

Объединенный институт ядерных исследований дубна

1596/2-81

30/10-81

0+

P4-80-848

В.В.Пальчик, Н.И.Пятов, С.А.Фаянс

САМОСОГЛАСОВАННЫЙ РАСЧЕТ СПЕКТРА²⁰⁸Рь

Направлено в ЯФ

1. ВВЕДЕНИЕ

Расчеты спектра низколежащих возбуждений ²⁰⁸ Ръ проводились во многих работах. Использовавшиеся для этого теоретические модели можно разделить на несамосогласованные и самосогласованные. В первых независимо выбирались феноменологический оболочечный потенциал и эффективные взаимодействия, параметры которых определялись исходя из согласия расчетных и экспериментальных энергий возбуждений. Типичные несамосогласованные расчеты проведены в работе/1/. Основные их недостатки связаны с нарушением ряда симметрий /трансляционной, изотопической/, а также с ограниченностью одночастичного базиса.

and the second second

В работе/2/ использовалось расширенное до $4\hbar_{\omega}$ конфигурационное пространство и зависящие от плотности эффективные силы нулевого радиуса действия, предложенные Мигдалом/3/. Феноменологически введенная зависимость от плотности до некоторой степени исправила спонтанное нарушение трансляционной инвариантности оболочечного потенциала, но духовое 1⁻ -состояние отделялось подбором констант взаимодействий. В этих расчетах обнаружилась сильная зависимость результатов от полноты одночастичного базиса, особенно для состояний высокой мультипольности. В количественном описании выяснилась важная роль подгонки одночастичного спектра к экспериментально наблюдаемому в околомагических ядрах. Отметим, что в работе/2/ проведены самые детальные из выполненных до настоящего времени расчеты связанных состояний 208 Pb до энергии возбуждений 5 МэВ.

Спонтанное нарушение ряда симметрий одночастичным потенциалом приводит к связи эффективных взаимодействий квазичастиц с потенциалом и плотностью. Учет вытекающих из этой связи условий согласования проводился как в методе Хартри-Фока с зависящими от плотности силами (4-6), так и в теории конечных ферми-систем 7.8. Самосогласование позволило уменьшить число произвольных параметров теории, корректно выделить "духовые" состояния. Отметим, что расчеты спектров в работах (5-8) проводились с учетом одночастичного континуума, что существенно повысило надежность результатов для состояний с мультипольностью $L \ge 3$. В работах (7) исследовался вопрос о соотношении объемных и поверхностных компонент в коллективных амплитудах низколежащих возбуждений. Расчеты показали доминирующую роль колебаний поверхности в структуре этих возбуждений, что яви-

ŀ

лось микроскопическим обоснованием вибрационной модели Бора-Моттельсона^{/9/}

В последние годы достигнут большой прогресс в экспериментальных исследованиях ядерных связанных и резонансных состояний в широком интервале энергий возбуждения и моментов с помощью неупругого рассеяния электронов, адронов и др. Получена модельно-независимая информация о такой характеристике ядерных возбуждений, как координатная зависимость зарядовой переходной плотности, что играет важную роль в проверке теоретических моделей. Обработка получаемой информации и ее теоретическая интерпретация требуют проведения расчетов характеристик большого числа состояний различной мультипольности. Из-за сложности численных расчетов во всех вышеуказанных самосогласованных подходах такие систематические исследования пока не проводились. В данной работе мы ставим целью в какой-то мере восполнить этот пробел и провести расчеты характеристик возбужденных состояний в ²⁰⁸ Рb вплоть до порога эмиссии нейтронов /7,4 МэВ/. Исследования проведены в рамках простой самосогласованной модели, которая ранее/10/ использовалась для описания дипольных возбуждений.

2. МОДЕЛЬ

Основные отличия данной работы от проводившихся ранее расчетов заключаются в использовании простой самосогласованной модели с точным учетом одночастичного континуума /т.е. с полным одночастичным базисом/. Используемая самосогласованная модель основана на физическом предположении /которое достаточнадежно подтверждается на эксперименте/, что в сферических но ядрах с замкнутыми оболочками имеется полоса низколежащих возбуждений поверхностного типа, у которых коллективные амплитуды /переходные потенциалы/ пропорциональны градиенту самосогласованного поля. Такая же форма переходного потенциала лежит в основе вибрационной модели Бора-Моттельсона /9/. Πля дипольного состояния с нулевой энергией, описывающего движение центра масс, пропорциональность коллективной амплитуды градиенту потенциала является точным следствием спонтанного нарушения трансляционной инвариантности /7/. Отметим, что в отличие от вибрационной модели мы не делаем никаких априорных предположений о форме переходной плотности, которая в микроскопическом подходе определяется частично-дырочной структурой возбуждений.

В случае сферической симметрии радиальная часть коллективной амплитуды возбуждения мультипольности L с энергией ω описывается интегральным уравнением ^{/3/} /для простоты пренебрегаем спиновыми силами/:

$$g_{L}^{i}(\mathbf{r},\omega) = \sum_{k} \int \mathcal{F}_{L}^{ik}(\mathbf{r},\mathbf{r}_{1}) A_{L}^{k}(\mathbf{r}_{1},\mathbf{r}_{2};\omega) g_{L}^{k}(\mathbf{r}_{2},\omega) \times /1 / \times \mathbf{r}_{1}^{2} \mathbf{r}_{2}^{2} d\mathbf{r}_{1} d\mathbf{r}_{2} ,$$

где индексы i,k={n,p}, \mathcal{F}_L - радиальная часть L-й гармоники эффективных взаимодействий, A_L - соответствующая компонента частично-дырочного пропагатора /7/.Естественным следствием принятой нами гипотезы о пропорциональности $g_L^i ~ \partial u^i / \partial r$ является то, что в уравнение /1/ войдет только "поверхностная" компонента эффективного взаимодействия, которая приобретает сепарабельную форму:

$$\mathcal{F}_{L}^{ik} = \kappa_{ik}^{L} \frac{\partial u^{i}}{\partial r_{1}} \cdot \frac{\partial u^{k}}{\partial r_{2}}, \qquad (2)$$

где u^1 – ядерная часть одночастичного потенциала, κ_{ik} – константы. При L=1 эти константы определяются условием согласования/7,10/.Аналогичная форма взаимодействий предлагалась в работе /11/.

Для L ≥ 2 условие согласования отсутствует, и для определения констант κ_{ik}^L нужны дополнительные предположения. Например, в работах /9.11/ считается, что амплитуды колебаний плотности и потенциала пропорциональны друг другу, причем координатная зависимость переходной плотности фиксируется. В результате силовые константы κ_{ik}^L оказываются не зависящими от L. Априорное предположение о форме переходной плотности, вообще говоря, неприемлемо в микроскопике, поэтому мы предпочли параметризацию констант. Наиболее экономная параметризацию констант. Основная часть обсуждаетмых ниже результатов получена именно с такими константами.

Учет кулоновского взаимодействия естественно провести также в сепарабельной форме. Для этого воспользуемся уравнением для кулоновского потенциала

$$v_{e}(\vec{r}) = \frac{e^{2}(Z-1)}{Z} \int \frac{\rho_{p}(\vec{r}')}{|\vec{r}-\vec{r}'|} d\vec{r}',$$
 (3/

где $\rho_{\rm p}$ - оболочечное распределение плотности протонов. С помощью процедуры самосогласования /см., например, /9,11/ / получим выражение для эффективного кулоновского взаимодействия

$$\mathcal{F}_{L}^{c}(r_{1},r_{2}) = \kappa_{c}^{L}\phi_{L}^{c}(r_{1})\phi_{L}^{c}(r_{2}), \qquad (4/$$

$$\phi_{L}^{c}(r) = -\frac{3e^{2}(Z-1)}{(2L+1)R_{0}} \{ \frac{(r/R_{0})^{L}}{(R_{0}/r)^{L+1}}, r > R_{0},$$
 /5/

где

$$(\kappa_{\rm c}^{\rm L})^{-1} = -\int \phi_{\rm L}^{\rm c}(\mathbf{r}) \frac{\partial \rho_{\rm p}}{\partial \mathbf{r}} \mathbf{r}^2 d\mathbf{r}.$$
 (6/

При выводе предполагалось равномерное распределение заряда в объеме ядра радиуса R_0 . Естественно при включении кулоновских взаимодействий в амплитуде g^p_L появляется кулоновская добавка, пропорциональная ϕ^c_L . Отметим, что в случае $L\!=\!1$

$$\phi_1^{\rm c}(r) = \partial v_{\rm c} / \partial r \,. \tag{7/}$$

Согласно^{/3/} полюса уравнения /1/ с эффективными силами /2/ и /4/ определяют дискретные возбуждения ядра. Знание коллективной амплитуды g_L позволяет вычислить вероятности переходов B(EL) и переходные плотности $\rho_{tr}(r)$. Необходимые формулы содержатся в работах ^{/7,10}/. Метод точного учета одночастичного континуума также изложен в этих работах.

Таким образом, в рассматриваемой модели задается некоторый одночастичный потенциал, после чего формфакторы эффективных взаимодействий и силовые константы оказываются определенными. Никаких дополнительных параметров теория не содержит.

3. СПЕКТР ВОЗБУЖДЕНИЙ 208 Рь

Расчеты были проведены для ядра ²⁰⁸ Рb, спектр возбуждений которого в последние годы детально исследован с помощью неупругого рассеяния электронов и адронов/12-16/. В качестве исходного использован стандартный потенциал Вудса-Саксона/17/. Глубина потенциальной ямы варьировалась для различных (ℓ, j) примерно в пределах 1 МэВ, так, чтобы воспроизвести экспериментально наблюдаемые спектры возбуждений вблизи поверхности Ферми в соседних нечетных ядрах /см., например, ^{/18/}/. Такая процедура подгонки играет важную роль, так как энергии и свойства низколежащих возбуждений существенно определяются положением и квантовыми характеристиками частично-дырочных состояний, входящих в пропагатор.

Мы уже отмечали, что используемая здесь самосогласованная модель явно выделяет класс поверхностных возбуждений, игнорируя объемные компоненты в коллективной амплитуде. Ранее^{/10/} было показано, что это не приводит ни к каким противоречиям с экспериментальными данными в описании дипольных возбуждений ядер. Результаты расчетов для низколежащих уровней других мультипольностей приведены в <u>табл.1</u>, где они сравниваются с расчетами других авторов и экспериментальными данными. Еще раз подчеркнем, что мы не проводили подгонки параметров, в то время как

Таблица 1

nacter l			Dad /7/	/	pad./8	/	pad./2		экспери	Meht
10	ω	B(EL)	ω	B(EL)	ω	B(EL)	ω	8 (EL)	ω_+	B(EL
I	1,95 2,62 ^{x)}	820 526	2,66	610	2,61	750	2,64	550	2,615	613
I	2,68 3,00 ^{x)}	129 69	3,26	3 0	3,34	160	3.40	30	3,198	35
2	3,65 3,71 x)	19 24	3,82	28	4,18	28	3,83	30	3,709	22
I	3,70 3,79 ^x)	8 ,5 5	· ·				4,39	2	4,037	
I	4,40 4,55 ^{x)}	170 120	4,53	180	4,98	310	4,49	- 3 I Ö	4,085	284
I	4,44 4,65 ^{x)}	1 4 7 89	4,69	76	5,16	I40	4,76	82	4,324	131
۲	4,32,	64			2		4,78	21	4,424	56
τ	4,57 ^x) 4,4I 4.55 ^x)	45 IO 6	-				4,76	3	4,610	3,7

Сравнение различных теоретических расчетов нижайших коллективных возбуждений в 208 Pb с экспериментальными данными $^{/13/}$.Энергии ω даны в MэB, значения B(EL)в ед.10 $^{-3}e^2$ б.

сл.

.

в других работах параметры эффективных сил подбирались так, чтобы хорошо описать характеристики 3_1 -уровня. Из табл.1 следует, что в нашем подходе нижайшие уровни отрицательной четности получаются более коллективизированными, чем в других расчетах. При этом положение 3_1 -уровня очень чувствительно к изменениям величины изоскалярной константы $\kappa_0 \equiv (\kappa_{nn} + \kappa_{np})/2$. Уменьшение ее всего на 6% позволяет согласовать вычисленную энергию с экспериментом. Другие уровни значительно менее чувствительны к вариации этой константы.

Что касается уровней положительной четности, приведенных в <u>табл.1</u>, то наши результаты хорошо согласуются как с другими расчетами, так и экспериментальными данными. Результаты расчетов, таким образом, оправдывают сделанный нами выбор констант эффективных взаимодействий, поскольку прямая подгонка к экспериментальным энергиям нижайших возбуждений приводит к вариации параметров в пределах примерно 10%.

На <u>рис.1-3</u> вычисленные зарядовые переходные плотности $\rho_{tr}^{ch}(f)$ /получаются из ρ_{tr}^{n} и ρ_{tr}^{p} сверткой с формфакторами нуклонов/19// для низколежащих уровней сравниваются с модельно-независимыми оценками из (e,e') экспериментов /13-15/. Все ρ_{tr}^{ch} нормированы на экспериментальные значения B(EL) с целью более

Рис.2. Зарядовые переходные плотности для пяти нижайших состояний с L=5 /пронумерованы на рисунке/. Пунктиром показаны модельно-независимые оценки/18/ для первых двух 5⁻_состояний /с коридором ошибок/ и для уровня с энергией 3,96 МэВ.

наглядного сравнения их форм. Видно, что для уровней 3_1 , 5_1 и 5_2 вычисленные $\rho_{\rm HT}^{\rm ch}$ ўже и имеют бо́льшую поверхностную амплитуду, чем экспериментальные. Аналогичные результаты получены и в работах /2.7.8.14.20/. Причина этого различия пока не очень ясна. Во всяком случае небольшие вариации диффузности и радиуса потенциала Вудса-Саксона слабо влияют на форму $\rho_{\rm tr}^{\rm ch}$ в поверхностной области. Объемные осцилляции качественно согласуются с наблюдаемыми.

Значительно более хорошее согласие с экспериментальными ρ_{tr}^{ch} получено для уровней положительной четности /<u>рис.3</u>/. Здесь хорошо просматривается "вымирание" объемных осцилляций с ростом L, особенно для состояний с L=10 /для них ρ_{tr}^{ch} нормированы на B(EL), приведенные в табл.2/.

Из этого обсуждения можно сделать вывод, что используемая простая самосогласованная модель в сущности так же хорошо описывает свойства низколежащих состояний, как и модели с несепарабельными силами * Эффекты, связанные с объемными колебаниями,

*Такой же вывод получен недавно в работе/21/, в которой проводились расчеты с сепарабельными силами.

<u>Рис.3</u>. То же, что на рис.1,для нижайших состояний сL=2,4,6,8, а также вычисленные ρ_{tr}^{ch} для четырех 10⁺-уровней /нумерация соответствует табл.2/.

если они и присутствуют, видимо, невелики. Тем не менее существующие модели, в том числе и наша, сталкиваются с определенными трудностями в описании детальных характеристик некоторых уровней. Например, для состояния 5 с энергией 3,96 МэВ получена экспериментальная оценка $\rho_{\rm tr}^{\rm ch}$ /18/. показанная на рис.2.Там же приведены переходные плотности для уровней 5 3, 5_4 и 5_5 /см. также табл.3/, форма которых сильно отличается от экспериментальной. Аналогичная трудность возникает с описа-

_		Pac	эксп./12,13/				
L _s	ω,	B(EL) B	(EL, T=0)) B(EL,	R _{tr} ,	ω,	B(EL)
	МэВ	10 ⁻³ e	² 6 ^L	T≖1)	Фм	МэВ	10 ⁻³ e ² 5 ^L
2 _T	4,40	I70	187	0,4	7,09	4,085	284
22	5,54	8,I	I,7	2,5	-6,38	(5,564)	
23	5,85	7,8	7,3	0,01	7,28		
24	6,22	120	48,5	16,0	7,35	(6,170)	
4 _T	4,44	I47	209	I,3	7,15	4,324	I3I
42	5,46	32	20	I,3	7,02	4,933	
42	5,72	20,6	22,5	0,04	7,3I	5,689	
44	6,0I	37	3 I	0,3	7,26	6,052	
45	6,59	0,3	4,7	2,6	6,19	6,658	
46	6,83	II,0	10,8	9•10 ⁻⁴	7,08	6,925	
4.7	7,48	I6,I	I,4	7,9	7,18	(7,192))
	1 22	GA A	80 T	2.0	7 20	(7,382))
6I	4,04 5 00	04,4 c T	5.0	0.06	7,32	4,424	00
°2	5 47	3 A	о,0 т э	0,00 0 T5	7,01	(5 477)	
ç3	5,47	2,4 D 6	1,0 1 6	0,10	1,40 9 07	(0,417)	
°4	5.00	5,0	a.TO-3	6.0	0,07 70.6T	6 000	
<u>ک</u> 2	5.92	0,0	0.05	0,5	7,51	0,700	
<u>6</u>	6 TA	3.2	T 3	0.5	7,01	5 002	
27	6 27	5 A	1,0 A T	0,0	7,02	0,550	
<u>8</u>	6,67	0.03	1.2	0.8	6.83	0,000	
°9	6 97	3.2	8	T.T	2 29		
°I0	7 12	0.3	8.10-3	0.2	7.32	•	
⁶ 12	7,43	5,7	1,7	I,I	7,37		
8 ₁	4,4I	10,1	21,7	2,2	7,49	4,610	3,7
82	5,00	0,91	1,2	0,03	7,48	(4,991)	
83 8	5,25	2,0	1,9	2.10	7,46		
⁸ 4	5,51	1,1	0,2	0,3	7,32		
8 ₅	5,70	0,3	1,0	0,2	7,78	10 000	
8 ₆	5,82	0,3	0,2	0,02	7,64	(5,898)	
87	6,09	3,1	1,1	0,6	7,59		
8 ⁸	6,41	0,7	-3 o o	0,02	7,77		
89	6,65	3.10	~ 0.3	0,3	7,12 0 ST	40.0403	
0I ⁸	7,09	0,7	2,5	0,5	7,51	(6,843)	
8 II	7,40	1,5	z,0	0,04	7,56		

<u>Таблица 2</u>. Уровни положительной четности в ²⁰⁸Pb

		Табл	ица 2	/продо	лжение	/	ting fil	
		Расч	ет	· . •	эксп	эксп/12,13/		
LS	ω,	B(EL) B(EL, T=0) B(EL,	R _{tr} ,	ω,	B(EL)	
1	МэВ	$10^{-3} e^2$	б ^L	T ≖ 1)	Фм	МэВ	10 ⁻³ e ² 6 ^L	
IO ₇	4,86	I,6	4,8	0,9	7,65	4,89	· · · · · · · · · · ·	
IO	5,15	0,3	0,4	0,01	7,63	5.07		
10,	5,55	0,6	0,03	0,9	7,55	5,54		
IO	5,85	9-10 ⁻⁶	0,04	0,04	12,0	5,92		
	7,15	. 0,I	0,9	0,4	7,72		a a transferiore. An	
12	5,72	0,07	0,7	0,3	7,93	6,097		
L		1 A	1.1			:	<u></u>	
		1979 C 1	N. 19	1. A.		1947 - S. 19	a da ser	
			1 . 1	$\frac{1}{2}T$	•			
		.e	1. J. 1	, b			208	
Ta	блица З	. Уровни	•отри	цате́льн	ой чет	ности в	~ ⁰⁰ Pb	
			2				<u>.</u>	
		Päc	чет		۰.	ЭКС	п/12,13/	
Ls	ω,	B(EL) B	(EL,T=	0) B(EL,	R _{tr} ,	ω,	B(EL)	
	МэВ	10^{-3} e	² б ¹	T= 1)	Фм	МэВ	10 ⁻³ e ² 6 ^L	
3,	. I,95	820	950	4,8	7,01	2,615	613	
3,	4,02	2,7	I,8	0,08	6,98	(4,054)	
3	4,43	17,2	3,4	5,2	6,94	(4,106)	
3)	4,67	0,4	4,6	2,2	7,67	(4,403)	
3,	4,93	9,3	10,6	0,04	7,06	4,698	· · · · ·	
32	5,07	22	2,9	9,0	7,07	4,954		
3,	, 5,32	12,3	20,8	Į,I	6,9I	4,973	F 11 st -	
3,	5,5I	0,7	7,4	3,6	6,9I	5,087	F	
3,	5,59	1,7	3,0	0,2	6,94	5,194		
3	5,83	2,7	2,4	9-10 ⁻³	6,96	5,274	:	
3	ττ 5,89	`0,0I	0,09	0,2	7,33	5,321		
3	5,90	0,06	0,2	0,04	6,71	5,345	i ,	
3	12 5,99	I,I	1,2	5-I0 ⁻³	6,91	5,542	i i i i i i i i i i i i i i i i i i i	
3	6,12	14.8	6,4	I,7	6,92	(5,673	3)	
3	¹⁴³ 75 6,49	0,06	0,0	7 0,3	6,90	5,813	3	
3	10 Te 6,53	0,01	0,3	. 0,2	6,90	(5,872)	
3	fr, 6,55	0,02	5.10	3 0,01	6,90	6,01		
3	5,77	19,0	4,2	5,4	6,93	6,197		
. 3	10 6,8T	0,06	0,2	0,5	7,80	(6,314	s) - 1	
3	6,84	0.2	0.4	0.01	6,52	6,61	5	
3	6,85	0.3	1,4	0,4	6,66	(6,99)	2)	
3	5 7,03	4,3	0,02	3,8	7,26	(7,019))	

.

		Табли	ща 3 /	продол	жение/	1.1.1.225	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	
		Расчет				эксп	cm/12,13/	
L _S	ω, ΜэΒ	B(EL) B 10 ⁻³ e	(EL,T=(26 ^L)) B(EL, T≖1)	R _{tr} , Фм	ω, МэВ	B(EL) 10 ⁻³ e ² 6 ^L	
3	7.14		5.Ī	36.0	6.69	(7 114)		
323	7.33	0.05	0.2	0.5	5.87	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
~24 5-	2.68	129	193	6.3	7.19	3.198	35	
5-	3.65	19.4	19.5	6.10-6	7.20	3,709	22	
52 5	4.05	3.6	2.1	0.2	7.21	(3.961)		
°3 5	4.23	1.2	0.16	2.2	7.39	(4.I8I)		
~4 5-	4.29	0.3	I.6	0.6	7.02	4,296		
5	4.49	7.4	3.9	0.5	7.11	(4,444)		
~6 5_	4.69	2.0	4.6	0.5	7.29			
5-	5.03	8.9	10.4	0.06	7.24			
~8 5-	5,20	T4.0	I2.4	0.05	7.25	5.370		
5	5.55	0.02	τ.Τ	T.4	8.57	5,483		
5	5.68	T.5	2.9	0.2	7.00	5,658		
• 5	5.86	3.2	0.4	I.3	7.12			
5TO	6.II	7.1	II.I	0.5	7.12	2		
~13 5++	6.49	0.02	0.04	0.1	7.15			
°14 5-0	6.55	0.02	0.03	3.10-4	7.15	(6.529)		
5-0	6.73	4.7	3.7	0.06	7.25	6,688		
°16 5	6.80	0.06	0.4	0.7	8.50			
°17 5-0	6.84	0.01	4 10-4	0.02	6.58	· · ·		
°18 5-0	7.II	15.8	2.0	6.6	6.99	1.1		
⁵ 20	7,33	4.I0 ⁻³	0,03	0,06	6,84	7,302		
$\overline{7_{T}}$	3,70	8,5	2I,I	2,8	7,38	4,037		
72	4,67	3,9	6,3	0,3	7,38	4,762		
73	4,98	2,9	5,2	0,3	7,38			
$7_{\underline{A}}$	5,54	9,0	10,0	0,03	7,37			
75	5,82	2,1	0,2	0,9	7,36	5,720		
7_{6}	6,24	2.2	5,I	0,6	7,38	(6,248)		
77	6,54	0,0I	0,05	0,0I	7,37	6,38I		
78	6 ,8 I	0,6	0,8	0,02	7,35	6,443		
7 ₉	7,07	5,3	2,0	0,8	7,3I			
9 ¹	6,14	2,1	6,0	I,0	7,60			
92	6,54	5•I0 ⁻³	0,05	0,02	7,60			
⁹ 3	6,79	0,2	0,5	0,I ·	7,60			
94	7,12	I,0	0,2	0,3	7,59			

нием ρ_{tr} и для 3 -состояния с энергией 5,345 МэВ, изученного в работе^{/14}/Причина этого заключается,видимо,в том, что теория неправильно воспроизводит смещивание различных частич-

но-дырочных конфигураций в слабо коллективизированных состояниях.

Основные результаты расчетов даны в <u>табл.2</u> и <u>3</u>. Здесь состояния с одинаковым моментом и четностью нумеруются индексом ^S Для каждого уровня приведены не только обычные значения B(EL), но и величины B(EL, T=0) и B(EL, T=1), соответствующие изоскалярному и изовекторному операторам /22/Для полноты приведем соответствующие им выражения в терминах нейтронной и протонной переходных плотностей /вместо $\rho_{\rm tr}^{\rm p}$ в B(EL) можно использовать $\rho_{\rm tr}^{\rm ch}$ /:

$$B(EL) = e^{2} (2L+1) \left[\int \rho_{tr}^{p} r^{L+2} dr \right]^{2}, \qquad (8/$$

$$B(EL, T=0) = e^{2} (2L+1) (Z/A)^{2} | \int (\rho_{tr}^{p} + \rho_{tr}^{n}) r^{L+2} dr |^{2}, \qquad /9/$$

$$B(EL, T = 1) = e^{2} (2L+1) \left[\int \left(\frac{N}{A} \rho_{tr}^{p} - \frac{Z}{A} \rho_{tr}^{n} \right) r^{L+2} dr \right]^{2}.$$
 /10/

По соотношению этих величин можно качественно судить об изовекторной структуре состояний, а также о поведении переходных плотностей на поверхности ядра. Для изоскалярных коллективных возбуждений характерна близость значений B(EL) и B(EL, T = 0), причем B(EL , T=1)<<B(EL).0бычно для нижайших возбуждений B(EL, T=0)>B(EL). Это является следствием того, что амплитуда поверхностного пика ho_{tr}^n больше, чем для ho_{tr}^p . и несколько дальше сдвинута по радиусу. Когда на поверхности $|\rho_{tr}^n| > |\rho_{tr}^p|$, значения B(EL, T=0) и B(EL, T=1) оказываются сравнимыми и намного превышают величину B(EL) /например, для состояний с $L_{\bar{s}}^{-4}4_5$, 6_9 , 8₉, 12₁, 3₄, 5₁₀ и др./. В структуре этих возбуждений доминирующую роль играют нейтронные частично-дырочные компоненты. /напри-При $\mathrm{B}(\mathrm{EL})\!\!>\!\mathrm{B}(\mathrm{EL},\mathrm{T}\!=\!0)$ на поверхности доминирует $ho_{\mathrm{tr}}^{\mathrm{p}}$ мер, в состояниях 3_{14} , 5_6 , 2_4 , 4_2 , 6_{12} и др./. В случае В(EL, T=1) \sim B(EL, T=0) и В(EL, T=0) обычно ρ_{tr}^n и И pна поверхности идут в противофазе и соответствующее состояние можно классифицировать как изовекторное /например, 3 17, 54, 65, 66 и др./. Среди приведенных в таблицах состояний число изовекторных возбуждений невелико.

Помимо энергий и значений B(EL) в табл.2 и <u>3</u> приведены значения переходных зарядовых радиусов, определяемых соотношением

$$R_{tr}^{2} \neq \left(\rho_{tr}^{ch} r^{L+4} dr / \rho_{tr}^{ch} r^{L+2} dr / 11/\right)$$

Величина R_{tr} дает дополнительные качественные сведения о поведении ρ_{tr}^{ch} . Действительно, если предположить, как в коллективной модели, что $\rho_{tr}^{ch} \sim \partial \rho_0 / \partial r$, где ρ_0 – распределение

заряда в основном состоянии, то для случая равномерно заряжен-ной сферы $R_{tr} = R_0 = [(5/3) < r c^2 >]^{\frac{1}{2}} \approx 7 \phi_M$ для 208 Pb /вычисленная нами величина среднеквадратичного зарядового радиуса $< r_c^2 > 1/2 = 5,41$ Фм/. С этой величиной и следует сравнивать приведенные в таблицах значения R tr . Например, для нижайшего $\rho_{\rm tr}^{\rm eh}$ 3°-уровня R _{tr} ≈ R ₀.На рис.1 показано поведение и $\partial \rho_0 / \partial r$ для этого состояния. Видно хорошее совпадение их поверхностных пиков. Вариации ρ_{tr}^{ch} в объеме слабо влияют на величину R _{tr} . При небольшом сдвиге максимума поверхностного пика в объем ядра величина R_{tr} может заметно уменьшаться /напри-мер, в состоянии 2_2 пик ho_{tr}^{ch} сместился примерно на 0,8 Фм в объем ядра, что связано с доминирующим влиянием конфигурации $P(h_{9/2}, h_{11/2}^{-1})$ /. Аналогичное уменьшение R_{tr} происходит, если ρ_{tr}^{ch} приобретает объемный характер /например, для состояния 4 5 максимум ρ_{tr}^{ch} лежит при t = 4,2 Фм/. лежит при 🛛 = 4,2 Фм/. Для отличается от большинства из рассмотренных состояний R_{tr} $m R_0$ не более чем на 10-20%. При этом $ho_{
m tr}^{
m ch}$, за исключением коллективизированных состояний, довольно сильно отличаются от $\partial \rho_0 / \partial r$, что связано с характером радиальных функций частично-дырочных возбуждений, а не формой коллективной амплитуды $g_{\rm L}$. С ростом L объемные осцилляции в $\rho_{\rm tr}^{\rm ch}$ вымирают, а величина R_{tr} систематически растет. При появлении

у $\rho_{\rm tr}^{\rm ch}$ медленно спадающих поверхностных "хвостов" величина R_{tr} может резко возрастать /например, для состояний 6₄, 10₄, 5₁₀ и др./.

В табл.2 и 3 приведены энергии уровней, наблюденных в (p,p')и (e,e') -экспериментах. Соответствие их вычисленным уровням, за исключением нижайших, носит условный характер, поскольку для проведения более или менее достоверной идентификации одних энергий мало, необходимы значения B(EL) и переходные плотности. Тем не менее в целом видно разумное согласие вычисленного спектра с экспериментальным. Исключение составляют только 2⁺-и 9⁻-уровни. В работе^{/12/}приведено шесть 2⁺-уровней с энергией ω 🛫 6 МэВ. Ряд других уровней введен в работе^{/23/}исходя из анализа (t,p)-и (p,t)-реакций. Теория же предсказывает существование лишь 4 уровней 2+ частично-дырочного типа. Очевидно, что остальные уровни могут иметь другую природу /например, парные вибрации/. Что касается уровней 9-. то в наших расчетах все они лежат выше 6 МэВ, в то время как по данным $^{/12/}$ 5 уровней ниже 6 МэВ могут иметь L $^{\pi}$ = 9 $^{-}$. Нам представляется необходимой дополнительная экспериментальная проверка идентификации этих уровней.

Сделаем несколько дополнительных замечаний по результатам расчетов. В работе $^{/24}$ сделана попытка идентифицировать с помощью реакции (d, ³Не) уровни мультиплета р (h $_{9/2}$, h $_{11/2}^{-1}$)

в спектре 208 Pb. Согласно нашим расчетам эта конфигурация существенно определяет форму ρ_{tr}^{ch} в состояниях 2_2 , 4_2 , 6_3 , 8_4 и 10_3 , локализованных вблизи энергии 5,5 МэВ. Для этих изоскалярных состояний ρ_{tr}^{ch} характеризуется большим поверхностным пиком вблизи г $\lesssim 6$ Фм и отсутствием объемных осцилляций. Все они имеют несколько меньшую по сравнению с другими величину R_{tr} . Заметную роль играет эта конфигурация и в структуре других состояний, например 2_4 , 4_5 , во всех уровнях с L =10.

Другая характерная особенность спектра связана с тем, что сразу за порогом нейтронной эмиссии в ²⁰⁸ Pb формируется группа коллективизированных состояний с $L=4,\;6$ и 8 /см. табл.2/ с очень малыми escape — ширинами. Форма их р^{ch} cyщественно определяется конфигурацией $p(i_{13/2}, d_{5/2})$. Представляется вероятным, что именно эта группа состояний и была обнаружена недавно $\frac{125}{25}$ в (d,d') - $\mu(a,a')$ -экспериментах и идентифицирована как пигми~резонанс около 7,4 МэВ с L = 4 и В(Е4)∞ ≈3 одн.ед. /если нет других мультипольностей/. Согласно нашим расчетам состояния с L = 4 к 6 дают сравнимые вклады в энергетически взвешенные правила сумм. Если судить по соотношениям B(EL, T=0) и B(EL, T=1), а также ρ_{tr}^{n} Иρр , ТО ЭТИ СОСТОЯния никак нельзя считать изоскалярными.

Проведенные нами расчеты позволяют оценить вклады всех дискретных уровней различных мультипольностей в соответствующие. энергетически взвешенные правила сумм /9/:

$$S(EL) := \sum_{s} \omega_{s} B_{s}(EL) = \frac{L(2L+1)^{2} h^{2} e^{2} Z}{8\pi m} < r_{p}^{2L-2} > , \qquad /12/$$

где среднее значение <rb/> r_p^{2L-2} > в основном состоянии вычислялось с оболочечным распределением плотности протонов. На рис.4 показаны вклады в S(EL) первых коллективных уровней /пунктир/ и суммарные вклады всех дискретных уровней до порога нейтронной эмиссии. Видно, что наиболее сильно коллективизация проявляется для октупольных состояний. С ростом L вклады дискретных уровней резко падают. В настоящее время косвенная экспериментальная оценка существует только для 2⁺-состояний. По данным Рамана^{/26/} для всех связанных состояний $\Delta S(E2)$ /1,38+0,16/e²6²МэВ, или примерно /7,1+0,8/% правила сумм /12/, что хорошо согласуется с теоретической оценкой.

ЛИТЕРАТУРА

- 1. Gillet V., Green A.M., Sanderson E.A. Nucl.Phys., 1966, 88, p.321.
- 2. Ring P., Speth J. Nucl. Phys., 1974, A235, p.315.
- Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер. "Наука", М., 1965.
- 4. Vautherin D., Brink D. Phys.Rev., 1975, C5, p.626.
- 5. Bertsch G.F., Tsai S.P. Phys.Rep., 1975, C18, p.126.
- 6. Blaizot J.P., Gogny D. Nucl. Phys., 1977, A284, p.429.
- 7. Фаянс С.А., Ходель В.А. Письма в ЖЭТФ, 1973, 17, с.633; Саперштейн Э.Е., Фаянс С.А., Ходель В.А. Препринт ИАЭ-2580, М., 1976; ЭЧАЯ, 1978, 9, с.221.
- 8. Бирбраир Б.Л. и др. ЯФ, 1978, 28, с.625.
- Bohr A., Mottelson B.R. Nuclear Structure, vol.11, Benjamin, 1974, ch.6. Перевод: Бор О., Моттельсон Б. Структура атомного ядра. "Мир", М., 1977, т.2, гл.6.
- 10. Gareev F.A. et al. JINR, E4-80-283, Dubna, 1980.
- 11. Rowe D.J. Phys.Rev., 1967, 162, p.866.
- 12. Wagner W.T. et al. Phys.Rev., 1975, C12, p.757.
- Lichtenstadt J. Thesis, Massachusetts Institute of Technology, 1979.
- 14. Heisenberg J. Preprint, University of New Hempshire, 1979.
- 15. Heisenberg J. Lecture Notes in Physics, 1979, 108, p.33.
- 16. Scott A. et al. Nucl. Phys., 1977, A285, p.222.
- 17. Чепурнов В.А. ЯФ, 1967, 16, с.955.
- 18. Schmorak M.R., Auble R.L. Nuclear Data, 1971, B5, No.3.
- Negele J.W. Phys.Rev., 1970, C1, p.1260; Friar J.L., Negele J.W. Nucl.Phys., 1973, A212, p.93.

- 20. Hamamoto I. Phys.Lett., 1977, 66B; p.410.
- 21. Лапина Л.П. Препринт ЛИЯФ №573, Л., 1980.
- 22. Liu K.F., Brown G.E. Nucl. Phys., 1976, A265, p.994.
- 23. Igo G. et al. Ann. Phys., 1971, 66, p.60.
- 24. Hayakawa S.I. et al. RCNP Annual Report, Osaka University, 1979, p.76.

-

· . . .

Рукопись поступила в издательский отдел

. . .

· · · ·

24 декабря 1980 года.

· · · ·

2.1

- 25. Morsch H.P. et al. Phys.Rev., 1980, C22, p.489.
- 26. Raman S. In: Neutron Capture Gamma-Ray Spectroscopy. Plenum Press, New York, 1979, p.193.

t = 0

1. 10