)}$                       | 23 | D64 20/C        | (D6.C2)6,2                               | $\left(\frac{6}{m^{(1)}}\frac{2^{(2)}}{m^{(2,2)}}\frac{2^{(2)}}{m^{(2,2)}}\right)^{(6)}$         |
| ,  | D4 12 ( (D4,C))4,2                                                                                        | $\left(\frac{1}{m^{(\ell)}}, \frac{2^{(\ell, \ell)}}{m^{(\ell, \ell)}}, \frac{2^{(\ell)}}{m^{(\ell)}}\right)^{(4)}$ |    |                 |                                          | $\left(\frac{6^{(4)}}{n}\frac{2^{(2)}}{m^{(2,2)}}\frac{2^{(2)}}{m^{(2)}}\right)^{(6)}$           |
| i  | D. C. D. C.                                                                                               | $\left(\frac{4^{(4)}}{m^{(2)}} \frac{2^{(2,4)}}{m^{(2)}} \frac{2^{(2)}}{m^{(2)}}\right)^{(8)}$                      | 1  | 1               |                                          | \\ \left(\frac{6}{n^{-21}}\frac{2^{(2,2)}}{m^{(2,2)}}\frac{2^{(2)}}{m^{(2)}}\right)^{(6)}        |
| ,  | 1244 1 2, (Dqu, 2' 8,4                                                                                    | $\left(\frac{4^{(4)}}{m^{(0)}}, \frac{2^{(2)}}{m^{(2,4)}}, \frac{2^{(2)}}{m^{(2)}}\right)^{(8)}$                    | 26 | D. /C:/C        | C, (De4 C')                              |                                                                                                  |
|    | D. C. D. C.                                                                                               | 3(112/2,11)(3)                                                                                                      | 27 | Da/C5/10        | , (D., (?),                              | ( 2161 2(2) 2(2) (12) (12)                                                                       |
| 10 | $\int_{-3J}^{3} \mathcal{L}_{j} / \mathcal{L}_{j} \left( \mathcal{D}_{j}, \mathcal{L}_{j}' \right)_{j,j}$ | (3"m(2")(3"                                                                                                         | 28 | $T/C_{1}/C_{1}$ | , (T,C3)4,1                              | $(2^{-1)}3^{(3,1)})^{(4)}$                                                                       |
|    | Dad Shirt (Part)                                                                                          | (3/3) 2(4)) (3)                                                                                                     | 29 | TICIC.          | (7.02)6.2                                | (2 2,21 3 (3)) (6)                                                                               |
|    | D3d/C/C, (D6,C)6,2                                                                                        |                                                                                                                     |    |                 | C; (T.C3)4,1                             | (=10) 3(3,11)(4)                                                                                 |
| 13 | D3d /C5/C, (D6,C2)6,2                                                                                     | $\left(\bar{\mathfrak{Z}}^{(6)}\frac{2^{(2)}}{m^{(2,2)}}\right)^{(6)}$                                              | 31 | Th/Can/         | C; (T.C2)6,2                             | $\left(\frac{2^{(2,2)}}{m^{(2,2)}}\overline{3}^{(3)}\right)^{(6)}$                               |
| /5 | Csv/Czv/Cz (Dz,C')z,                                                                                      | (5"m(2"m(2"))(3)                                                                                                    | 32 | 7/6201          | C, (T, Cv)6,2                            | $\left(\frac{2^{(2,2)}}{m^{(2,4)}}\bar{3}^{(6)}\right)^{(6)}$                                    |
|    | Cours/C, (Do.C')                                                                                          | (6"m(2,2)m(2))(6)                                                                                                   | 33 | Th/C3/C         | ", (Th. L.) 8,2                          | $\left(\frac{2^{(2)}}{m^{(2)}}\bar{\mathfrak{Z}}^{(\xi,0)}\right)^{(8)}$                         |
| 11 | D_1D2/C2 (D3,C2)3,1                                                                                       | (602(2,1)2(2,1))(3)                                                                                                 | 34 | Thicz lo        | $C_*(T_{\nu}C_{z})_{12,4}$               | $\left(\frac{2^{(2,4)}}{in^{(2)}}\tilde{\mathfrak{Z}}^{(6)}\right)^{(12)}$                       |
| 17 | D6/C2/C, (D,C1)6,2                                                                                        | (616)21221212) (6)                                                                                                  | 33 | T./Cs/L         | $C_{*}(T_{h},C_{s})_{12,4}$              | $\left(\frac{2^{(2)}}{n^{(2,4)}}\overline{3}^{(6)}\right)^{(12)}$                                |
| 13 | D34/C2v/C5 (D3,C2),4,1                                                                                    | (5 m (21) 2(2,1) (3)                                                                                                |    |                 | $D_{s}$ $(D_{s}, \mathcal{C}_{s})_{s,t}$ |                                                                                                  |

Табл. 3 (продолжение)

| N:   | C/H'/H (P,P') <sub>P'm</sub>                                                                                                                                                    | $G_{\mathbf{I}}^{(\mathbf{p}')} \longrightarrow G$                                                                                                    | Nº        | G/II'/H (P.P') <sub>P!m</sub>                              | Gipin G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37   | 0/03/0, (0,03)4,1                                                                                                                                                               | (4 <sup>(4)</sup> 3 <sup>(3,1)</sup> 2 <sup>(2,2)</sup> ) <sup>(4)</sup>                                                                              | 56        | Oh /D24/C; (0, D2)                                         | (4/40 3 (3) 2 (2,2) )(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38   | 0/6416, (0,64)6,2                                                                                                                                                               | (4 <sup>(4,2)</sup> 3 <sup>(3)</sup> 2 <sup>(2)</sup> ) <sup>(6)</sup>                                                                                |           | Os/D' /C, (C, Cw)6,2                                       | $\frac{\frac{1}{12}\frac{(4,0)}{(2,4)}}{\frac{1}{3}(6)\frac{2^{(2,2)}}{m^{(2)}}}^{(6)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 39   | O/D'2/C, (0, D')                                                                                                                                                                | (4 <sup>(4,0)</sup> 3 <sup>(3)</sup> 2 <sup>(2,2)</sup> ) <sup>(6)</sup>                                                                              | 58        | On 19,16 (0,03)                                            | (4(4) 3(3,2) 2(2) (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40   | 010,10, (0,0,)8,2                                                                                                                                                               | (4 <sup>(4)</sup> 3 <sup>(3,2)</sup> 2 <sup>(2)</sup> ) (8)                                                                                           | 53        | O, /D, /C, (O, P3)8,2                                      | 11/4 3(60) 2(2,4) (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 41   | 0/02/0, (0,0,1,2,4                                                                                                                                                              | (4 <sup>(4,0)</sup> 3 <sup>12</sup> 2 <sup>(2)</sup> ) <sup>(12)</sup>                                                                                | 60        | Ok/Csv/C, (Ox, D3)8,2                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 42   | 0/0,10, (0,0)12,2                                                                                                                                                               | (4(4)3(3)2(2,2))(12)                                                                                                                                  | 61        | O. 12, 1C, (O., C.) 22,4                                   | $(\frac{14}{m^{(2)}}, \frac{3}{3})^{(4)} = (\frac{2}{m^{(2)}})^{(12)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11   | Ta /Dza /Dz (D3.C/)3,                                                                                                                                                           | (4(2,1)3(3) m2(2,1))(3)                                                                                                                               | 62        | $O_{k}IS_{k}IC_{k} \left(O_{i_{k}}C_{i_{k}}\right)_{12,4}$ | $(\frac{4^{(4,0)}}{m^{(2)}},\frac{3^{(6)}}{m^{(2)}})^{(12)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 44   | Ta/C3v/C, (0, D3)4,1                                                                                                                                                            | 1                                                                                                                                                     | 63        | O. 10, 1C, (0, C")                                         | $\frac{\frac{1}{4}\frac{(4,0)}{m(2)}}{\frac{3}{2}\frac{(6)}{m(2)}}\frac{2(2,4)}{m(2)}(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - }} | Ta/S4/C, (0,C4)6,2                                                                                                                                                              | i                                                                                                                                                     | 64        | On 102 / Cr (0, 50)                                        | $\frac{1}{12} \left( \frac{4(4.9)}{192} \frac{3}{3} \frac{(6)}{191} \frac{2^{-(2)}}{(2)} \right) (42)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ш    | $T_d/C_{2r}/C$ , $(O,D'_1)_{G,2}$                                                                                                                                               | 1                                                                                                                                                     |           | On/62/10, (On 64)                                          | $\frac{1}{2} \left( \frac{1}{2} \frac$ |
|      | $T_{d}/C_{3}/C_{4}$ $(0,C_{3})_{\delta,i}$                                                                                                                                      | i                                                                                                                                                     | 1         | 5 Ph 18 0/C (7/2)                                          | 2 177 (2,8) 17 177 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - [] | Ta/Ca/Ca (0,Ca)                                                                                                                                                                 |                                                                                                                                                       | -d        | 7 0, 1C14 1C; (0, 2) 12,                                   | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 11 | $I_{\alpha}/c_s/c, (0,c_s')_{\mu}$                                                                                                                                              | 1/20 5/20                                                                                                                                             |           | 8 Ph ( 24/C (0, C') 12                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 11 | $O(C_h/D_{a_h}/D_{a_h}, (D_3, C_1')_{3,1})$                                                                                                                                     | 1                                                                                                                                                     |           | 9 0/c, ic. (0, c)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | $(0, D_{3d}/C, (0, D_3)_{4,1})$                                                                                                                                                 |                                                                                                                                                       | 11        | 0 0 1 Cz 1C, (0 , Cz) 24,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 2 0/2/C/2 (0, C,)5,2                                                                                                                                                            |                                                                                                                                                       |           | 1 0h/C2/C. (0h,C5)24                                       | . (4) -(2) (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | $\frac{1}{3} \left  Q_{\mathbf{k}} / C_{\mathbf{q}_{\mathbf{u}}} / C_{\mathbf{r}} \right  \left( Q_{\mathbf{k}}, C_{\mathbf{q}_{\mathbf{u}}} \right)_{\mathbf{G}_{\mathbf{r}}}$ | $\frac{2}{m^{(2,2)}} \frac{m^{(2,2)}}{m^{(2,2)}}$                                                                                                     | )   7<br> | 12 Oh /Cs /C, (2h,Cs)24, 13. Oh /Cs /C4 (0h,Cs)24,         | $ \frac{1}{4} \frac{\left(\frac{14}{m^{(2)}}, \frac{3}{3}, \frac{2}{m^{(2)}}\right)}{\left(\frac{14}{m^{(2)}}, \frac{3}{3}, \frac{2}{m^{(2)}}\right)^{(24)}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                            | $2 \frac{(m^{(2)})}{(m^{(2)})} \frac{m^{(2)}}{3} \frac{(4^{(2,2)})}{m^{(2,2)}} \frac{(6)}{m^{(2,2)}} \frac{2^{(2)}}{m^{(2,2)}} \frac{(6)}{m^{(2,2)}}$ | , "       | 3. 1/h/l's/l'4 (4,5)24                                     | 4 (m(2) 3 m(2,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |