

5280 2-80

3/4-80 P4-80-524

В.Б.Беляев, О.П.Соловцова

РАСЧЕТ ДЛИН **л**-ЯДЕРНОГО РАССЕЯНИЯ ДЛЯ ЛЕГКИХ ЯДЕР

Направлено в ЯФ

1. ВВЕДЕНИЕ

При исследовании взаимодействия пионов низких энергий с ядрами естественно возникает вопрос: какая информация о структуре ядра может быть извлечена из такого рода экспериментов при существующей точности экспери-**"А -взаимодействию.** В частментальных данных по "N и ности, что можно сказать о свойствах ядерной системы, л -ядерного рассеяния? Для ответа на изучая длины эти вопросы, очевидно, необходимо задаться какой-либо надежной теоретической схемой описания рассматриваемой многочастичной системы. Однако иногда даже выбор схемы расчета не дает возможности получить ответ на эти вопросы. Так, расчеты, выполненные в рамках импульсного и статического (m₂/M) <<1 приближений /1/, приводят к выражению для длины п-ядерного рассеяния, не зависящему от структуры ядра. Такой результат вполне понятен, т.к. в импульсном приближении пренебрегается эффектами многократного рассеяния пиона в ядре, и сведения о его структуре будут содержаться только в ядерной волновой функции. Если же теперь сделать статическое (m_/M) <<1 приближение, то "ядерная" часть амл -ядерного рассеяния выражается плитуды упругого только через А. Z. N и интегралы от квадратов ядерных функций. Таким образом, вся информация о ядерной волновой функции, которая потребовалась в данном случае, - это ее нормируемость, т.е. свойство, которым apriori обладают все волновые функции связанных состояний.

Значения длин рассеяния, найденные в /1/, не очень хорошо согласуются с экспериментальными данными. Ниже мы попытаемся учесть эффекты многократного рассеяния пионов на нуклонах мишени, используя так называемый эволюционный по константе связи (ЭКС) метод /2/

Среди других имеющихся в настоящее время подходов, основанных на улитаризации приближенной амплитуды

многочастичного процесса, ЭКС-метод выделяется своей простотой. Именно благодаря этому удается оценить роль эффектов, характеризующих структуру ядра при вычислении реальной части длины / - ядерного рассеяния.

2. ЛИНЕЙНОЕ ПРИБЛИЖЕНИЕ

Полный гамильтониан пион-ядерной системы запишем в виде:

$$\mathbf{H} = \mathbf{H}_{0} + \mathbf{h} + \mathbf{g} \mathbf{V}_{\pi} \,, \tag{1}$$

где Но - оператор кинетической энергии относительного движения п-мезон-ядро, h – полный гамильтониан яд-

ра, $V_{\pi} = \sum_{i=1}^{A} V_{\pi N_{i}}$ - потенциал взаимодействия π -мезона

с ядром с массовым номером А.

Реальному случаю отвечает гамильтониан (1) при g=1.

Введем векторы состояния (µ), являющиеся собственными векторами полного гамильтониана (1), и векторы состояния |µ> - собственные векторы гамильтониана $\tilde{H} = H_0 + h$. Очевидно, что $|\mu> = |\mu\rangle$ при g = 0. Как было показано в^{/2/}, фаза рассеяния δ_ρ (k) удовлет-

воряет уравнению:

$$\frac{\mathrm{d} \mathcal{S}_{\ell}(\mathbf{k})}{\mathrm{d} \mathbf{g}} = -\frac{\mu \mathbf{k}}{2\pi} \left(\nu |\mathbf{V}|_{\mu} \right)_{\ell} , \quad \mathbf{E}_{\mu} = \mathbf{E}_{\nu} , \qquad (2)$$

гле l - орбитальный момент системы пион-ядро, µ -приведенная масса сталкивающихся частиц.

Используя процедуру, аналогичную той, которая привела к (2), для интересующего нас случая метрудно получить следующее уравнение для длины пион-ядерного рассеяния:

$$\frac{\mathrm{d}\mathbf{z}_{\pi \mathbf{A}}(\mathbf{g})}{\mathrm{d}\mathbf{g}} = -\frac{\mu_{\pi \mathbf{A}}}{2\pi} \left(\pi \mathbf{A} \left| \mathbf{V}_{\pi} \right| \pi \mathbf{A} \right). \tag{3}$$

Для матричных элементов вида ($\mu |\mathbf{V}| \nu$) в рамках ЭКС-метода может быть выписана система нелинейных интегро-дифференциальных уравнений, которая для случая трех тел приведена в /2/. Эта система может быть решена итерационным способом. Такая возможность была

реализована в^{/3/} при рассмотрении *m*d -рассеяния. Ниже будет использована несколько иная скема, позволяющая значительно упростить вычисление длины *п* -ядерного рассеяния и обладающая большей наглядностью.

Воспользуемся соотношением:

$$T |\pi A \rangle = g V_{\pi} |\pi A| .$$
⁽⁴⁾

Тогда для искомого матричного элемента имеем:

$$(\pi \mathbf{A} | \mathbf{V}_{\pi} | \pi \mathbf{A}) = \frac{1}{g} (\pi \mathbf{A} | \mathbf{T} | \pi \mathbf{A} > .$$
 (5)

Вычислим правую часть (5) в приближении однократного πN -соударения. В этом приближении π -мезон и ядро в конечном состоянии следует считать свободными, т.е. заменить $|\pi A\rangle$ на $|\pi A\rangle$, поскольку взаимодействие между ними будет соответствовать учету высших поряд-ков в разложении выражения (5) по стеленям $t_{\pi N}$.

В приближении однократного лN -соударения из (3) и (5) получаем:

$$\frac{da^{(1)}}{dg} = -\frac{\mu_{\pi A}}{2\pi} \frac{1}{g} < \pi A | T^{(1)} | \pi A > , \qquad (6)$$

где матричный элемент <πА | Т⁽¹⁾ |πА> берется в импульсном приближении при относительном импульсе п-мезона и ядра, равным нулю, и находится следующим образом:

$$<\pi \mathbf{A}; 0 | \mathbf{T}^{(1)} | \pi \mathbf{A}; 0 > = \sum_{j=1}^{\mathbf{A}} \int \frac{d\vec{\mathbf{k}}_{1}}{(2\pi)^{3}} \cdots \frac{d\vec{\mathbf{k}}_{\mathbf{A}}}{(2\pi)^{3}} (2\pi)^{3} \delta(\vec{\mathbf{k}}_{1} + \cdots + \vec{\mathbf{k}}_{\mathbf{A}}) \times \times \psi_{\mathbf{A}}^{*}(\vec{\mathbf{k}}_{1}, \dots, \vec{\mathbf{k}}_{\mathbf{A}}) < \overset{\circ}{\mathbf{k}}_{j} | \mathbf{t}_{\pi \mathbf{N}_{j}} | \overset{\circ}{\mathbf{k}}_{j} > \psi_{\mathbf{A}}(\vec{\mathbf{k}}_{1}, \dots, \vec{\mathbf{k}}_{\mathbf{A}}) ,$$

$$(7)$$

где $< k_j | t_{\pi N_j} | k_j > -$ матричный элемент от t -матрицы в системе центра масс π -мезона и j -го нуклона, причем

$$\mathbf{\hat{k}}_{j} = \frac{\mu_{\pi} \, \vec{k}_{j}}{m_{N} + \mu_{\pi}}$$

В статическом пределе $(\mu_{\pi}/m_N) \le 1$ и пренебрежении екладом Р – волны πN – изаимодействия, что допустимо при низких энергиях, матричный элемент $< \hat{\vec{k}}_j + \frac{2}{\pi N_j} \hat{\vec{k}}_j >$

н интеграле (7) можно заменить его значением при $\vec{k}_j = 0$, тогда с учетом изоспиновой структуры, т.е.

 $t_{\pi N j} = t_0 + t_1 \vec{i} \cdot \vec{r} (j)$,

где $\vec{i}(\vec{r})$ — оператор изоснина π —мезона (j —го нуклона), t₀ в t₁ — состветственно изоскалярная и изовекторная компоненты — πN —амплитуды, окончательно получаем:

$$< \pi \mathbf{A} : \mathbf{0}^{t} \mathbf{T}^{(1)} \pi \mathbf{A} : \mathbf{0}^{t} \simeq \mathbf{A} \mathbf{t}_{\mathbf{C}}^{t}(\mathbf{g}) + < 2 \vec{\mathbf{i}} \cdot \vec{\mathbf{I}}^{t} \mathbf{t}_{\mathbf{c}}^{t}(\mathbf{g}) \simeq (7 \times)$$

 $+ \mathbf{A} \mathbf{t}_{\mathbf{c}}^{t} + (\mathbf{Z} - \mathbf{N}) \mathbf{t}_{\mathbf{c}}^{t},$

где – отвечает рассеянию п-мезона; I – сператор язослина ядра; Z – число протонов, N – число нентроном.

Стметим, что выражению (7) отвечает сумма фейнмачовских диаграмм, соответствующая дриближению однократного πN - соуларения (одна из диаграмм изображена да <u>рис.1</u>). С учетом (7') уравнение для длины рассеяния принимает вид:

$$\frac{da_{\pi A}^{(1)}(g)}{dg} = \frac{1}{g} \left[A a_{0}^{(g)} \pm (Z - N) a_{1}^{(g)} \right], \qquad (6^{-1})$$

где

$$a_{0}(g) = -\frac{\mu_{\pi N}}{2\pi}t_{0} = \frac{1}{3}[a_{1/2}(g) + 2a_{3/2}(g)],$$

$$a_{1}(g) = -\frac{\mu_{\pi N}}{2\pi}t_{1} = -\frac{1}{3}[a_{1/2}(g) - a_{3/2}(g)],$$

а_{1/2} (g), а_{3/2} (g) – длины лN –рассеяния как функции константы связи g, отвечающие состояниям с полным изоспином 1/2 и 3/2. Легко показать, что в случае, когда лN –взаимодействие задается S –волновым сепарабельным потенциалом Ямагучи^{/4/}:

$$V_{\pi N}^{\circ} = \Lambda v(k') v(k), v(k) = \frac{1}{k^2 + \gamma^2},$$
 (8)

- 24	
	2
	Ł
_	

Рис. 1. Однократное рассеяние *п*-мезона на нуклоне ядра.

двухчастичная длина рассеяния как функция g может быть представлена в следующем виде:

$$a_{i}(g) = \frac{ga_{i}^{exp}}{1 - \frac{\gamma}{2}a_{i}^{exp}(g-1)},$$
 (9)

где индекс і отвечает состояниям с полным изоспином 1/2 и 3/2, a^{exp} – экспериментальное эначение длины πN – рассеяния с соответствующим значением полного изоспина.

Окончательное выражение для длины *п*-А -рассеяния с учетом (9) и очевидного граничного условия а _{*п*А}(g=0)=0 Записывается:

$$a_{\pi A}^{(1)} = A\bar{a}_0 \pm (Z - N)\bar{a}_1$$
, (10)

где

$$\overline{a}_{0} = \int_{0}^{1} dg \frac{1}{g} a_{0}(g) = \frac{2}{3\gamma} (\ln|1 + d_{1/2}| + 2\ln|1 + d_{3/2}|),$$

$$\overline{a}_{1} = \int_{0}^{1} dg \frac{1}{g} a_{1}(g) = -\frac{2}{3\gamma} (\ln|1 + d_{1/2}| - \ln|1 + d_{3/2}|),$$

$$d_{1} = a_{1}^{exp} \cdot \gamma/2.$$

Отметим, что выражение (10) уже содержит эффекты перерассеяния пионов во всех порядках. Легко также видеть, что в первом порядке по а "м формула (10) дает тот же результат, что и обычное импульсное приближение ^{/5/} :

$$a_{\pi A}^{imp} = A a_0^{exp} \pm (Z - N) a_1^{exp} . \qquad (11)$$

В табл.1 приведены длины рассеяния л -мезонов на ядрах, рассчитанные по формуле (10). В первой колонке указано ядро, во второй - набор параметров, в третьейдлины в импульсном приближении, найденные по формуле (10).в пятой - найденные из сдвигов уровней л - мезоатомов и взятые из работ /11,12,184 если известна так... же ширина уровня, то для соответствующей длины указана и мнимая часть). Как видно из табл.1, формула (10) дает Длины рассеяния. сильно отличающиеся от длин. найденных в импульсном приближении. Кроме того, для всех ядер (исключение составляет лишь ядро ³Не) имеется хорощее согласие с экспериментальными значениями. Для ядра ³Не в пределах ошибок параметров *п*N -взаимодействия получается Значение, равное нулю.

3. КВАДРАТИЧНОЕ ПРИБЛИЖЕНИЕ

Найдем выражение для матричного элемента от потенциала ($\pi A | V_{\pi} | \pi A$), квадратичное по $t_{\pi N}$. Для упрощения выкладок рассмотрим конкретно πd систему*. Представим матричный элемент ($\pi d | T | \pi d >$ в следующем виде:

$$(\pi d; \vec{k}' | T | \pi d; \vec{k} > = \int \frac{d\vec{k}_1 d\vec{q}_1}{(2\pi)^6} (\pi d; \vec{k}' | \vec{k}_1, \vec{q}_1 > < \vec{k}_1, \vec{q}_1 | T | \pi d; \vec{k} > .$$

Поскольку ($\pi d; \vec{k}' | \vec{k}_1, \vec{q}_1 > \equiv \psi_{\vec{k}'}^*, (\vec{k}_1, \vec{q}_1)$ - есть волновая функция πd -системы, то до порога развала можно написать для нее соотношение Липпмана-Швингера

^{*} Для ядер с произвольным **А** можно проделать аналогичные выкладки, если при рассмотрении ограничиться только основным состоянием ядра, что допустимо при вычислении длин пион-ядерного рассеяния /1/.

<u>Таблица 1</u>

Длина пион-ядерного рассеяния, вычисленная по формуле (10), для различных наборов длин πN -рассеяния (набор а взят из $^{/6/}$, b - $^{/7/}$, c - $^{/8/}$, d - $^{/9/}$, e - $^{/10}$).

Sape	Hadop and and the second secon	a ⁽¹⁾ _{37A} (Qu)	а. ^{ехр} _{ПА} (Фм)
* H ₁	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.088 -0.041 -0.075 <u>+</u> 0.020 -0.056+0.008 -0.065 <u>+</u> 0.025	(-0.073 ^{+0.031})
³ H ₁	a -0.188 b -0.122 c -0.169 d -0.143 e -0.156	-0.264 -0.181 -0.242+0.030 -0.20170.012 -0.22270.046	-0.226
^з Не	4 +0.086 6 0.133 C 0.105 d 0.109 e 0.106	-0.002 0.057 0.018+0.030 0.03270.012 0.02770.037	(0,055+0.007) + (0.0%1±0.008)
"He	c -0.043	-0.150+0.040	(-0.143+0.004)
	d -0.027	-0.112-0.012)	+ $(0.042+0.003)$
<i>•</i> _{ان}	c - 0.064	-0.224+0.060	(-0,187+0,002)
	d - 0.048	-0.16770.028	+(0,055+0,003)
*Li	C -0.212	-0.392+0.070	(-0.330+0.002)
	A -0.170	-0.31320.027	+(0.055+0.004)
₿ _e	c -0.233 a -0.183	-0.369-0.035	(-0.405+0.002) +(0.075+0.002)
₽B	c -0.197	-0.374+0.100	-0.400 +0.000
	d -0.067	-0.280+0.040	+(0.106+ 0.007)
[#] B	с <u>-0.255</u>	-0.542+0.110	-0.528+ 0.014
	d <u>-0.197</u>	-0.42570.044	+(0.123+ 0.008)
^и с	с -0.128	-0.450+0.120	-0.484+0.009
	d -0.060	-0.33770.048	+(0.128±0.005)
^{**} N	c -0.149	-0.524+0.140	-0.546+ 0.008
	d -0.93	-0.38370.056	+(0.117+0.007)
¹⁶ 0	c -9.170	-0.598+0.150	-0,595+0,010
	d -0.107	-0.45070.064	+(0,146+0.010)
19 F	C -0.340	-0.841+0.190	-0.732+0.016
	d -0.250	-0.65070.075	+(0.13810.022)
²³ Na	C -0,383	-0.990±0.235	- 0.914+0.018 +(0.95+ 0.087)

$$\begin{split} \psi^{*}_{\vec{k}'}(\vec{k}_{1},\vec{q}_{1}) &= (2\pi)^{3} \delta(\vec{k}_{1}-\vec{k}')\phi^{*}_{d}(\vec{q}_{1}) + \\ &+ \frac{1}{z'^{*}-\frac{k_{1}^{2}}{2\mu_{\pi d}}-\frac{q_{1}^{2}}{m_{N}}} \int \frac{d\vec{q}_{1}'}{(2\pi)^{3}}\phi^{*}_{d}(\vec{q}_{1}') < \vec{k}', \vec{q}_{1}'|\mathbf{T}^{+}|\vec{k}_{1}, \vec{q}_{1} > , \end{split}$$

тогда получаем, что

$$(\pi d; \vec{k}' |T| \pi d; \vec{k}) = \langle \pi d; \vec{k}' |T| \pi d; \vec{k} \rangle +$$

$$+ \int \frac{d\vec{q}' d\vec{q}}{(2\pi)^6} \phi_d^* (\vec{q}') \langle \vec{k}', \vec{q}' | T^+ G_0 (E - i0) T | \vec{k}, \vec{q} \rangle \phi_d (\vec{q}) .$$
(13)

Правую часть выражения (13) можно представить в виде суммы диаграмм, изображенных на <u>рис.2.</u> Квадратичный по πN -взаимодействию член возникает, во-первых, из-за первого слагаемого, когда мы его берем в приближении двукратного πN -соударения, что отвечает фейнмановской диаграмме, приведенной на <u>рис.3.</u> и, вовторых, из-за интегрального члена, когда для Т -матрацы берется приближение однократного πN -соударения. Матричный элемент (13), квадратичный по πN -взаимодействию, может быть представлен в следующем виде:

$$<\pi d; 0 |T^{(2)}| \pi d; 0> = -\int \frac{d\vec{k}_{1} d\vec{q}_{1}}{(2\pi)^{6}} \{ \phi_{d}^{*}(\vec{q}_{1} + \frac{\vec{k}_{1}}{2}) \times t_{\pi N_{1}} t_{\pi N_{1}} \phi_{d}^{*}(\vec{q}_{1} + \frac{\vec{k}_{1}}{2}) + \phi_{d}^{*}(\vec{q}_{1} - \frac{\vec{k}_{1}}{2}) t_{\pi N_{2}} t_{\pi N_{2}} \phi_{d}^{*}(\vec{q}_{1} - \frac{\vec{k}_{1}}{2}) + (14) + 2[\phi_{d}^{*}(\vec{q}_{1} + \frac{\vec{k}_{1}}{2})t_{\pi N_{1}} t_{\pi N_{2}} \phi_{d}^{*}(\vec{q}_{1} - \frac{\vec{k}_{1}}{2}) + \phi_{d}^{*}(\vec{q}_{1} - \frac{\vec{k}_{1}}{2}) \times t_{\pi N_{2}} t_{\pi N_{1}} \phi_{d}^{*}(\vec{q}_{1} + \frac{\vec{k}_{1}}{2})] + \frac{1}{\frac{\alpha^{2}}{m_{N}} + \frac{\vec{k}_{1}^{2}}{2\mu\pi d} + \frac{q_{1}^{2}}{m_{N}}} .$$
(14)

<u>Рис.2.</u> Диаграммы, иллюстрирующие выражение (13).

<u>Рис.3.</u> Двукратное рассеяние *п* -мезона на нуклонах ядра.

Первые два члена в фигурных скобках, которые мы обозначим через $T_{N_1N_1}^{(2)}$ и $T_{N_2N_2}^{(2)}$, в статическом пределе

равны следующему выражению:

$$T_{N_1N_1}^{(2)} + T_{N_2N_2}^{(2)} = -2(t_0^2 + 2t_1^2) \frac{\mu_{\pi N} \gamma}{4\pi}.$$

Вклад от них в длину рассеяния находится из уравнения $d\tilde{a}_{\pi d}^{(2)} = 1$

$$\frac{-2\pi d}{dg} = \frac{1}{g} \gamma \left[a_0^2(g) + 2a_1^2(g) \right]$$

и равен

$$\tilde{a}_{\pi d}^{(2)} = \frac{4}{3\gamma} \left(d_{1/2} + 2d_{3/2} - \ln |1 + d_{1/2}| - 2\ln |1 + d_{3/2}| \right).(15)$$

Оставшееся в (14) выражение в статическом пределе равно

$$T_{N_1N_2}^{(2)} = -2 \frac{\mu_{\pi N}}{2\pi} < \frac{1}{r} > (t_0^2 - 2t_1^2)$$

где

$$\langle \frac{1}{r} \rangle = \int \frac{d\vec{k} d\vec{q}}{(2\pi)^6} \phi_d (\vec{q} + \frac{\vec{k}}{2}) \frac{1}{k^2} \phi_d (\vec{q} - \frac{\vec{k}}{2}),$$

Вклад от $T_{N_1 N_2}^{(2)}$ в длину рассеяния находится из урав-

$$\frac{da_{\pi d}^{(2)}}{dg} = \frac{1}{g} 4 < \frac{1}{r} > [a_0^2(g) - 2a_1^2(g)]$$

и равен

Таким образом, для *n*d -рассеяния с учетом квадратичного по *n*N -взаимодействию члена получаем

$$a_{\pi d} = a_{\pi d}^{(1)} + a_{\pi d}^{(2)} + \tilde{a}_{\pi a}^{(2)} . \qquad (17)$$

,

В <u>табл.2</u> приведены длины πd – рассеяния для различных наборов параметров, найденные по формуле (17). Для сравнения там же приведены значения трехтельного расчета. Из <u>табл.2</u> видно, что учет квадратичного по πN –взаимодействию члена приводит к полному согласию с таким расчетом. Это видно также из <u>табл.3</u>, где приведена зависимость длин πd –рассеяния от значений а $_{1/2}$ и $a_{3/2}$, найденная по формуле (17) и из уравнений Фаддеева /14/.

Таблица 2

равнение длин <i>т</i> а -рассеяния, расчитанных в данной работе с трехтельным расчетом, выполненным в ^{/14/} ,для различных наборов длин <i>т</i> N -рассеяния.					
Hadop Sapaner	pos	a	8	с,	d.
a 3-Ten sid	(фм)	-0.074	-0.030	-0.061	-0.045
a (1) ad	(@M)	-0.088	-0.040	-0.076	-0.057
and	(QM)	-0.072	-0.029	-0.059	-0.044

Таблица 3

Зависимость длины *n*d -рассеяния от значений а_{1/2}и а_{3/2}. Верхняя строка для данного набора параметров соответствует расчету на основе уравнений Фаддеева ^{/14/}, нижняя – на основе формулы (17).

		ومعالية الكرز بيغير وكي والمحديد والمحدي	يريقاودو.د الاحمادات	نصورهم ويتعتبه يتظهر
a 4 3/2	-0.120	-0.130	-0.140	-0.150
⇔0 •240	-0.0297 -0.0293	-0.0453 -0.044	-0.0608 -0.0593	-0.0762
+0,250	-0.0242 -0.0241	-0.0399 -0.0392	-0.0555 -0.0543	-0.0710
+0.260	-0.0188 -0.0189	-0.0345 -0.0342	-0.0502 -0.0493	-0.0658 -0.0644

Приведем выражение для длин рассеяния *п*-мезонов на ядрах, с учетом квадратичного по *п*N-взаимодействию члена:

$$\mathbf{a}_{\pi \Lambda} = \mathbf{a}_{\pi \Lambda}^{(1)} + \mathbf{a}_{\pi \Lambda}^{(2)} + \mathbf{\tilde{a}}_{\pi \Lambda}^{(2)} , \qquad (18)$$

где $a_{\pi A}^{(1)}$ находится по формуле (10), е $a_{\pi A}^{(2)}$ и $\widetilde{a}_{\pi A}^{(2)}$ имеют вид

$$\begin{split} \widetilde{a}_{\pi A}^{2} &= A \frac{2}{3\gamma} (d_{1/2} + 2d_{3/2} - \ln|1 + d_{1/2}| - 2\ln|1 + d_{3/2}|) - \\ &- (Z - N) \frac{2}{3\gamma} (-d_{1/2} + d_{3/2} + \ln|1 + d_{1/2}| - \ln|1 + d_{3/2}|), \\ a_{\pi A}^{(2)} &= \frac{8}{9\gamma^{2}} < \frac{1}{r} > [(P_{1} + P_{2} + P_{3})(d_{1/2} - \ln|1 + d_{1/2}|) + \\ &+ (4P_{1} - 2P_{2} + P_{3})(d_{3/2} - \ln|1 + d_{3/2}|) + (4P_{1} + P_{2} - 2P_{3}) \times \\ &\times \frac{1}{d_{1/2} - d_{3/2}} [d_{3/2}(1 + d_{1/2}) \ln|1 + d_{1/2}| - \\ &- d_{1/2}(1 + d_{3/2}) \ln|1 + d_{3/2}|]], \\ P_{1} &= A(A + 1), P_{2} = 2(A - 1) (Z - N), P_{3} = (Z - N)^{2} - 2A. \end{split}$$

В <u>табл.4</u> приведены длины рассеяния π^- -мезонов на легких ядрах, найденные по формуле (18). В первой колонке указано ядро, во второй - значение <1/г>, для ядра ²Н приведенное значение отвечает NN взаимодействию, описывающему триплетную ³S₁ фазу при низких энергиях, для ядер ³Не и ³Н оно взято из ^{/15/}, для остальных ядер - из ^{/1//}. В колонке три и четыре приведены вторые поправки $\tilde{a}^{(2)}$ и $a^{(2)}$ соответственно, в колонке пять - длины, рассчитанные по формуле (18).

Интересно сравнить полученные результаты с результатами расчета других работ. Для ядра ³Н в работе ^{/18/} получено значение -0,2101 Фм (набор параметров е), в работе ^{/17/} - 0,195 Фм (е), что хорошо согласуется с данным расчетом. Для ядра ⁴Не в ^{/17/} получено зна-

Тоблица 4

Плина пион-ядерного рассеяния, зычисленная по формуле (18). для различных наборов длин лN-рассеяния.

ядро	< र्म् > (उम्र)		а́ (Д) Эм)	а (2) П ПА (ФМ)	age (44)
2	∂.565	C de	0.054 C.042 0.049	-0.038 -0.031 -0.035	-0.059+0.018 -0.04450.008 -0.05150.024
ž je	0 .500	c d e	0.072 0.057 0.066	-0.033 -0.028 -0.032	-0.202+0.023 -0.171+0.011 -0.188+0.031
عب _و	0 .500	c d c	0.087 0.071 0.081	-0.048 -0.038 -0.044	+0.057+0.032 +0.065+0.013 +0.064+0.039
-' ș	0 .860	c đ e	0.107 0.087 0.098	-0.109 -0.090 -0.102	-0.152+0.032 -0.117#0.011 -0.134#0.944
^ئ ن.	G .598	ide	0.160 0.128 0.147	-0.107 -0.091 -0.102	-0.171+0.048 -0.13170.021 -0.150-0.062
7 <u>-</u>	0.770	c d e	0. 180 0. 129 0.164	-0.108 -0.100 -0.108	-0.320+0.036 -0.270+0.018 -0.300+0.050

чение -0,128 Фм (е) и -0,120 Фм (d), что также нахолатся в хорошем согласии с нашим расчетом. В то же время для ядра ³Не в'¹⁶ и '¹⁷ получены значения, на порядок меньше, чем в данной работе. Такое различие возникает потому, что в данном расчете вследствие точного использования соотношения полноты в выражении (13) для матричного элемента:

 $<\vec{k}', \vec{q}' | T^+ G_0(E) T | \vec{k}, \vec{q}>$

неявно учитывается вклад от всех неупругих каналов, возникающих в промежуточных состояниях. В работе /18/ вклад от этих каналов полностью отсутствует, а в работе /17/ учитывается лишь частично.

4, ЗАКЛЮЧЕНИЕ

Итак, что можно сказать о свойствах ядерной системы. изучая длины п-ядерного рассеяния? Из приведенных выше формул видно, что структура ядра проявляется в двух местах. Во-первых, матричный элемент перехода <пА|Т|лА> уже в линейном по t_{лN} приближении начинает зависеть от ядерных волновых функций, если отказаться от статического µ_л /m_N=0 приближения. Однако вклад от этого члена ~µ_π/m_N лежит внутри неопределенности, с которой можно вычислить вклад от статического слагаемого. (Последняя несяределенность возникает из-за неопределенности в изоскалярной комбинации Таким образом, для того, чтобы почувствовать структуру ядра, используя формулы линейного приближения, необходимо существенно улучшить знание величины а ,, ,т,е. необходимо иметь эту величину с относительной ошибкой, ≈13%. меньшей, чем μ_{π}/m_{N} , т.е.

Во-вторых, структура ядра проявляется при учете квадратичных по $t_{\pi N}$ членов в виде ядерных матричных элементов типа $\langle \frac{e^{-a^*r}}{r} \rangle$ и $\langle \frac{1}{r} \rangle$, где $a^* = a \sqrt{\frac{2\mu_{\pi A}}{m_N}}$,

a - энергия связи ядра. Однако из результатов расчетов, приведенных в табл. (1) и (4), следует, что неопределенность, связанная с наличием разных наборов исходных πN -данных, значительно больше вклада от квадратичных по $t_{\pi N}$ членов[#]. Таким образом, для извлечения сведений о структуре ядер из данных по а πN , которые описываются теорией, учитывающей члены $\sim (t_{\pi N})^2$, необходимо дискриминировать наборы элементарных πN -данных.

Тем не менее, сравнение полученных нами реальных частей дли: рассеяния с экспериментом указывает на предпочтительность набора (с) или близкого к нему набора Соломона^{/10/}. Если остановиться на наборе πN --данных (с) и определить а exp величину ядерного матричного элемента, то для всех рассмотренных ядер, кроме ⁶Li, он оказывается мало отличным от модельной величины, используемой в расчетах. Для ядра ⁶Li

⁴ Оценки показывают, что для рассматриваемых легких ядер вкладами ~ (t_л)³ можно пренебречь.

найденное так значение матричного элемента <1/r>
зывается ~1 , т.е. значительно больше модельного значения. Этот факт можно понять, если иметь в виду, что в ядерном матричном элементе <1/r>
под г понимается расстояние между нуклонами. В модельном (например, по кластерной а + 2N модели) же расчете ⁰Li - эта величина должна быть явно занижена, т.к. речь идет в этом случае о двух внешних слабо связанных нуклонах.

В заключение авторы выражают благодарность проф. Д.А.Киржницу за интерес к работе, а также Н.Ж.Такибаеву и М.Х.Ханхасаеву – за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Moyer L., Koltun D.S., Phys.Rev., 1969, 182, p.999.
- Киржниц Д.А. ЯФ, 1971, 19. с.426; В кн.: Проблемы теоретической физики. Памяти И.Е.Тамма. М., Наука, 1972. Киржниц Д.А., Крючков Г.Ю., Такибаев Н.Ж. ЭЧАЯ, 1979, 10, с.741.
- 3. Беляев В.Б. и др. ОИЯИ, Е4-80-28, Дубна, 1980.
- 4. Yamaguchi Y. Phys.Rev., 1954, 95, p.1628.
- 5. Deser S. et al. Phys.Rev., 1954, 96, p.774.
- 6. Ericson T.E.O. Preprint CERN TH-1093, 1969.
- Samaranayake V.K., Woolcock W.S. Nucl. Phys., 1972, B48, p.205.
- 8. Sznajdez Hald N. Nucl. Phys., 1972, B48, p.549.
- 9. Bugg D.V. et al. Phys.Lett., 1973, 44E, p.278.
- 10. Solomon M.S. TRIUMF, report TRI-74-2.
- 11. Cheon L.T., Von Egidy J. Nucl. Phys., 1974, A234, p. 234.
- 12. Mason C.R. et al. TRIUMF, report TRI-PP-79-17.
- 13. Hufnet J. et al. Nucl.Phys., 1974, A231, p.455.
- 14. Peresypkin V.V., Petrov N.M. Nucl.Phys., 1974, A220, p.277.
- 15. Thomas A.W. Can. J.Phys., 1978, 56, p.687.
- 16. Belyaev V.B. JINR, E4-11509, Dubna, 1978; and Phys.Lett., 1979, B83, p.83.
- 17. Беляев В.Б. и др. ОИЯИ, Р4-12793, Дубна, 1979.
- 18. Tauscher L., Schneider W. Z.Phys., 1974, 271, p.409.

Рукопись поступила в издательский отдел 18 июля 1980 года.