

Объединенный институт ядерных исследований дубна

1595 2-81

30/11-81

et

P4-80-817

А.И.Вдовин, В.Ю.Пономарев, В.М.Шилов

ЭЛЕКТРОВОЗБУЖДЕНИЕ М1- И М2-РЕЗОНАНСОВ В СФЕРИЧЕСКИХ ЯДРАХ

Направлено в ЯФ

1. ВВЕДЕНИЕ

Большинство экспериментальных данных об интенсивно изучающихся в последние годы гигантских резонансах атомных ядер получено с помощью неупругого рассеяния электронов. Достаточно упомянуть работы Питтхана и др.^{/1/} и Фукуды и др.^{/2/}, в которых был открыт первый из "новых" гигантских резонансов – изоскалярный Е2 -резонанс, и эксперименты Линдгрена и др.^{/3/} и Рихтера и др.^{/4/}, которые обнаружили M2 -резонанс в средних и тяжелых ядрах.

Преимущества (e, e') - рассеяния в изучении структуры ядра общеизвестны: это и известный механизм реакции, и возможность корректного ее описания методом искаженных волн /МИВ/, и возможность, регулируя переданный ядру импульс Q. возбуждать ядерные состояния различной природы. Последнее обстоятельство в совокупности с высоким разрешением, которое достигается в (e, e') -экспериментах, и делает неупругое рассеяние электроное одним из самых распространенных способов изучения гигантских мультипольных резонансов. Кроме того, изученность механизма реакции позволяет использовать данные (e, e')-рассеяния для проверки различных моделей ядерной структуры.

Однако в большинстве теоретических работ при изучении гигантских резонансов рассматриваются главным образом приведенные вероятности электрома; нитных переходов из основного состояния ядра на резонансные состояния. А экспериментальные величины B(Ελ) и B(Mλ), с которыми сравниваются результаты таких расчетов, получаются в результате обработки данных по (е,е') -рассеянию, причем весьма часто с использованием довольно примитивных моделей ядерной структуры. Несомненно, что непосредственный расчет сечения неупругого рассеяния электронов с использованием достаточно совершенных ядерных моделей является более естественным и информативным. Нельзя сказать, чтобы такие расчеты отсутствовали вовсе. Дармштадтская группа при обработке данных (e, e') -экспериментов использует волновые функции ядерных возбуждений; рассчитанные по MSI -модели /5/ формфакторы рассеяния электронов с возбуждением гигантских резонансов изучались в работах Гончаровой Н.Г. и др.⁷⁶⁷. В последнее время в рамках теории конечных ферми-систем выполнен ряд исследований (e,e')- и (α, α') -рассеяния с возбуждением гигантских резонансов сферических ядер /7/.

В настоящей работе рассмотрено неупругое рассеяние электронов с возбуждением M1-и M2-резонансов сферических ядер. Волновые функции возбужденных состояний ядер рассчитывались в приближении случайной фазы /ПСФ/ в рамках квазичастично-фононной модели ядра /КФМ/ ^{/8/}. В рамках КФМ уже изучалось рассеяние электронов с возбуждением низколежащих вибрационных уровней и электрических резонансов как сферических ^{/9/}, так и деформированных ^{/10/} ядер. Хорошее согласие с экспериментальными данными, полученное в этих расчетах, позволяет надеяться, что и для магнитных резонансов будет получена полезная и достоверная информация.

2. ОСНОВНЫЕ ФОРМУЛЫ И ДЕТАЛИ РАСЧЕТОВ

Дифференциальные сечения рассеяния в рамках МИВ рассчитываются с учетом потерь энергии электрона в выходном канале на возбуждение ядра-мишени $^{11.7}$. В результате взаимодействия с электроном ядро из состояния, описываемого волновой функцией Ψ_i , переходит в возбужденное состояние Ψ_f .В настоящей работе Ψ_f - состояние аномальной четности и вся информация о его структуре, необходимая для расчета сечений, содержится в токовых переходных плотностях /ТПП/ j(r), которые определяются следующим образом $^{12/2}$:

$$\vec{j}(\vec{r}) = \vec{j} \cdot \vec{r} + \vec{r} + \vec{r} \cdot \vec{r} + \vec{r} + \vec{r} \cdot \vec{r} + \vec{r} + \vec{r} \cdot \vec{r} + \vec$$

$$\vec{j} \vec{c}(\vec{r}) = -i\mu_N \sum_k \delta(\vec{r} - \vec{r}_k) g_\ell^k \{\Psi_f^* \vec{\nabla}_k \Psi_i - \Psi_i \vec{\nabla}_k \Psi_f^*\}, \qquad /2/$$

$$\vec{j}^{m}(\vec{r}) = \mu_{N} \sum_{k} \delta(\vec{r} - \vec{r}_{k}) g_{s}^{k} \vec{V}_{k} \{ \Psi_{f}^{*} \vec{s}_{k} \Psi_{i} \}.$$

Суммирование в формулах /2/ и /3/ проводится по всем нуклонам ядра; $j^{c}(\vec{r})$ - конвекционный ток, возникающий из-за движения нуклонов в ядре; $j^{m}(\vec{r})$ - магнитный ток, обусловленный их собственными магнитными моментами. Обменный ток $j^{exch}(\vec{r})$ в наших расчетах учитывается эффективно - введением в формулу /3/ эффективных, а не свободных значений нуклонных g_{s} -факторов. Ядерные волновые функции Ψ_{i} и Ψ_{f} вычисляются в приближении случайной фазы в рамках КФМ. В этой модели для описания однофононных возбуждений аномальной четности используются сепарабельные остаточные силы вида

$$\begin{aligned} \mathbf{V}_{\sigma\lambda-1}^{\lambda} \left(\vec{\mathbf{r}}_{1}, \vec{\mathbf{r}}_{2} \right) &= \frac{1}{2} \left(\kappa_{0}^{(\lambda-1,\lambda)} + \kappa_{1}^{(\lambda-1,\lambda)} - \vec{\mathbf{r}}_{1}, \vec{\mathbf{r}}_{2} \right) \mathbf{r}_{1}^{\lambda-1} \mathbf{r}_{2}^{\lambda-1} \\ \times \sum_{\mu} \left[\vec{\sigma}_{1} \mathbf{Y}_{\lambda-1\mu}(\Omega_{1}) \right]_{\lambda\mu}, \quad \left[\vec{\sigma}_{2} \mathbf{Y}_{\lambda-1\mu}(\Omega_{2}) \right]_{\lambda-\mu}, \quad (4/2) \end{aligned}$$

Волновая функция однофононного возбужденного состояния ядра имеет вид

где Ψ_0 - фононный вакуум /т.е. $Q_{\lambda\mu i} \Psi_0 = 0$ /, принимаемый за основное состояние четно-четного ядра /у нас $\Psi_i = \Psi_0$ /; a_{jm}^+ и a_{jm} - операторы рождения и уничтожения квазичастицы на уровне среднего поля с квантовыми числами n/jm.

Так как в дальнейшем мы будем рассматривать электровозбуждение состояний определенной мультипольности, то полезно ввести парциальные ТПП $\rho_{\lambda l}^{e,m}(\mathbf{r})$, связанные с операторами $\vec{j}^{e,m}(\mathbf{r})$ следующими соотношениями:

$$\vec{\mathbf{j}}^{c,m}(\vec{\mathbf{r}}) = \mathbf{e}_{c} \sum_{\lambda \ell \mu} (-\mathbf{i})^{\ell} \hat{\mathbf{J}}_{f} (-)^{\mathbf{J}_{i} - \lambda + M_{f}} \begin{pmatrix} \mathbf{J}_{i} & \lambda & \mathbf{J}_{f} \\ \mathbf{M}_{i} & \mu & -\mathbf{M}_{f} \end{pmatrix} \rho_{\lambda \ell}^{c,m}(\mathbf{r}) \vec{\mathbf{Y}}_{\lambda \ell}^{\mu} (\Omega).$$
 (6/

 $M\lambda$ – возбуждения определяются функциями $\rho_{\lambda\lambda}$ (г), вид которых в КФМ получается в результате довольно простых преобразований, подробно описанных в $^{\prime 12\prime}$:

$$\begin{split} \rho_{\lambda\lambda}^{\mathbf{c}}(\mathbf{r}) &= \mu_{N} \sum_{\mathbf{a} \geq \mathbf{b}} \mathbf{i}^{\mathbf{b} + \lambda + 1 - \ell_{\mathbf{a}}} (-)^{\mathbf{j}_{\mathbf{b}} + \ell_{\mathbf{b}} + \frac{1}{2}} \hat{\mathbf{j}}_{\mathbf{a}} \hat{\mathbf{j}}_{\mathbf{b}} \hat{\lambda} \sqrt{\frac{(2\ell_{\mathbf{b}} - 1)\ell_{\mathbf{b}}}{\pi}} \times \\ &\times g_{\boldsymbol{\rho}}^{\mathbf{n}(\mathbf{p})} \begin{pmatrix} \ell_{\mathbf{a}} \lambda & \ell_{\mathbf{b}} - 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_{\mathbf{a}} \ell_{\mathbf{b}} \lambda \\ \mathbf{j}_{\mathbf{b}} \mathbf{j}_{\mathbf{a}} \frac{1}{2} \end{pmatrix} \begin{pmatrix} \ell_{\mathbf{b}} 1 & \ell_{\mathbf{b}} - 1 \\ \lambda & \ell_{\mathbf{a}} \lambda \end{pmatrix} \frac{2\ell_{\mathbf{b}} + 1}{r} \times \\ &\times u_{\mathbf{a}}^{*}(\mathbf{r}) u_{\mathbf{b}}(\mathbf{r}) (\psi_{\mathbf{j}_{\mathbf{a}} \mathbf{j}_{\mathbf{b}}}^{\lambda \mathbf{i}} - \phi_{\mathbf{j}_{\mathbf{a}} \mathbf{j}_{\mathbf{b}}}^{\lambda \mathbf{i}}) \frac{u_{\mathbf{j}_{\mathbf{a}} \mathbf{j}_{\mathbf{b}}}^{(-)}}{1 + \hat{o}_{\mathbf{a},\mathbf{b}}}, \end{split}$$

$$\rho_{\lambda\lambda}^{\mathrm{m}}(\mathbf{r}) = \mu_{\mathrm{N}} \frac{\sum_{\mathbf{a} \ge \mathbf{b}} i}{\sum_{\mathbf{b} \ge \mathbf{b}} i} (-)^{\frac{\mathbf{j}_{\mathrm{b}} + \lambda + \frac{j_{\mathrm{a}}}{2}}{4\sqrt{\pi\lambda(\lambda+1)}}} \frac{\widehat{\mathbf{j}}_{\mathbf{a}} \widehat{\mathbf{j}}_{\mathbf{b}}}{4\sqrt{\pi\lambda(\lambda+1)}} g_{\mathrm{s}}^{\mathrm{n}(\mathrm{p})} \begin{pmatrix} \mathbf{j}_{\mathrm{a}} & \mathbf{j}_{\mathrm{b}} \\ \frac{j_{\mathrm{a}}}{2} & -\frac{j_{\mathrm{b}}}{2} \end{pmatrix} \times$$

$$\times \frac{\mathbf{u}_{\mathbf{j}_{a}\mathbf{j}_{b}}^{(-)}}{1+\delta_{ab}} \left(\psi_{\mathbf{j}_{a}\mathbf{j}_{b}}^{\lambda \mathbf{i}} - \phi_{\mathbf{j}_{a}\mathbf{j}_{b}}^{\lambda \mathbf{i}} \right) \left[\frac{\lambda(\lambda+1)}{r} + (\mathbf{L}_{a}+\mathbf{L}_{b})(\frac{d}{dr} + \frac{1}{r}) \right] \mathbf{u}_{a}^{*}(\mathbf{r}) \mathbf{u}_{b}(\mathbf{r}) \frac{1}{\sqrt{8}}$$

$$\mathbf{L}_{a} = (\mathbf{f}_{a}^{-} - \mathbf{j}_{a}^{-})(2\mathbf{j}_{a}^{-} + 1), \qquad \hat{\lambda} = \sqrt{(2\lambda+1)}.$$

В формулах /7/ и /8/ суммирование проводится отдельно по нейтронным и протонным одночастичным состояниям. Запись a > bозначает, что состояния $|\mathbf{n_a}\boldsymbol{\ell}_n|_{\mathbf{a}} > |\mathbf{u}| |\mathbf{n_b}\boldsymbol{\ell}_b|_{\mathbf{b}} > \mathbf{B}$ сумме дважды вместе не встречаются. Козффициенты ц(-),-ц, у, - и, у, - известная комбинация коэффициентов преобразования Боголюбова. Для нахождения радиальных одночастичных волновых функций u, (r) /и их производных/ численно решалось уравнение Шредингера с потенциалом Вудса-Саксона. Для этого использовалась программа REDMEL, реализующая численный метод решения уравнения Шредингера для сферически-симметричного потенциала, предложенный в работах /18/. Параметры потенциала Вудса-Саксона и константы спаривательного взаимодействия для ядер из разных областей массового числа А приведены в работах /14,15/ Коэфλi фициенты $\psi_{j_1 j_2}^{n_1}$ и $\phi_{j_1 j_2}^{n_1}$, входящие в определение оператора фо-нона /5/, следующим образом выражаются через матричные слементы взаимодействия /4/, коэффициенты преобразования Боголюбова, энергии фононов $\omega_{oldsymbol{\lambda}_i}$ и двухквазичастичных состояний ϵ_i

$$\psi_{j_1j_2}^{\lambda i} = \frac{1}{\sqrt{2\mathfrak{Y}_{\lambda i}^{\dagger}}} \frac{\langle j_1 || r^{\lambda-1} Y_{\lambda-1\mu} || j_2 \rangle u_{j_1j_2}^{(-)}}{\epsilon_{j_1 j_2} - \omega_{\lambda i}},$$

$$\phi_{j_1 j_2}^{\lambda_i} = \frac{\omega_{\lambda_i} - \epsilon_{j_1 j_2}}{\omega_{\lambda_i} + \epsilon_{j_1 j_2}} \psi_{j_1 j_2}^{\lambda_i} . \qquad (9)$$

Индекс r = n, p зависит от того, нейтронному или протонному одночастичному спектру принадлежат состояния j_{1j2} . Нормиро-вочные козффициенты $\mathfrak{Y}_{\lambda_1}^r$ вычисляются по формуле

4

$$\begin{split} & \Psi_{\lambda i}^{n(p)} = Y_{\lambda i}^{n(p)} + Y_{\lambda i}^{p(n)} \left\{ \frac{\left[\kappa_{0}^{(\lambda-1,\lambda)} - \kappa_{1}^{(\lambda-1,\lambda)} \right] X_{\lambda i}^{n(p)}}{1 - \left[\kappa_{0}^{(\lambda-1,\lambda)} + \kappa_{1}^{(\lambda-1,\lambda)} \right] X_{\lambda i}^{p(n)}} \right\}, \\ & X_{\lambda i}^{r} = \frac{1}{2\lambda + 1} \sum_{j_{1}, j_{2}}^{r} \frac{\left[< j_{1} \mid |r^{\lambda-1} \mid Y_{\lambda-1\mu} \mid |j_{2} > u_{j_{1}j_{2}}^{(-)} \right]^{2} \epsilon_{j_{1}j_{2}}}{\epsilon_{j_{1}j_{2}}^{2} - \omega_{\lambda i}^{2}}, \quad /10/2 \end{split}$$

Энергии фононов мультипольности λ являются решениями секулярного уравнения ПСФ:

$$\begin{bmatrix} \kappa {\lambda-1,\lambda} \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} X & n \\ \lambda_i \\ \omega \end{bmatrix} + X & \sum_{\lambda_i} \begin{bmatrix} \omega \\ \omega \end{bmatrix} = 1$$

$$- 4\kappa {\lambda-1,\lambda} \\ 1 \\ 1 \\ \lambda_i \\ \lambda_i \\ \omega \end{bmatrix} \times \begin{bmatrix} \alpha \\ \lambda_i \\ \omega \end{bmatrix} = 1.$$

$$(11/2)$$

Решение уравнения /11/ и расчет амплитуд $\psi_{j1j2}^{\lambda_i}$ и $\phi_{j1j2,\kappa(\lambda-1,\lambda)}^{\lambda_i}$ полнялись с помощью программы RPAS /16/. Изоскалярная $v_{j1j2,\kappa(\lambda-1,\lambda)}^{\lambda_i}$ и изовекторная $\kappa_1^{(\lambda-1,\lambda)}$ константы эффективного взаимодействия $v_{\sigma\lambda-1}^{\lambda}(\mathbf{f}_1\mathbf{r}_2)$ являются параметрами модели. В значительной мере от них зависит положение М λ -резонанса и структура составляющих его однофононных М λ -состояний. Как показано в работах /14.15.17/, известные экспериментальные данные о М1-радиационных силовых функциях и М2-резонансе в средних и тяжелых сферических ядрах вполне удовлетворительно воспроизводятся

при следующих значениях $\kappa_0^{(\lambda-1,\lambda)}$ и $\kappa_1^{(\lambda-1,\lambda)}$ /см. также $^{/18/}/:$

$$\kappa_{0}^{(\lambda-1,\lambda)} = 0, \qquad \kappa_{1}^{(\lambda-1,\lambda)} = - \frac{4\pi \times 28}{A < t^{2\lambda-2}} \operatorname{Mag} M^{2\lambda-2}. \qquad /12/$$

Для эффективных гиромагнитных факторов выбраны следующие значения: $g_s^* = 0.8 g_s^{free}$, $g_\ell^* = g_\ell^{free} / 14,15/$.

3. ТОКОВЫЕ ПЕРЕХОДНЫЕ ПЛОТНОСТИ ОДНОФОНОННЫХ 1⁺ -и 2⁻-состояний

Как уже говорилось, влияние структуры возбужденных состояний аномальной четности на сечение процесса неупругого рассеяния электронов осуществляется через токовые переходные плотности /формулы /7/, /8/. Форма ТПП однофононного состояния определяется двумя факторами: 1/ формой ТПП входящих в волновую функцию однофононного возбуждения /5/ двухквазичастичных компонент и 2/ относительным весом этих двухквазичастичных компонент /т.е. относительной величиной и фазой коэффициентов $\psi_{j_1j_2}^{\lambda_i}$ и $\phi_{j_1j_2}^{\lambda_i}$. Именно эти два фактора и определяют различие в ТПП 1 – и 2 -состояний, формирующих М1-и M2 -резонансы в сферических ядрах.

6

Как видно на <u>рис. 1,</u> на котором изображены ТПП некоторых резонансных 1⁺ и 2⁻состояний ядра ⁹⁰ Zr, ТПП магнитных дипольных состояний имеют поверхностный характер, а магнитных квадрупольных состояний - объемный /19/ Конкретная причина такого различия суть следующая. Как показали предыдущие расчеты 15,207, вклад в структуру однофононных резонансных 1+-состояний дают не более 2-3 двухквазичастичных компонент, образованных состояниями спин-орбитальных дублетов, причем довольно часто вклад одной из компонент является подавляющим. Известно, что одночастичные волновые функции связанных состояний в потенциале Вудса-Саксона имеют экстремум вблизи поверхности ядра. Так как волновые Функции состояний, принадлежащих спинорбитальному дублету, мало различаются, положение их экстремумов совпадает и происходит возрастание абсолютной величины соответствующей ТПП у поверхности ядра /см. формулы /7/-/8//. В то же время структура однофононных 2 -состояний коллективная, то есть они представляют собой суперпозицию большого числа двухквазичастичных компонент. Одночастичные волновые функции $u_{a}(r)$ и $u_{b}(r)$, входящие в выражение /7/ и /8/ для $\rho_{22}(r)$. соответствуют разным значениям главного и орбитального квантовых чисел, их экстремумы смещены друг относительно друга, в результате чего и происходит ослабление TNN 2⁻-состояний у поверхности ядра.

Структура коллективных однофононных 2-состояний чувствительна к силовым параметрам эффективных сил. ТПП, изображенные на рис. 1, рассчитаны для значений констант $\kappa_0^{(\lambda-1, \lambda)}$ и $\kappa^{(\lambda-1,\lambda)}$, вычисленных по формуле /12/. Изменение ТПП в зависимости от констант $\kappa_0^{(\lambda-1,\lambda)}$ и $\kappa_1^{(\lambda-1,\lambda)}$ можно видеть на рис. 2. Для того чтобы можно было солоставить изменения ТЛЛ с изменениями структуры состояний и других их характеристик, мы привели соответствующие данные в таблице. Из сравнения рис. 2 и данных таблицы видно, что при уменьшении константы [к;(12)] в два раза, пока еще сохраняется коллективная природа 2-состояния , сохраняется и качественный ход ТПП. Более существенные изменения ТПП происходят, когда 2-состояние становится неколлективным и ТПП определяется вкладом 2-3 двухквазичастичных компонент. Существенно также, что такие интегральные характеристики отдельных 2-состояний, как энергия возбуждения Е., и В(М2), гораздо менее чувствительны к изменениям к(12), чем ТПП. Например, при изменении к(12) в 10 раз В(M2) меняется в 1,5 ÷ 2,0 раза. Отчасти это понятно, так как В(M2) есть не что иное, как интеграл от μ_{22} (t).Более тонкой характеристикой состояния будет являться сечение возбуждения его в (е, е) -рассеянии, особенно при больших пере-

Таблица

Энергия, величины В(M2) и $d\sigma/d\Omega$ /при энергии падающих электронов E₀ =50 и 100 МэВ и θ° =165°/ коллективного 2⁻⁻состояния ядра ⁹⁰ Z_г при разных значениях константы изовекторного спиндипольного взаимодействия. Величина $\kappa_1^{(12)}$ рассчитана по формуле /12/

	$\mathcal{Z}_{1}^{(12)}$	0,5 2e1	0,2 32,	0, 1 28 ₁
B _x MəB	9 , 58	9,48	9,33	9,31
B(112) H . OH	700	1260	810	720
E _• ≈ 50	0,46 10 ⁻⁵	0,67 10 ⁻⁵	0,33 10 ⁻⁵	0,22 10 ⁻⁶
$\frac{do}{d\Omega} \frac{d\Omega}{CP} E = 100$	0,43 10-6	0,32 IO ⁻⁶	0,2: 10-7	0,18 10 ⁻⁷
(2p _{3/2} -3s _{1/2}) _n	29,7%	13,8%	1,4%	< 1%
E (115/2-187/2)	11,5%	6,0%	< 1%	<1%
^d ₆ (1 _{59/2} -1h _{11/2}) _n	5,0%	4,8%	1,0%	<1%
8 ^{(2p} 1/2 ^{-2d} 3/2 ⁾ n	2,7%	5,4%	13,5%	1,4%
^d (2p _{3/2} -2d _{5/2}) _s	26,5%	41,1%	27,4%	1,5%
A(117/2-189/2)	14,6%	17,1%	5,3%	< 1%
(11 _{5/2} ~2d _{5/2}) ₂	2,4%	5,3%	50 ,0%	96,7%

данных импульсах. Значения $d\sigma/d\Omega$ для $\theta^\circ = 165^\circ$ и двух значений энергии падающего электрона E₀ также приведены в таблице. При относительно малых q уменьшение $|\kappa|_1^{(12)}|$ вначале не вызывает заметных изменений в $d\sigma/d\Omega$, и величина сечения начинает заметно падать, лишь когда состояния становятся по существу неколляхтивными. При больших q величина $d\sigma/d\Omega$ становится чувствитёльной к тонким деталям ТПП, может очень резко изменяться в зависимости от $|\kappa|_1^{(12)}|$ и возрастать при уменьшении $|\kappa|_1^{(12)}|$.

4. ЗАВИСИМОСТЬ ВЕРОЯТНОСТИ ВОЗБУЖДЕНИЯ ОДНОФОНОННЫХ 1+- и 2-состояний в неупругом рассеянии электронов от переданного импульса и массового числа ядра-мишени

Перейдем теперь к обсуждению результатов расчета собственно сечений возбуждения 1⁺- и 2⁻-состояний в (е,е')-рассеянии. Еще раз подчеркнем, что структура возбужденных состояний рассчитывалась нами в приближении случайной фазы. Это накладывает известные ограничения на возможности сравнения теории и эксперимента. Так, в ядрах 90 Zr, 140 Ce и 208 Pb влияние взаимодействия с двухфононными конфигурациями на MI- и M2резонансы незначительно $^{/14,15'}$, и расчеты в ПСФ дают вполне удовлетворительное описание эксперимента. Но в ядре 58 Ni только влиянием этого взаимодействия и можно объяснить результаты экспериментов Линдгрена и др. $^{/21'}$. Вследствие этого сравнение наших расчетов с экспериментом носит ограниченный характер.

Меняя энергию падающих электронов или угол рассеяния, можно изменять импульс, передаваемый электроном здру. При этом из-за различий в форме ТПП разных ядерных возбуждений они будут по-разному возбуждаться при данной величине q, и, что также очень важно, при изменении q будут изменяться относительные вероятности их возбуждения. Таким образом, по крайней мере в принципе, возможен выбор условий эксперимента, при которых преимущественно будут возбуждаться состояния определенного типа.

Это общее утверждение демонстрируют <u>рис. 3,4</u>, на которых изображены дифференциальные сечения неупругого рассеяния электронов на ядре ²⁰⁸ Pb с возбуждением однофононных 1⁺⁻ и 2⁻-состояний из интервала энергии возбуждения $0 \le E_x \le 15$ МэВ. На <u>рис. 3</u> изменение q обусловлено изменением угла рассеяния θ° , а на <u>рис. 4</u> - изменением энергии падающих электронов. При малых q, когда справедливо длинноволновое приближение, отношение $d\sigma/d\Omega$ для разных состояний с данным J^π практически совпадает с отношением B(MJ). С ростом q начинает меняться отно-

сительный вклад отдельных состояний в полное сечение. Поскольку с ростом q максимум функции Бесселя j_{λ} (qr), с которой свертывается $\rho_{\lambda\lambda}(r)$ в формуле для сечения (e, e') -рассеяния, сдвигается во внутреннюю область ядра, с большей вероятностью начинают возбуждаться состояния, ТПП которых имеют объемный характер. Именно поэтому уменьшается вклад в сечение 1⁺-состояний, они все больше теряются на фоне 2⁻возбуждений.Меняются и относительные вероятности возбуждения разных 2⁻-состояний. Наиболее ярко это проявляется для двух 2⁻-состояний с энергиями возбуждения Е_х =6,6 и 13,6 МэВ. Первое из них имеет максимальную величину B(M2) и сильно возбуждается при небольших значениях q. Второе же, наоборот, имеет довольно небольшую величину B(M2), зато сильно возбуждается при q> 1Фм⁻¹ /см. <u>рис. 4в</u>/. Вообще, с ростом q вероятность возбуждения 2⁻-состояний из области $6 < E_x < 9$ МэВ, которые исчерпывают значительную часть полной величины B(M2), быстро падает, а сечения возбуждения состояний из области $11 < E_x < 15$ МэВ, вклад которых в суммарную B(M2) невелик, либо остаются постоянными, либо даже растут. В результате при q >1 Фм⁻¹ в спектре ²⁰⁸ pb при $E_x < 15$ МэВ видны две области с повышенной вероятностью воз-буждения 2⁻-состояний. Этот пример лишний раз показывает, что необходимо проводить сравнение теоретических результатов с непосредственно измеряемыми величинами или же проводить обработку экспериментальных данных /напримэр, извлекать B(M2) из сечений (e, e') -рассеяния/, опираясь на достаточно последовательные теоретические модели.

Как изменяются вероятности возбуждения резонансных однофононных 1⁺- и 2⁻-состояний сферических ядер с ростом массового числа А, можно видеть на <u>рис. 5.</u> Во-первых, с ростом А обогащается спектр однофононных 2⁻-состояний и возрастают вероятности возбуждения отдельных 2⁻-состояний. Во-вторых, падают вероятности возбуждения немногочисленных однофононных 1⁺-состояний. Таким образом, с ростом А все сложнее выделить вклад в сечение магнитных дипольных возбуждений на фоне магнитных квадрупольных. Этот факт, надо сказать. следует и из простых качественных оценок в длинчоволновом приближении. Действительно, при малых q $(d\sigma/d\Omega)_{M\lambda} \sim q^{2\lambda} B(M\lambda)$. Если воспользоваться для B(M\lambda) оценками Вайскопфа^{(22/}, то для отношения сечений возбуждения M2-и M1-состояний получается [#]

 $\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{M2}} / \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{M1}} \sim q^2 \mathrm{A}^{2/3} \ . \tag{13}$

Такая зависимость $d\sigma/d\Omega$ от A является, возможно, одной из причин неудачи поисков M1 -резонанса в тяжелых ядрах, на что мы уже указывали ранее '23'.

5. ФОРМФАКТОРЫ ОДНОФОНОННЫХ СОСТОЯНИЙ

Определение спина и четности возбуждаемых в (е,е')-рассеянии уровней часто проводится путем сравнения экспериментально измеренных и рассчитанных в рамках той или иной модели

^{*}Из /13/ видно также, что величина отношения сечений электровозбуждения М2- и М1-состояний будет расти и с ростом q /см. начало настоящего параграфа/.

ядра формфакторов - величин $(d\sigma/d\Omega):(d\sigma/d\Omega)_{MOT\,T}$, рассматриваемых как функции переданного импульса q. Формфакторы различных ядерных возбуждений довольно заметно различаются между собой, что и позволяет определять квантовые числа возбуждаемых состояний.

Рассмотрим поведение формфакторов однофононных 1⁺⁻ и 2⁻⁻ состояний на примере ядра ¹⁴⁰Се,для которого известны экспериментальные формфакторы. Формфакторы отдельных однофононных 2⁻⁻состояний ядра ¹⁴⁰Се из области энергии возбуждения 7,5< E_x <10 МэВ изображены на <u>рис. 6.</u> При малых q, когда работает длинноволновое приближение, формфакторы разных состояний близки по величине и практически одинаково ведут себя как функции E_0 /или q, так как θ° фиксирован/. Некоторые различия начинают возникать при $E_0 \gtrsim 30$ МэВ, а при $E_0 > 80$ МэВ формфакторы отдельных состояний ведут себя совершенно по-разному;

Рис.6. Формфакторы однофононных 2⁻-состояний ядра ¹⁴⁰ Се из интервала энергии возбуждения 7,5 < E_x <10 МэВ; цифры указывают энергии состояний в МэВ; сплошная линия сумма всех изображенных формфакторов / θ° =165°/.

здесь в полной мере проявляется индизидуальная форма ТПП каждого состояния. Обращает на себя внимание поведение формфактора состояния с энергией $E_x = 9,81$ МэВ. По-видимому, состояние с $E_x = 9,81$ МэВ проявляется в (e,e') -рассеянии так же, как состояние с $E_x = 6,6$ МэВ ядра 2^{08} Pb, которое обсуждалось в §4. Именно,это состояние имеет значительную величину B(M2) и вероятность возбуждения при малых q. но форма его ТПП такова, что при больших q оно возбуждается слабо. Интересно, что, несмотря на дозольно резкие изменения формфакторов отдельных 2⁻-состоя-

Рис.7. Суммарные формфакторы однофононных состояний с $J^{\pi} = 1^+$ /пунктирные линии/ и $J^{\pi} = 2^-$ /сплошные линии/ ядра ¹⁴⁰Се из интервала 7,5< $E_x < 10$ МэВ. Штрих-пунктирные линии – суммы М1- и М2-формфакторов. Кривые а соответствуют углу рассеяния $\theta^\circ = 165^\circ$; 6 – $\theta^\circ = 93^\circ$; экспериментальные точки – из работы /5/.

ний, сумма их, взятая по всем состояниям из рассматриваемого интервала, изменяется довольно плавно с ростом E_0 . Она вполне удовлетворительно согласуется с экспериментальными данными ^{(5,}) как это видно из <u>рис.</u> 7. Экспериментальные данные по формфакторам получены для двух значений $\theta = 165^\circ$ и 93°. Согласие вполне удовлетворительное как по абсолютной величине /подчеркнем, что специальной нормировки теоретических формфакторов не проводилось/, так и для изменения формфактора с E_0 , что позволяет сделать заключение о возбуждении в обсуждаемом эксперименте именно 2⁻-состояний. К аналогичному выводу пришли и авторы эксперимента ^{(5/}на основании сразнения своих экспериментальных данных с расчетами по MSI -модели ^{/24'}.0днако, как было указано в работе ^{'25'}, экспериментальные данные ^{'5'} не противоречат и присутствию 1⁺-состояний с $B(M1) \simeq 10 \mu_N^2$ в рассматриваемом интервале E_{χ} . Соответствующие формфакторы также изображены на <u>рис.</u> 7. Суммарный формфактор 1⁺- и 2⁻-состояний не так быстро уменьшается с изменением E_0 . как один только M2 -формфактор, и это лучше согласуется с ходом экспериментальных точек при $\theta^{\circ} = 165^{\circ}$. <u>Рис.</u> 7, так же как и результаты, изложенные в §4, показывает, что для надежного выделения 1⁺возбуждений на фоне 2⁻-возбуждений необходимы измерения 1⁺возбуждений на фоне 2⁻-возбуждений необходимы измерения при меньших, чем в ^{'5'}, энергиях падающих электронов. Однако, как показывают наши расчеты, при $\theta^{\circ}=93^{\circ}$ вклад М1-резонанса заметен при более высоких энергиях ($E_0 \simeq 100$ МэВ) - в области второго максимума М1-формфактора Но не исключено, что при этих энергиях с большой вероятностью будут возбуждаться магнитные состояния с $\lambda > 2$, и это дополнительно затруднит выделение 1⁺-состояний.

6. ЗАКЛЮЧЕНИЕ

er felindensingen utstim det in der

В настоящей работе следует выделить два основных момента. Во-первых, в рамках квазичастично-фононной модели ядра рассчитаны токовые переходные плотности состояний аномаль-Оказалось, что ТПП однофононных 1⁺ -сосной четности. 2 - состояний имеют поверхностный характер, а тояний объемный. Исследована зависимость ТПП коллективных 27-состояний от силовых параметров модели. Рассчитанные нами ТПП могут быть использованы для описания неупругого рассеяния элементарных частиц /электронов, протонов, л-мезонов/ на ядрах. Вовторых, мы рассмотрели как с ТПП квазичастично-фононной модели описывается неупругое рассеяние электронов с возбуждением состояний аномальной четности. Имеющиеся экспериментальные данные о возбуждении 2⁻состояний ядра ¹⁴⁰Се описываются моделью удовлетворительно. Вместе с тем из налих расчетов следует, что неудача поисков М1 -резонанса в тяжелых ядрах может быть связана с трудностью выделения 1+-возбуждений на фоне 2 - возбуждений при выбранных экспериментаторами 15/ энергиях падающих электронов и углах рассеяния.

Авторы благодарны проф. В.Г.Соловьеву за постоянное внимание, Ч.Стоянову и В.В.Воронову за обсуждение проблем, затронутых в настоящей работе, и замечания, высказанные по прочтении рукописи настоящей работы.

15

ЛИТЕРАТУРА

- Pitthan R., Walcher Th. Phys.Lett., 1971, 36B, p. 563; Z.Naturforsch., 1972, 27a, p. 1683.
- 2. Fukuda S., Torizuka Y. Phys.Rev.Lett., 1972, 29, p. 1109.
- 3. Lindgren R.A. et al. Phys.Rev.Lett., 1975, 35, p. 1423.
- Richter A. Proc.Sendai Conf. on Electro- and Photoexcitations (Supp. Research Rep. Lab.Nucl.Science, Tohoku Univ., Tomizawa, Sendai, Japan, 1977, vol. 10), p. 195.
- Richter A. Proc. Int.Conf. on Nuclear Physics with Electromagnetic Interactions (Ed. by Arenhöv) and Dreshel), Mainz, 1979, p.19.
- 6. Гончарова Н.Г. и др. ЯФ, 1978, 27, с. 1183; Изв.АН СССР, сер. физ., 1980, 44, с. 168.
- Speth J., Wambach J. Invited Talk Presented at the Int. Conf. on Band Structure and Nucl.Dynamics, New Orleans, USA, 1980.
- 8. Соловьев В.Г. Теория сложных ядер. "Наука", М., 1971; ЭЧАЯ, 1978, 9, с. 810.
- 9. Акулиничев С.В. и др. ЯФ, 1978, 28, с. 883.
- 10. Акулиничев С.В., Шилов В.М. ЯФ, 1978, 27, с. 670.
- 11. Tuan S.T. et al. Nucl.Instr. and Meth., 1968, 60, p. 70.
- 12. Lee H.C. Preprint of Chalk River Nuclear Laboratories, AECL-4839, Chalk River, Ontario, 1975.
- 13. Bang J. et al. Nucl.Phys., 1976, A261, р. 59; Гиззаткулов М.Х. и др. ОИЯИ, P11-10029, Дубна, 1976.
- 14. Ponomarev V. et al. Nucl. Phys., 1979, A209, p. 535.
- 15. Вдовин А.И. и др. ЯФ, 1979, 30, с. 923.
- 16. Стоянов Ч., Юдин И.П. ОИЯИ, Р4-11076, Дубна, 1977.
- 17. Soloviev V.G. et al. Phys.Lett., 1978, 79B, p. 187.
- 18. Castel B., Hamamoto I. Phys.Lett., 1976, 65B, p. 27.
- Вдовин А.И. и др. Тезисы докладов XXX Совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", Л., 1980, с. 166.
- 20. Вдовин А.И. и др. ОИЯИ, Р4-11081, Дубна, 1977; Пономарев В.Ю., Вдовин А.И. ОИЯИ, Р4-80-392, Дубна, 1980.
- 21. Lindgren R.A. et al. Phys.Rev., 1976, C14, p. 1789.
- 22. Блатт Дж., Вайскопф В. Теоретическая ядерная физика. ИИЛ, М., 1954.
- 23. Ponomarev V.Ju. et al. Abstracts of Int.Symp. on Highly Excited States in Nuclear Reactions, Osaka, 1980, p. 23.
- 24. Knüpfer W., Huber M.G. Phys. Rev., 1976, C14, p. 2254.
- 25. Ponomarev V.Ju. et al. JINR, E4-80-465, Dubna, 1980.