

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P4-80-493

3/4-80

5159 2-80

И.М.Рангелов

О КВАНТОВОМ ДВИЖЕНИИ СВОБОДНОГО ЭЛЕКТРОНА

1. Энергия покоя

- и связь квантовой механики
- со стохастическими процессами

Рангелов И.М.

P4-80-493

- 0 квантовом движении свободного электрона.
- 1. Энергия покоя и связь квантовой механики
- со стохастическими процессами

Шредингеровское дрожание дираковского электрона интерпретируется как колебание трехмерного изотропного осциллятора в основном состоянии с энергией $\frac{3}{5}$ ћ $\omega = mc^2$ и волновой функцией $\psi_0(b)$. Поэтому исследована возможность описания поведения медленного свободного электрона с помощью двух координат: а/ координаты г, описывающей регулярное прямолинейное движение; б/ координаты b. описывающей нерегулярное осциллирующее движение. Предложено новое, релятивистски инвариантное выражение P(b, r), имеющее правильную нерелятивистскую асимптотику и описывающее вероятность нахождения электрона, участвующего в стохастическом движении через время г на расстоянии b. Доказано, что пространственное распределение вероятности нахождения осциллирующего электрона $|\psi_{0}(b)|^{2}$ при учете равенства $\hbar\omega r = \frac{1}{6}$, которое связывает $\Delta E = \hbar \omega$ и $\Delta t = r$ в основном состоянии осциллятора, переходит в пространственное распределение вероятности перескоков стохастически движущегося электрона в нерелятивистском приближении.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Communication of the Joint Institute for Nuclear Research. Dubna 1980

Rangelov I.M. P4-80-493 About Quantum Motion of a Free Electron. 1. Rest Energy and Connection of Quantum Mechanics with Schroedinger Processes

The Schroedinger zitterbewegung of a Dirac electron is interpreted as a vibration of a three-dimensional oscillator in a basic state with energy $\frac{3}{2} f\omega = mc^2$ and a wave function $\psi_0(b)$. Therefore

Исследована возможность существования дрожания электрона, которое накладывается на его регулярное поступательное движение. Дрожание медленного электрона рассматривается как колебание трехмерного изотропного осциллятора в основном состоянии с энергией $\frac{3}{2}\hbar\omega = \text{mc}^2$. Пространственное распределение колеблющегося электрона совпадает с пространственным распределением стохастически дрожащего электрона, что обеспечивает возможность стохастически описывать его квантовое поведение.

Известно ^{/1,2/}, что идея о релятивистской инвариантности основных законов физики и о равноправии координаты со временем предопределила форму записи уравнения Дирака ^{/3/} и выбор его параметров. Поэтому иногда говорят ^{/4/}, что существование спина вытекает из теории относительности. Цель настоящей работы - показать, какому движению соответствует энергия покоя mc², а также причину отсутствия классической траектории у электрона и существование связи между квантовой механикой и стохастическими процессами. Исходя из общих физических предположений, мы получаем знакомые соотношения и смыкание релятивистской квантовой теории поля /РКТП/ в двух предельных случаях: с классической релятивистской механикой /КРМ/ при ^{*}→0 и с нерелятивистской квантовой механикой /НКМ/ при с→∞.

Из КРМ следует, что связь между местоположением события (x, y, z) и моментом времени (t), в котором оно произошло, измеряемых в двух системах отсчета, осуществляется преобразованием Лоренца ^{/5-7/}:

$$x' = x; y' = y; z' = \frac{z + vt}{\sqrt{1 - u^2}}; t' = \frac{t + (uz/c)}{\sqrt{1 - u^2}}$$
 /1/

Здесь (x, y, z, t) - координаты и время события, измеренные неподвижным наблюдателем, а (x', y', z', t') - координаты и время этого же события, измеренные другим наблюдателем, движущимся с постоянной скоростью v = uc. Преобразование /1/ показывает, что пространственно-временной интервал

 $c^{2}t^{2} - x^{2} - y^{2} - z^{2} = (ct')^{2} - (x')^{2} - (y')^{2} - (z')^{2} = s^{2}$ /2/

сохраняется и не зависит от выбора координатной системы. Та

объедансканай пиститут вперина вселенований БНЕЛИОТЕНА ким же преобразованием связаны энергия E и импульс p частищы $^{/5-7/}$.

$$p'_{x} = p_{x}; p'_{y} = p_{y}; p'_{z} = \frac{p_{z} + (uE/c)}{\sqrt{1 - u^{2}}}; E' = \frac{E + vp_{z}}{\sqrt{1 - u^{2}}}.$$
 /3/

Легко проверить, что разность квадратов энергии и импульса

$$\mathbf{E}^{2} - \mathbf{c}^{2} (\mathbf{p}_{x}^{2} + \mathbf{p}_{y}^{2} + \mathbf{p}_{z}^{2}) = (\mathbf{E}^{\prime})^{2} - \mathbf{c}^{2} [(\mathbf{p}_{x}^{\prime})^{2} + (\mathbf{p}_{y}^{\prime})^{2} + (\mathbf{p}_{z}^{\prime})^{2}] = \mathbf{m}^{2} \mathbf{c}^{4}$$
 (4)

тоже сохраняется и не зависит от выбора, координатной системы измерения. Релятивистская инвариантность /4/ величины энергии покоя mc² частицы показывает, что она не зависит от системы отсчета, и поэтому ее нельзя свести к энергии равномерно поступательного движения.

Действительно, если в координатной системе К частица не имеет равномерного и поступательного движения, т.е. если в К $p_x = 0$, $p_y = 0$ и $p_z = 0$, а энергия покоя $E = me^2$, то с помощью преобразования /3/ можно получить, что в системе К'/которая движется со скоростью v = uc относительно системы К / частица должна иметь

импульс
$$p' = \frac{mv}{\sqrt{1-u^2}}$$
 и энергию $E' = \frac{mc^2}{\sqrt{1-u^2}}$. /5а,б/

Если исключить из /5/ скорость v, то получим знакомое релятивистское соотношение

$$E' = c \sqrt{(p')^2 + m^2 c^2}$$
. /6/

Именно поэтому важно знать, откуда берется энергия покоя mc^2 и следствием какого движения является квантовое поведение электрона. Известно утверждение $^{/1,2/}$, что независимость матрицы a_x , a_y , a_z и β от р и г показывает, что они должны обозначать совершенно новые динамические переменные, которые описывают внутреннее движение электрона Дирака, следствием которого является его спин и его собственный магнитный момент.

Еще в 1931 г. в совместной работе $^{/8/}$ Ландау и Пайерлс назвали ошибочным часто встречающееся в то время утверждение, что комптоновская длина $\frac{\hbar}{mc}$ является универсальной границей точности для измерения координаты с помощью медленно движущейся частицы. Однако нам кажется, что их вывод ничем не подтвержден.

Действительно, можно вычислить оператор скорости /9-15/

$$\frac{d\mathbf{r}}{d\mathbf{t}} = \frac{\mathbf{i}}{\mathbf{h}} [\mathbf{H}, \mathbf{r}] = \mathbf{c} \alpha \qquad /7/$$

с помощью гамильтониана Дирака

$$H_{D} = c(\alpha \cdot p) + \beta mc^{2} . \qquad \qquad 18/$$

Получается парадоксальный результат, замеченный впервые брейтом ⁹⁹, а потом Фоком ¹⁰. Действительно, из принципа соответствия следует, что в теории Дирака оператор са необходимо считать операторным представлением вектора моментной скорости электрона в том смысле, в котором матрицы Паули $\hbar\sigma/2$ представляют компоненты его спина. Поэтому, поскольку собственные значения оператора а равны +1, то из /7/ следует, что собственные значения абсолютной величины скорости электрона /частицы со спином 1/2/ всегда равны скорости света с. Исследуя физический смысл уравнения Дирака, Шредингер ^{11/} решил эту проблему. Так как сами матрицы а зависят от времени, то он сначала решил уравнение для $\eta_k = \alpha_k - c H^{-1}p_L$

$$i\hbar \frac{d\eta_k}{dt} = 2\eta_k H = -2H\eta_k$$
 /9/

и записал его решение:

$$\eta_{k} = \eta_{k}^{\circ} e^{2i\frac{Ht}{\hbar}} = e^{-2i\frac{Ht}{\hbar}} \eta_{k}^{\circ} \cdot /10/$$

Потом Шредингер снова возвратился к уравнению /7/ й нашел его решение

$$r_k = a_k + c^2 H^{-1} p_k t + \frac{ich}{2H} (a_k - cH^{-1}p_k)_0 e^{2i\frac{Ht}{\hbar}}$$
. /11/

Константа a_k есть постоянная интегрирования /оператор/, но она не является точным значением r_k при t = 0. Символ $\eta_k^o = (a_k - cH^{-1}p_k)_0$ обозначает начальное значение оператора $\eta_k = (a_k - cH^{-1}p_k)$. Второй член в /11/ растет линейно от времени со скоростью

$$v_{k} = c^{2} \frac{\sqrt{1-u^{2}}}{mc^{2}} \cdot \frac{mv_{k}}{\sqrt{1-u^{2}}},$$
 (12/

соответствующей импульсу p_k . Поэтому постоянная с a_k никак не связана с этой скоростью. Последний член в /11/ имеет явно периодический характер /точнее, весьма сложный, почти периодический характер /точнее, весьма сложный, почти периодический характер /11//, и поэтому дает быстро осциялирующий вклад. Величина с η является скоростью этого высокочастотного, быстро дрожащего движения (Zitterbewegung) с малой амплитудой $-\frac{\hbar}{mc}$, которое накладывается на прямолинейное равномерное дви-

жение со скоростью v_k . Поэтому в РКТП собственные функции оператора координаты частицы г уже не являются δ -функциями, как это было для оператора г в НКМ, а размазаны по области, порядка комптоновской длины частицы $\frac{\hbar}{mc}$ /18-15/.Вот почему в РКТП взаимодействие поля с нерелятивистской частицей массы m не является локальным, а зависит от значения поля в области с размером $\frac{\hbar}{mc}$ и с центром в точке, где "находится" частица. Для сохранения приближенного представления о движении одной частицы в РКТП в качестве оператора координаты частицы следует брать оператор \tilde{r} ее среднего положения <r>, усредненного по объему, линейный размер которого порядка комптоновской дли-

Дальше Шредингер исследовал зависимость векторного произведения [*а*×*а*] от времени

$$\frac{\mathrm{d}}{\mathrm{dt}}\left[a \times a\right] = \left[\frac{\mathrm{d}a}{\mathrm{dt}} \times a\right] + \left[a + \frac{\mathrm{d}a}{\mathrm{dt}}\right].$$
 /13/

Так как

$$-i\hbar\frac{d\alpha}{dt} = 2(cp - aH) = 2(Ha - cp), \qquad /14/$$

то вместо /13/ можно записать

$$i\tilde{n}\frac{d}{dt}[a \times a] = 4c[a \times p].$$
 /15/

С помощью /7/ из /15/ можно получить уравнение

$$i\hbar \frac{d}{dt} \{i\hbar[\alpha \times \alpha] - 4[r \times p]\} = 0,$$
 /16/

которое имеет решение

$$[\mathbf{r} \times \mathbf{p}] - \frac{i\hbar}{4} [\mathbf{a} \times \mathbf{a}] = \text{const} . \qquad /17a/$$

Если воспользоваться равенством

$$[a \times a] = 2i\sigma, \qquad /18/$$

то из /17а/ получаем

$$[\mathbf{r} \times \mathbf{p}] + \frac{\hbar\sigma}{2} = \text{const.}$$
 /176/

Таким образом, Шредингер получил закон сохранения полного момента количества движения $l\hbar + s\hbar = j\hbar$. Дальше он решил уравнение для спина

$$\hbar \frac{d\sigma}{dt} = -2c[a \times p]$$
 (19/

и записал его решение

$$\sigma = \sigma_0 - \hbar [\alpha \times p]_0 H^{-1} e^{\frac{2i}{\hbar}} .$$
 /20/

Затем Шредингер пытался представить спин электрона как следствие его дрожащего движения.

Итак, еще Шредингер показал, что электрон дрожит с большой частотой $\omega \sim \frac{mc^2}{\hbar}$, и поэтому координаты его регулярного движения неопределенны. Почему же тогда не принять, что соотношение неопределенности ^{/16/} в действительности не ограничивают возможности одновременного измерения взаимно дополняющих величин ^{/14/}, а утверждают: если частица находится в течение времени Δt в состоянии с неопределенностью координат Δr , то в этом состоянии неопределенности ее энергии ΔE и импульса Δp должны удовлетворять неравенствам ^{/15/}:

$$\Delta E)^{2} (\Delta t)^{2} \geq \frac{\hbar^{2}}{4}, \qquad /21a/$$

$$(\Delta p_k)^2 (\Delta_k)^2 \ge \frac{\hbar^2}{4}$$
. /216/

Другими словами, любой волновой пакет /ВП/ обладает ограниченной временной Δt и пространственной Δr протяженностями, удовлетворяющими неравенствам /21/ ^{/2,13/}.

Итак, все признают, что дрожание электрона существует, но для его объяснения приводят разные причины. Например, в /17/ Паули утверждает, что осциллирующее движение электрона является математическим следствием интерференции частей ВП. при-⁶⁵ надлежащих к положительным и отрицательным энергиям /зарядам/. Действительно, если ВП содержит собственные волновые функции /ВФ/ только одного знака энергии /заряда/, то дрожание "исчезает" /18,19/. Поэтому и делались попытки избавиться от этого нежелательного движения, т.е. найти такое представление уравнения Дирака, в котором дрожание электрона не имело бы места /например, Шредингер сохранял только четную часть операторов и отказывался от переходов между + состояниями /20/. представление Фольди и Воитхойзен /21//. Нам кажется, что так как самое плодотворное уравнение микромира - уравнение Дирака содержит в себе большой физический смысл, то необходимо до конца исследовать это уравнение, а не выбрасывать то, что нам пока кажется непонятным, необъяснимым или еще не известным. Именно поэтому необходимо объединить все имеющиеся теоретические и экспериментальные данные, которые подтверждают, что движение дираковского электрона необходимо описывать с помощью двух координат: г и b, т.е. что

R = r + b. (22/

Причем г должна описывать регулярную часть движения электрона со скоростью $v_k/12/$, а b - его нерегулярное, дрожащее движение со скоростью u_k . Ниже увидим, что это соответствует разделению полной ВФ электрона $\psi(\mathbf{R},t)$ на орбитальную $\psi(\mathbf{r},t)$ и спиновую $\psi_0(\mathbf{b})$.

Давно Велтон^{22/}предположил, что нулевой фон /или вакуум/ электромагнитного поля непрерывно взаимодействует с каждым электроном, в результате чего электрон испытывает флюктуационное изменение своего положения. Однако нам кажется, что эти колебания малы для создания всего спина и собственного магнитного момента электрона, хотя они могут создать его аномальную часть. Поэтому мы предполагаем, что настоящая причина дрожания электрона кроется в его стремлении избежать сильного самодействия, т.е. избежать сильного действия своего электрического поля на собственный заряд.

Итак, если дираковский электрон свободен, то он должен дрожать, а центр массы, около которого он дрожит, должен двигаться прямолинейно и равномерно со скоростью $v = [v^+ + v^-]/2$, где $v^+(v^-)$ – его скорость дрейфа вперед /назад/. Чтобы исследовать только его стохастическое движение, мы должны описать дрожание в системе координат, которая движется вместе с его центром массы. В этой координатной системе пространство для описываемого медленного электрона изотропно, и поэтому его дрожание сферически симметрично, т.е. его стохастическое движение равновероятно в любом направлении. Поэтому вероятность нахождения электрона через время r на расстоянии b от прежнего положения /где электрон находился в моменте r = 0/, должна описываться выражением:

$$P(b, r) = A \exp(\frac{mc}{\pi} \sqrt{c^2 r^2 - b^2})$$
 (23/

Это единственно возможная релятивистски инвариантная комбинация, которая правильно описывает вероятностные процессы /линейную экспоненциальную зависимость от времени/, которую можно образовать из характеристик пространства и электрона. Очень важно, что это точное релятивистски инвариантное выражение /23/ имеет правильную нерелятивистскую асимптотику

$$\widetilde{P}(b, r) = \widetilde{A} \exp\left[\frac{mc^2 r}{\hbar} - \frac{mb^2}{2\hbar r}\right].$$
 /24/

Условие нормировки вероятности P(b, r)^{23,24/}

$$\int P(b, r) d^3b = 1$$
/25/

показывает, что в любой момент времени электрон находится где-то в пространстве, и поэтому вероятность найти его во всем пространстве равна 1. Если применить условие нормировки /25/ к асимптотическому выражению /24/, то для нормировочной коңстанты \widetilde{A} получим выражение:

$$\tilde{A} = \left(\frac{m}{2\pi\hbar r}\right)^{3/2} \exp\left(-\frac{mc^2 r}{\hbar}\right).$$
 /26/

После подстановки /26/ в /14/ получаем знакомое выражение из теории броуновского движения ^{/24,25/}:

$$\tilde{P}(b, r) = \left(\frac{m}{2\pi\hbar r}\right)^{3/2} \exp\left(-\frac{mb^2}{2\hbar r}\right).$$
 /27/

Из /27/ видно, что коэффициент "диффузии" имеет значение $D={\rm t}/2m$.

Необходимо отметить, что релятивистская неинвариантность условия нормировки /25/ не должна нас пугать. При переходе от неподвижной в движущуюся координатную систему К' элементарный объем d^3b переходит в d^3b' , причем

$$d^{3}b' = \sqrt{1 - u^{2}} d^{3}b$$
. /28/

Но так как число электронов не изменяется при переходе из одной координатной системы в другую, то множитель $(1-u^2)^{1/2}$ только перенормирует константу A и нарушит сферическую симметрию в /25/. Поэтому выбор системы отсчета существенно не влияет на конечный ответ.

Известно /23,24,28/, что дрожащее движение свободного электрона можно рассматривать как свободное блуждание /стохастическое движение/, при котором не только движения разных электронов независимы друг от друга, но и движения одного и того же электрона в разные промежутки времени тоже независимы друг от друга, пока эти промежутки остаются не слишком малыми. Известно также /23,24,26-28/, что при включении внешнего поля регулярная часть движения центра массы электрона с токовой скоростью $v = \frac{v^+ + v^-}{2}$, которая соответствует четной части оператора моментной скорости /12/ ([$\frac{dr}{dt}$] = $\frac{c^2p}{E_p}$), должна описываться ВФ $\psi(\mathbf{r}, \mathbf{t})$, удовлетворяющей уравнению Шредингера /или Дирака/. Действительно, если принять обозначения

$$m(v^{+}+v^{-}) = 2\hbar \nabla S_{1}$$
 /29a/

$$m(v^+ - v^-) = 2\hbar \nabla S_2,$$
 /296/

то можно проверить, что ВФ

$$\psi(\mathbf{r}, \mathbf{t}) = \exp(S_2 + iS_1) = B \exp(i\frac{S}{\hbar})$$
 /30/

должна удовлетворять уравнению Шредингера /23,24,28/

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2\nabla^2}{2m}\psi + \nabla\psi. \qquad (31)$$

Вторая запись ВФ $\psi(\mathbf{r}, \mathbf{t}) / 30 /$ известна $^{/15,13a/}$ из перехода с квантового описания электрона в классическое описание его поведения. Возможность пренебрежения членом (ДВ/В) в уравнении /13а/

$$\frac{\partial S}{\partial t} + \frac{(\nabla S)^2}{2m} + V = \frac{\hbar \Delta B}{2mB}$$
 (32)

обеспечивает применимость классического описания движения электрона, т.е. пренебрежение зависимостью амплитуды вероятности В от координаты. Нерелятивистское приближение соответствует исключению диффузионного члена в уравнениях непрерывности

$$\frac{\partial}{\partial t} |\psi(\mathbf{r},t)|^{2} = -\operatorname{div}(\mathbf{v}^{+}|\psi(\mathbf{r},t)|^{2}) + \frac{\hbar\Delta}{2m} |\psi(\mathbf{r},t)|^{2}, \qquad /33a/$$

$$\frac{\partial}{\partial t} |\psi(\mathbf{r},t)|^2 = -\operatorname{div}(\mathbf{v}^- |\psi(\mathbf{r},t)|^2) - \frac{\hbar\Delta}{2m} |\psi(\mathbf{r},t)|^2.$$
 (336/

Из /29/ следует, что в нерелятивистском приближении равенство

$$v^{+} = v^{-} + \frac{2\hbar}{m} \nabla S_{2}$$
 /34a/

заменяется равенством

 $v^+ = v^-$.

/346/ В нерелятивистском приближении пренебрегают осмотической скоростью $u = \frac{(v^+ - v^-)}{2}$ и тем самым пренебрегают шредингеровским дрожанием дираковского электрона. Именно поэтому в нерелятивистском приближении распределение электрона описывают точечной δ -функцией Дирака.

В заключение отметим, что распределение вероятности случайного блуждания /дрожания/ $\tilde{P}(b, r)$ в нерелятивистском приближении описывается именно формулой/27/.Из выражения /23/ видно.

как часто должны повторяться перескоки дрожащего электрона ____) и как малы должны быть амплитуды его дрожания $((\Delta b)^2 < \frac{\hbar r}{m} - \frac{\hbar^2}{m^2 c^2})$

Здесь предлагается другой способ описания дрожания дираковского электрона. Можно предположить, что электрон колеблется около своего центра массы с частотой о причем энергия этого колебания совпадает с энергией покоя электрона mc². В этом случае основное состояние изотропного трехмерного осциллятора имеет собственную ВФ /13a, 15, 29/

$$\psi_0$$
 (b) = $(\sqrt{\pi\lambda})^{-3/2} \exp(-\frac{b^2}{2\lambda^2})$ /35/

и собственное значение

$$E = \frac{3}{2} \hbar \omega = mc^2.$$
 /36/

Параметр
$$\lambda^2 = \frac{\hbar}{m\omega}$$
 имеет значение

$$\lambda^{2} = \frac{\hbar^{2}}{m\hbar\omega} = \frac{3}{2} \frac{\hbar^{2}}{m^{2}c^{2}} .$$
 /37/

Из /35/ следует, что пространственное распределение вероятности нахождения электрона вблизи центра его массы описывается формулой

$$\vec{P}(b) = |\psi_0(b)|^2 = \left(\sqrt{\frac{2}{3\pi}} \frac{mc}{\hbar}\right)^3 \exp\left(-\frac{2b^2 m^2 c^2}{3\hbar^2}\right).$$
 /38/

Известно, что для осциллятора в основном состоянии имеет место равенство

$$r = \frac{\hbar}{2\hbar\omega} = \frac{3\hbar}{4mc^2}.$$
 (39)

После подстановки в /38/ вместо mc ² величины 3⁴/4*t* получаем пространственное распределение вероятности /27/. Следовательно, дрожание электрона можно интерпретировать как его колебание с частотой ω в основном состоянии. Так как пространственное распределение колеблющегося электрона описывается собственной ВФ /36/ основного состояния трехмерного изотропного осциллятора, то распределение вероятности колебаний $|\psi_{0}(b)|^{2}$ совпадает с распределением вероятности перескоков для стохастического движения /блуждания/. Но для этого случая доказано, что поведение регулярной части координаты частицы г описывается ВФ ψ (r, t) (30), удовлетворяющей уравнению Шредингера /31/

9

/или Дирака/. Поэтому и в случае, когда дрожание электрона рассматривается как его осцилляции и описывается ВФ $\psi_0(b)$ (35), поведение регулярной части его координаты должно описываться ВФ $\psi(\mathbf{r}, \mathbf{t})$, удовлетворяющей уравнению Шредингера /или Дирака/. Здесь необходимо отметить, что приравниваются только вероятности пространственных распределений, основного состояния осциллятора и стохастического движения, но не приравниваются оба процесса. Это позволяет понять, почему, выходя из предположения стохастичности пространства, можно доказать, что поведение регулярной части координаты электрона в квантовой механике необходимо описывать стохастическими, вероятностными законами, а не классическими, строго детерминированными законами движения.

Известно, что в случае колебательного движения осциллирующей частицы в гармоническом потенциале, ВП $|\psi_0(b)|^2$ основного состояния абсолютно устойчив, не меняет свою форму и его центр массы движется по классической траектории /13a,14,29,30/. Известно также, что если ВФ /38/ попадает в какое-либо электрическое или магнитное поле, потенциал которого не меняется заметным образом на расстоянии, соизмеримом с размерами самого ВП, то он тоже должен двигаться по классической траектории /4,13a/. Важно, что для сохранения формы и размера ВП /38/ не предполагалось никакого взаимодействия. Поэтому, когда ВП описывает колебание электрона с большой энергией "покоя" mc², то вполне естественно, что движение этого электрона в любых полях, в которых его потенциальная энергия намного меньше энергии его колебаний mc², не должно приводить к расплыванию этого ВП.

Вышеизложенное показало, что учет симметричности между координатами и импульсами, между энергией и временем, как и минимизация неравенства неопределенности в /21/, в НКМ приводят к рассмотрению энергии покоя электрона как энергии его дрожания. Дрожание дираковского электрона только описывается, и то грубо, с помощью ВФ /35/ изотропного трехмерного осциллятора в основном состоянии. Основание для этого дает нам совпадение пространственных распределений $|\psi_0(b)|^2$ /38/ и $\vec{P}(b, \tau)/27/$, причем $\vec{P}(b, \tau)$ есть только нерелятивистское приближение точного выражения $P(b, \tau)^{/23/}$.

Известно ^{/2/}, что динамическая система, состоящая из ансамбля одинаковых бозонов, эквивалентна динамической системе, состоящей из ансамбля осцилляторов. Поэтому операторы рождения b⁺ и уничтожения b бозона связаны с координатой **q** и импульсом р связью ^{/186}, 18, 31/

$$b^{+} = (m\omega q - ip)/\sqrt{2m\hbar\omega}; \quad b = (m\omega q + ip)/\sqrt{2m\hbar\omega}, \quad /40/$$

которая точно следует из теории осциллятора ^{/2,13}, ¹⁵. Но для операторов рождения а.⁺ и уничтожения а электрона /фермиона/ существует следующее представление ^{/2,31/}

$$a^{+} = \frac{1}{2}(\sigma_{x} + i\sigma_{y}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad a = \frac{1}{2}(\sigma_{x} - i\sigma_{y}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$
 (41/

Причем ВФ вакуума есть $|0\rangle = {0 \choose 1}$, а ВФ основного состояния $|1\rangle = {1 \choose 0}$. Поэтому дрожание электрона правильно описывается в теории Дирака как переход между четырьмя вырожденными состояниями $/\xi_1, \xi_2, \eta_1, \eta_2/.$ Однако нельзя говорит об интерференции ВП <u>+</u> энергий /зарядов/, а необходимо утверждать, что дрожание электрона описывается с помощью четырех ВФ, представляющих движение вперед ($\xi_{-e} = ikr - i\omega t$) и назад ($\eta \sim e^{-ikr - i\omega t}$) и круговое движение направо ($(\xi_1, \eta_1) \sim e^{-i\phi/2}$) /или налево/ ($(\xi_2, \eta_2) \sim e^{i\phi/2}$). Поэтому в стандартном представлении ($2\phi = \xi + \eta$ и $2\chi = \xi - \eta$) /при малых скоростях $p^2 < m^2 c^2$ имеем $|\chi| <<|\phi|$, т.е. оба вида движения вперед и назад равноправны, как и должно быть в изотропном пространстве / 82/.

Хотя наша интерпретация груба, но она позволяет правильно понять связь НКМ со стохастическими процессами, причину отсутствия классической траектории у электрона и происхождение его энергии покоя mc^2 . Так как дрожание электрона описывается матрицами перехода ca_1 между четырьмя вырожденными состояниями, то разделение переменных R = r + b / 22/ не может приводить к представлению полной ВФ электрона $\psi(R,t)$ в виде скалярного произведения орбитальной ВФ $\psi(r,t)$ на спиновую $\psi_0(b)$. Поэтому полная ВФ дираковского электрона есть совокупность четырех вырожденных орбиталей. Однако при пренебрежении дрожанием необходимо перейти к однокомпонентной орбитальной ВФ. ВФ/35/ и пространственное распределение /38/ показывают, что в случае, когда параметр $\lambda \to 0$, дрожание исчезает, и электрон локализуется. Действительно, одно из определений δ -функции имеет вид /29, 38, 34/

$$\vec{\delta}(b) = \lim_{\lambda \to 0} (\sqrt{\pi}\lambda)^{-3} \exp(-\frac{b^2}{\lambda^2}).$$
 (42/

Из /37/ следует, что граничный переход /42/ возможен только в двух случаях: а/ когда $\hbar \rightarrow 0$, т.е. при переходе с РКТП в КРМ; б/ когда с $\rightarrow \infty$, т.е. при переходе с РКТП в НКМ. Интересно, что

$$\tilde{\delta}(b) = \tilde{\delta}(b_x) \tilde{\delta}(b_y) \tilde{\delta}(b_z)$$
. (43/

Граничный переход /42/ показывает, что смыкание РКТП с НКМ и КРМ происходит при замене реальной размазанной $\overline{\delta}$ -функции P(b) ВП /38/ идеальной дираковской δ -функцией. Поэтому в НКМ и КРМ дрожанием электрона пренебрегается, пренебрегается и его собственным магнитным и механическим моментами, электрон локализован и имеет кулоновский электростатический потенциал.

После проведенного исследования нам кажется, что нет надобности вводить элементарное движение электрона в дискретном пространстве и времени $^{/35/}$ и не требуется также предполагать, что продвижение электрона из одной точки в другую происходит путем перескоков $^{/36/}$, т.е. посредством его уничтожения в одной точке и возрождения во второй /реновация/. Возможность возник-новения новых частиц /электрон-позитронных пар/ также является следствием дрожащего движения электрона /антикоммутационных соотношений $2\delta_{ij} = a_i a_j + a_j a_i$ / и расплывания ВП возбужденных состояний, а не причиной, лишающей смысла измерения его координаты в сильных полях $^{/32/}$.

ЛИТЕРАТУРА

- 1. Дирак П.А.М. Основы квантовой механики, ГТТИ, М.-Л., 1932.
- 2. Дирак П.А.М. Принципы квантовой механики. "Наука", М., 1979.
- 3. Dirac P.A.M. Proc.Roy.Soc., 1928, A117, p.610.
- 5. Мотт Н., Месси Г. Теория атомных столкновений. "Мир", М., 1969.
- 5. Фейнман Р., Лентон Р., Сендс М. Фейнмановские лекции по физике. "Мир", М., т.1 и 2, 1976.
- 6. Ландау Л.Д., Лифшиц Е.М. Теория поля. "Наука", М., 1973.
- 7. Левич В.Г. Курс теоретической физики. "Наука", М., 1969, т.1.
- 8. Landau L.D., Paierls · Zsch.Phys., 1931, 69, p.56.
- 9. Breit G. Proc.Nat.Acad.Sc. USA, 1928 14, p.553; 1931, 17, p.70.
- 10. Fock V.A. Zsch.Phys., 1929, 55, p.127.
- 11. Schrödinger E. Sitzunsber.Preus.Akad.Wiss., 1930, K1, 24, p.418.
- 12. Фок В.А. Начала квантовой механики. "Наука", М., 1976.
- 13. Мессиа А. Квантовая механика. "Наука", М., 1978, т.1, 1979, т.2.
- 14. Шифф Л. Квантовая механика. ИЛ, М., 1959.
- 15. Давыдов А.С. Квантовая механика. "Наука", М., 1973.
- 16. Heisenberg W. Zsch.Phys., 1927, 43, p.172.
- Паули В. Общие принципы волновой механики. ГТТИ, М.-Л., 1947..

- 18. Швебер С. Введение в релятивистскую квантовую теорию поля. ИЛ, М., 1963, с.7.
- 19. Бьеркен Дж.Д., Дрелл С.Д. Релятивистская квантовая теория поля. "Наука", М., 1978.
- 20. Schrödinger E. Sitzungsber.Preus.Akad.Wiss., 1931, S66, p.238.
- 21. Foldy L.L., Wouthuysen S.A. Phys.Rev., 1950, 78, p.29.
- 22. Weiton T.A. Phys.Rev., 1948, 74, p.1157.
- 23. Kershaw D. Phys.Rev., 1964, B136, p.1850.
- 24. Nelson E. Phys.Rev., 1966, 150, p.1079; Dynamical Theory of Brownian Motion", Princeton, N.Y., 1967.
- 25. Фейнман Р., Лентон Р., Сендс М. Фейнмановские лекции по физике. "Мир", М., 1976, т.3 и 4.
- 26. De la Pena Auerbax L. J.Math.Phys., 1969, 10, p.1620; 1971, 12, p.453; 1977, 18, p.1612.
- 27. Lehr W.J., Park J.L. J.Math.Phys., 1977, 18, p.1235.
- 28. Lee V.J. Found.Phys., 1980, 10, p.77.
- 29. Бом Д. Квантовая теория. Физ.Мат., М., 1961.
- 30. Schrödinger E. Naturwiss., 1926, 14A, p.664.
- 31. Соколов А.А., Тернов И.М., Жуковский В.Ч. Квантовая механика. "Наука", М., 1979.
- 32. Берестецкий В.Б., Лифшиц Е.М., Питаевский Л.П. Релятивистская квантовая теория. "Наука", М., 1968.
- 33. Цюлике Л. Квантовая химия. "Мир", М., 1978.
- 34. Арфкен Г. Математические методы в физике. Атомиздат, М., 1970.
- 35. Вялцев А.Н. Дискретное пространство-время. "Наука", М., 1965.
- 36. Френкель Я.И. ДАН СССР, 1949, 64, с.507.

Рукопись поступила в издательский отдел 10 июля 1980 года.

12

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Инде	кс Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
• 3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

-

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

.

Д1 ,2-84 05	Труды IV Международного сныпозну- ма по фязике высоких энергий цэле- ментарных частиц. Варна, 1974.	2 p. 05 k.
P1,2-8529	Труды Международной школы-семи- нара молодых ученых. Актуальные проблемы физики элементарных час- тиц. Сочи, 1974.	2 р. 60 к.
Д6-88 4 6	XIV совещание по ядерной спектро- скопны и теории ядра. Дубна, 1975.	l р. 90 к.
Д13-9164	Международное совещание по мето- дике проволочимх камер.Дубна,1975	4 р. 20 к.
Д1,2-922 4	IV Международный семинар по про- блемам физики высоких энергий. Дуб- на, 1975.	3 р. 60 к.
Д-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3 р. 50 к.
Д9-10500	Труды II Симпозиума по колектив- имм методам ускорения.Дубна, 1976.	2 р. 50 к.
Д2-10 533	Труды Х. Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.
Д13-11182	Труды IX Международного симпо- зиума по ядерной электронике. Вар- на, 1977.	5 p. OO k.
Д17-11490	Труды Международного симпозиума но избранным проблемам статисти- ческой механики. Дубна, 1977.	бр. ОО ж.
Д6-11574	Сборных аннотаций XV совещания по ядерной спектросколки и теории яд- ра. Дубна, 1978.	2 р. 50 к.
ДЗ-11787	Труды III Международной школы по нейтронной физяке. Алушта, 1978-	3 р. ОО к.
Д13-11807	Труды III Международного сове- цания по пропорциональным и дрей- фовым камерам. Дубиа, 1978.	ό p. ΟΟ κ.
	Труды УІ Всесоюзного совеща-	
	ния по ускорителям заряженных частиц. Дубна 1978. /2 тома/	7 p. 40 g.
Д1,2-12036	Труды V Международного семн- нара по проблемам физики высо- ких энергий. Дубна 1978.	5 p. OO x.
P18-12147	Труды III совещания по исполь- зованию ядерно-физических ме- тодов для решения научно-тех-	
	HUX JALAY.	2 n. 20 K.

Д1 ,2- 12 45 О	Труды XII Международной шко- лы молодых ученых по физике высоких энергий. Приморско,	
	nrb, 1976.	3 р. ОО к.
P2-12462	Труды V Международного сове- щания по нелокальным теориям поля. Алушта, 1979.	2 р. 25 к.
Д-12831	Труды Международного симпознума по фундаментальным проблемам тео- ретической в математической физи- ки. Дубна, 1979.	έ τ. ΟΟ κ .
Д-12965	Труды Международной школы моло- дых ученых по проблемам ускора- телей заряженных частиц. Минск, 1979.	3 p. OO x.
Д11-80-13	Труды рабочего совещания по сис- темам и методам аналитических вы- часлений на ЭВМ и их применению в теоретической физике. Дубиа, 1979.	3 р. 50 к.
贝 4-80-271	Труды Международной конференции по проблемам нескольких телвядер- ной физике. Дубна, 1979.	3 a. 00 a.
Д 4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 р. ОО к.

Заказы на упомянутые книги могут быть направлены по адресу:

101000 Москва, Главпочтамт, п/я 79,

издательский отдел Объединенного института ядерных исследований