собщения объединенного института ядерных исследования дубна

5856/2 -80

8/12-80

P4-80-461

З.Вайшвила, И.Н.Михайлов

СПЕКТР НОРМАЛЬНЫХ КВАДРУПОЛЬНЫХ ВОЗБУЖДЕНИЙ И ФИГУРЫ РАВНОВЕСИЯ ВРАЩАЮЩЕЙСЯ ЖИДКОЙ КАПЛИ

Вайшвила З., Михайлов И.Н.

P4-80-461

P4-80-461

Спектр нормальных квадрупольных возбуждений и фигуры равновесия вращающейся жидкой капли

Изучается влияние вращения на форму и спектр собственных квадрупольных частот атомных ядер. Использован метод вириальных теорем Чандрасекхара в теории вращающихся тел. Найдены равновесные значения параметров эллипсоидальной деформации и нормальные моды квадрупольных колебаний атомных ядер в модели несжимаемой заряженной жидкой капли. Приближение эллипсоидальными фигурами равновесия достаточно точно воспроизводит значения угловых моментов точек нейтральной стабильности и сверхстабильности аксиальных и неаксиальных форм. Вращение сильно влияет на спектр нормальных квадрупольных частот вращающихся ядер. Модель объясняет микроскопические подходы, используемые для описания расщепления гигантского квадрупольного резонанса вращающихся атомных ядер.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Ссобщение Объединенного института ядерных исследований. Дубна 1980

Vaishvila Z., Mikhailov I.N.

Normal Quadrupole Excitation Spectrum and Equilibrium Figures of Rotating Liquid Dron

ВВЕДЕНИЕ

Экспериментальное изучение продуктов слияния тяжелых ионов с атомными ядрами выдвигает задачи описания структуры ядра в состояниях с большими угловыми моментами. Использование приближения случайных фаз в модели с осцилляторным средним полем и квадрупольными силами /1-3/ показало, что вращение приводит к расщеплению мод гигантского квадрупольного резонанса /ГКР/ в ядрах, причем при достаточно большом значении углового момента одна из ветвей ГКР опускается до состояний ираст-линии. Имея в виду приближения математического характера, используемые в указанных работах, кажется интересным сравнить результаты, полученные в них, с результатами расчета нормальных частот колебаний квадрупольной симметрии для системы, имеющей простой и наглядный физический смысл и допускающей надежную математическую трактовку. В качестве такой системы здесь используется модель несжимаемой заряженной жидкой капли, анализ которой неоднократно использовался и ранее для интерпретации свойств атомных ядер.

Простой и изящный метод приближенного анализа фигур равновесия и спектра нормальных частот несжимаемой жидкой капли разработан в публикациях ⁷⁴⁻⁶⁷. В работе ⁷⁶⁷ проведен полный математический анализ задачи определения аксиальных фигур равновесия и качественный анализ нормальных частот аксиальных вращающихся фигур. Ниже мы используем формализм работы ⁷⁶⁷ для анализа спектра нормальных частот квадрупольной симметрии как для аксиальных, так и для неаксиальных фигур равновесия. Расчет нормальных частот неаксиальных жидких капель потребовал установления соотношений, отсутствующих в ⁷⁶⁷. Для связности изложения мы сочли целесообразным привести основные определения и результаты работы ⁷⁶⁷.

МЕТОД ВИРИАЛЬНЫХ ТЕОРЕМ ЧАНДРАСЕКХАРА

В первоначальной форме это - метод моментов, примененный к решению гидродинамических задач, в которых учитывается поле притяжения вещества. Вириальные уравнения различных порядков это соответствующие моменты гидродинамических уравнений. Формы равновесия капли считаются эллипсоидальными.

> Соверносналий институт адержных исследования БИБЛИЮТЕНА

Будем рассматривать идеальную несжимаемую каплю, ограниченную эллипсоидальной поверхностью S. Уравнение движения идеальной равномерно заряженной жидкой капли с плотностью ρ ,изотропным давлением P и плотностью заряда $\sigma > 0$ в системе центра массы имеет вид

$$\rho \frac{\mathrm{d} u_i}{\mathrm{d} t} = - \frac{\partial p}{\partial x_i} - \sigma \frac{\partial B}{\partial x_i}, \qquad i = 1, 2, 3, \qquad /1/$$

где $\vec{B}(\vec{x}) = \int_{\vec{V}} \frac{\sigma(\vec{x}')}{|\vec{x} - \vec{x}'|} d\vec{x}'$, u_i - компонента скорости элемента жидкости.

Давление в жидкости в непосредственной близости к поверхности описывается формулой Лапласа:

 $p = T \operatorname{div} \vec{n}$, /2/

где Т – коэффициент поверхностного натяжения, \vec{n} – единичный вектор, перпендикулярный к поверхности S и направленный из S наружу.

Вириальные уравнения различных порядков получаются посредством умножения уравнения движения соответственно на 1, x_j , $x_j x_k,...$ и интегрирования по всему объему V, занимаемому жидкостью в текущий момент времени. Поэтому моментами будем называть тензоры такого типа:

$$\begin{split} I_{ij} &= \int_{V} \rho \ x_{i} x_{j} d\vec{x} & - \text{ тензор инерции,} \\ \Pi_{ij} &= \int_{V} p \ x_{i} x_{j} d\vec{x} & - \text{ тензор давления,} \\ J_{ij} &= \frac{1}{2} \int_{V} \rho \ u_{i} u_{j} d\vec{x} & - \text{ тензор кинетической энергии,} \\ \boldsymbol{B}_{ij}(\vec{x}) &= \int_{V} \sigma(\vec{x}') \frac{(x_{i} - x_{i}')(x_{j} - x_{j}')}{|\vec{x} - \vec{x}'|^{3}} d\vec{x}' - \text{ тензор электростатического потенциала,} \\ \mathfrak{M}_{ij} &= \frac{1}{2} \int_{V} \sigma \mathbf{B}_{ij} d\vec{x} = - \int_{V} \sigma x_{j} \frac{\partial \mathbf{B}}{\partial x_{i}} d\vec{x} & - \text{ тензор электростатической потенциальной энергии.} \end{split}$$

Здесь приведены некоторые моменты второго порядка. Эти тензоры симметричны относительно перестановки индексов. Аналогично определяются тензоры с любым числом индексов. Следы тензоров второго порядка являются скалярными величинами, например, $I_{ii} \equiv I$ — скалярный момент инерции. Тензоры, несимметричные относительно перестановки индексов, записываются следующим образом:

$$\mathfrak{M}_{\mathbf{ij,k}} = \frac{1}{2} \int_{\mathbf{V}} \sigma \mathbf{B}_{\mathbf{ij}} \mathbf{x}_{\mathbf{k}} d\mathbf{x}^{\mathbf{i}}.$$

Вириальные уравнения первого порядка

$$\frac{d}{dt} \int_{V} \rho \, u_{i} \, d\vec{x} = \frac{d^{2} I_{i}}{d t^{2}} = 0 , \quad i = 1, 2, 3$$

выражают равномерность движения центра масс. Уравнения второго порядка получаются посредством умножения уравнения /1/ на x_j и интегрирования по объему V:

$$\frac{d}{dt} \int_{V} \rho u_{i} x_{j} d\vec{x} = 2 \mathcal{J}_{ij} - 2 \Sigma_{ij} + \mathcal{M}_{ij} + \Pi \delta_{ij} , \qquad /3/$$

где Σ_{ij} - тензор поверхностного натяжения - появляется, если использовать уравнение /2/. Для эллипсоидов Розенкилде /7/ получил

$$\Sigma_{ij} = \frac{1}{2} T \int_{S} (\delta_{ij} - n_i n_j) dS.$$

Аналогично записываются вириальные уравнения более высоких порядков.

Потенциалы и тензоры во внутренней точке эллипсоида можно выразить через так называемые интегральные символы. Для однородных фигур эти выражения несложные. Например, для **B**_{ij} имеем

$$(\pi\sigma a_1 a_2 a_3)^{-1} B_{ij} = 2 B_{ij} x_i x_j + a_i^2 \delta_{ij} (A_i - \sum_{k=1}^3 A_{ik} x_k^2)$$

где a_1 , a_2 , a_3 - полуоси эллипсоида, а A_i , A_{ij} , B_{ij} - индексные символы, введенные Чандрасекхаром ^{/4/}:

$$\begin{split} & A_{ijk\ldots\overline{*}} \int_{0}^{\infty} \frac{du}{\Delta_{C} \cdot (a_{1}^{2} + u)(a_{j}^{2} + u)(a_{k}^{2} + u).}; \quad B_{ijk\ldots\overline{*}} = \int_{0}^{\infty} \frac{u \, du}{\Delta_{C} (a_{1}^{2} + u)(a_{j}^{2} + u)(a_{k}^{2} + u).}, \\ & \mathsf{гдe} \ \Delta_{C} = \left[(a_{1}^{2} + u)(a_{2}^{2} + u)(a_{3}^{2} + u)\right]^{\frac{1}{2}}. \end{split}$$

Тензоры поверхностного натяжения выражаются через индексные символы, введенные Розенкилде 77:

$$\begin{array}{c} (\hat{t}_{ijk...\bar{r}} \int\limits_{0}^{\infty} \frac{dt}{\Delta_{R^{*}}(a_{i}^{2}+t^{2})(a_{j}^{2}+t^{2})(a_{k}^{2}+t^{2})...}; \quad \mathcal{B}_{ijk...\bar{r}} \int\limits_{0}^{\infty} \frac{t^{2}dt}{\Delta_{R^{*}}(a_{i}^{2}+t^{2})(a_{j}^{2}+t^{2})(a_{k}^{2}+t^{2})...} \\ \text{где} \quad \Delta_{R} = \left[(a_{1}^{2}+t^{2})(a_{2}^{2}+t^{2})(a_{3}^{2}+t^{2})\right]^{\frac{1}{2}}. \end{array}$$

Все эти индексные символы можно выразить через неполные эллиптические интегралы:

F
$$(\phi, \mathbf{k}) = \int_{0}^{\phi} \frac{dt}{\sqrt{1 - \mathbf{k}^{2} \sin^{2} t}}; \quad E(\phi, \mathbf{k}) = \int_{0}^{\phi} \sqrt{1 - \mathbf{k}^{2} \sin^{2} t} \, dt,$$

rge $0 \le \phi < \pi/2; \quad 0 \le |\mathbf{k}| \le 1.$

-

РАВНОВЕСНЫЕ КОНФИГУРАЦИИ РАВНОМЕРНО ВРАЩАЮЩЕЙСЯ КАПЛИ

Пусть капля вращается равномерно с угловой скоростью Ω , которую будем считать направленной вдоль оси x_3 . Уравнение движения капли можно записать во вращающейся вместе с ней системе координат. Тогда появятся члены, отвечающие за неинерциальность этой системы: центробежные силы и силы, связанные с кориолисовым ускорением. Аналогичным способом можно получить вириальные уравнения в этой системе координат. Будем искать стационарные решения задачи ($u_i = 0$). Тогда вириальные уравнения второго порядка упрошаются:

$$\mathcal{U}_{ij} - \Omega^2 (I_{ij} - \delta_{i3} I_{3j}) = \Pi \delta_{ij}$$
, $i, j = 1, 2, 3, /3a/$

где $l_{ij} = 2 \sum_{ij} - M_{ij}$. Если записать эти 9 уравнений в явном виде, то можно увидеть, что эта система в качестве условий равновесия не требует равенств $I_{11} = I_{22}$, $l_{11} = l_{22}$, а также $I_{12} = 0$, $l_{12} = 0$, хотя $I_{13} = I_{23} = 0$, $l_{13} = l_{31} = l_{32} = l_{32} = 0$. Значит, равновесные состояния вращающейся капли не обязательно должны иметь аксиальную форму.

Три диагональных уравнения системы /3а/ описывают равновесие равномерно вращающейся фигуры^{/6/}. Пока мы ограничиваемся конфигурациями с тремя плоскостями симметрии /эллипсоидальные фигуры/, все недиагональные компоненты уравнения /3а/ удовлетворяются тождественно. То же самое происходит и с каждой из компонент вириального уравнения третьего порядка. Если мы сумеем найти решение диагональных уравнений /3а/ для конфигураций с 3 плоскостями симметрии, то можно утверждать, что эти конфигурации будут равновесными вплоть до третьего порядка^{/6/}. Тогда можно будет исследовать их стабильность по отношению к деформациям второго и третьего порядка.

ЛИНЕАРИЗОВАННЫЕ ВИРИАЛЬНЫЕ УРАВНЕНИЯ

Линеаризованные вириальные уравнения описывают отклонения от положения равновесия капли, которые не нарушают его. Рассматриваются отклонения, которые являются бесконечно малыми лагранжевыми смещениями элементов жидкости, и находятся первые вариации вышеупомянутых интегральных величин:

 $\delta J = \int_{V} (\Delta Q + Q \operatorname{div} \vec{\xi}) d\vec{x},$

где ΔQ_{\pm} лагранжевое изменение любой характеристики жидкости Q, ξ – лагранжевое перемещение, вызванное возмущением. Тогда вариации всех вышеупомянутых величин будут выражаться через тензоры ^{/5,6/}, которые в случае 2 индексов записываются как

$$\delta I_{i,j} \equiv V_{i,j} = \int_{V} \rho \xi_i x_j d\vec{x},$$

при этом $\delta I_{ij} = V_{i,j} + V_{j,i} = V_{ij}$. Если бесконечно малое лагранжевое смещение записать в виде

$$\vec{\xi}(\vec{x},t) = \vec{\xi}(\vec{x})e^{i\omega t}, \qquad /4/$$

то можно описывать малые колебания эллипсоида около равновесной формы / ω - характеристические частоты, которые надо определить/. В общем случае можно записать

$$\xi_{i} = L_{i+} \sum_{j} L_{i,j} x_{j} + \sum_{j,k} L_{i,jk} x_{j} x_{k+} \dots$$
 (5/

Оказывается, что много информации можно получить, ограничиваясь только 2 первыми членами разложения, т.е. рассматривая вторые гармоники колебаний /деформаций/, которые описываются линеаризованными вириальными уравнениями второго порядка /для этого надо взять первую вариацию соответствующего вириального уравнения/:

$$\omega^2 \mathbf{V}_{\mathbf{i};\mathbf{j}} + 2 \, \mathbf{i}_{\omega} \Omega_{\epsilon} \,_{i\ell_3} \nabla_{\ell,\mathbf{j}} = \delta \mathcal{U}_{\mathbf{i}\mathbf{j}} - \Omega^2 (\delta \mathbf{I}_{\mathbf{i}\mathbf{j}} - \delta_{\mathbf{i}\mathbf{3}} \delta \mathbf{I}_{\mathbf{3}\mathbf{j}}) - \delta \Pi \delta_{\mathbf{i}\mathbf{j}} \,. \qquad /6/$$

К этим 9 уравнениям надо добавить условие соленоидальности, которое означает, что мы интересуемся перемещениями ξ . которые сохраняют постоянную плотность ρ недеформированных эллипсоидов. В случае второго порядка это требование записывается $^{/5/}$ как

$$\sum_{j=1}^{3} \frac{V_{jj}}{a_j^2} = 0.$$
 (7/

Решая характеристическое уравнение на ω системы /6/, можно найти собственные значения ω_i . В данном случае это вторые гармоники собственных колебаний около равновесной формы. Замечатальное свойство линеаризованных вириальных уравнений заключается в том, что число таких уравнений данного порядка n совпадает с числом параметров $L_{i;j_1\cdots j_{n-1}}$ в разложении смещения ξ /5/.

СПЕКТР КВАДРУПОЛЬНЫХ КОЛЕБАНИЙ ВРАЩАЮЩЕЙСЯ КАПЛИ

Вначале рассмотрим сплюснутые сфероиды Маклорена - самые простые эллипсоидальные фигуры, которые возникают, когда однородные тела вращаются с постоянной угловой скоростью Ω . Ста-

4

бильность такой аксиальной вращающейся однородной заряженной капли исследовалась Розенкилде ^{Ав}. Нас главным образом будет интересовать спектр квадрупольных колебаний такой капли.

Параметризуем полуоси эллипсоида:

$$a_{3}^{2} = a_{0}^{2}(1 - \frac{4}{3} \cdot \delta \cos \gamma),$$

$$a_{2}^{2} = a_{0}^{2}(1 - \frac{4}{3} \cdot \delta \cos(\gamma - 120^{\circ})),$$

$$a_{1}^{2} = a_{0}^{2}(1 - \frac{4}{3} \cdot \delta \cos(\gamma + 120^{\circ})),$$

$$/8/$$

где $a_0 = 1,2$ А^{1/3}Фм. При этом $0 \le \delta < \frac{3}{4}$; $0 \le \gamma \le 60^\circ$, и всегда имеет место $a_3 < a_2 \le a_1$. Условие сохранения объема капли имеет вид $a_1 a_2 a_3 = a_0^3$.

Для сфероидов Маклорена решение уравнений /3а/ дает выражение для Ω равновесной формы через параметры деформации:

$$\Omega^{2} = \frac{2}{\rho_{ou}} \left(1 - \frac{a_{3}^{2}}{a_{1}^{2}}\right) \left(T_{ou} \hat{\Pi}_{13} - \sigma_{ou}^{2} B_{13}\right), \qquad (9)$$

где введены обозначения

$$\rho_{\rm ou} = \frac{4\pi}{15} \, a_1 \, a_2 \, a_3 \, \rho \; ; \; \; T_{\rm ou} = \pi (a_1 a_2 a_3)^2 \, T \; ; \; \; \sigma_{\rm ou}^2 = \; \frac{4\pi^2 (a_1 a_2 a_3)^2 \sigma^2}{15}$$

Устойчивость по отношению к деформациям второго порядка можно исследовать, анализируя характеристические частоты соответствующих осцилляций.

Решая характеристическое уравнение, получаем характеристические частоты ω i. Их можно разделить на несколько групп:

1/ тороидальные моды / у -колебания/:

$$\omega_{\gamma} = \pm [\Omega \pm (2P - \Omega^2)^{\frac{1}{2}}],$$
 /10a/

где
$$P_{=} \frac{2}{\rho_{ou}} (T_{ou} (\tilde{T}_{11} - \sigma_{ou}^2 B_{11}))$$
. Для γ -колебаний имеем
 $\xi_1 = L_{1;1} x_1 + L_{1;2} x_2$,
 $\xi_2 = L_{1;2} x_1 - L_{1;1} x_2$,
 $\xi_3 = 0$.

Они превращают сфероид в трехосный эллипсоид; 2/ пульсационные моды / β-колебания/:

$$\omega_{\beta} = \sqrt{2} \left[\frac{\Omega^{2} + M + \frac{a_{3}^{2}}{a_{1}^{2}} N}{1 + 2\frac{a_{3}^{2}}{a_{1}^{2}}} \right]^{\frac{1}{2}}, (106)$$

$$M = \frac{2T_{ou}}{\rho_{ou}} \left[2\bar{\Omega}_{11} - \frac{a_{3}^{2}}{a_{1}^{2}}\bar{\Omega}_{13} - \frac{\sigma_{ou}^{2}}{T_{ou}} (2B_{11} - B_{13}) \right], (106)$$

$$N = \frac{2T_{ou}}{\rho_{ou}} \left[3\bar{\Omega}_{33} - \frac{a_{1}^{2}}{a_{3}^{2}}\bar{\Omega}_{13} - \frac{\sigma_{ou}^{2}}{T_{ou}} (3B_{33} - B_{13}) \right].$$

Для β-колебаний имеем

$$\xi_{1} = L_{1:1} \times_{1} + L_{1:2} \times_{2},$$

$$\xi_{2} = -L_{1:2} \times_{1} + L_{1:1} \times_{1},$$

$$\xi_{3} = -2L_{1:1} \times_{3}.$$

Они трансформируют сфероид в соседний сфероид, у которого немного отличается эксцентриситет;

3/ поперечно-скошенные моды /будем обозначать их как *а* - колебания/:

$$\omega_{\alpha} = \pm \frac{1}{2} \left[\Omega_{\pm} (\Omega_{\pm}^{2} + 8 \Omega)^{\frac{1}{2}} \right], \qquad /10 \text{в}/$$

где $\Omega = \frac{2 \text{Tou}}{\rho_{\text{ou}}} \left[\widehat{\Pi}_{13} - \frac{\sigma_{\text{ou}}^{2}}{T_{\text{ou}}} \right].$ Для *а*-колебаний имеем
 $\xi_{1} = L_{1:3} \times 3,$
 $\xi_{2} = L_{2:3} \times 3,$
 $\xi_{3} = L_{3:1} \times 1 + L_{3:2} \times 2.$

Эти колебания возбуждают связанное движение 2 полусфер и могут вызвать появление неаксиальной деформации.

Исследуя зависимость $\omega_i(\Omega)$, можно сделать ряд важных выводов о так называемой точке бифуркации. Это точка, в которой существует такое нетривиальное смещение ξ , что деформация конфигурации этим смещением оставляет ее в равновесии. Это означает, что смещение будет деформировать конфигурацию из фигуры, которую она имеет на одной из ветвей /в данном случае она является сфероидом/, в фигуру другой ветви /ветви эллипсои-

6

дов/. Из того факта, что такое смещение сохраняет равновесие, следует,что в точке бифуркации равновесная конфигурация должна характеризоваться собственной формой колебания, по отношению к которой конфигурация является нейтральной /подробный анализ точки бифуркации имеется в работе ^{/5/}/.

Поэтому очевидно, что для более полного анализа необходимо исследование и трехосных /неаксиальных/ равновесных форм капли. Оказалось, что для уравнений /За/ можно найти решение /равновесное Ω / и для случая $a_1 \neq a_2$. Мы получили следующее решение:

$$\Omega^{2} = \frac{2T_{ou}}{\rho_{ou}} \left[\hat{G}_{12} - \frac{\sigma_{ou}^{2}}{T_{ou}} B_{12} \right], \qquad (11)$$

которое имеет место, если

$$\sigma_{\rm ou}^2 \left(a_1^2 a_2^2 A_{12} - a_3^2 A_3 \right) = T_{\rm ou} \left(\hat{\rm d}_3 - \hat{\rm d}_2 - a_2^2 \hat{\rm d}_{12} \right). \tag{12}$$

Уравнение /12/ налагает геометрическое ограничение на эллипсоид. Вместе с условием сохранения объема капли можно определять однозначно равновесную $\,\Omega$.

Исследовались квадрупольные характеристические колебания около равновесных эллипсоидальных конфигураций. Для этого случая получены выражения для всех трех типов колебаний, которые встретились при исследовании сфероидальных форм. Поперечноскошенные моды имеют вид

$$\omega_a^2 = \frac{\Omega^2}{2} - Q_1 - Q_2 \pm \left[\left(\frac{\Omega^2}{2} - Q_1 - Q_2 \right)^2 - 4Q_1 Q_2 \right]^{\frac{1}{2}}, \qquad (13)$$

где

.

$$Q_{1} = \frac{2\sigma_{ou}^{2}}{\rho_{ou}}B_{1\overline{3}} \frac{2T_{ou}}{\rho_{ou}}G_{13}; \quad Q_{2} = \frac{2\sigma_{ou}^{2}}{\rho_{ou}}B_{23} - \frac{2T_{ou}}{\rho_{ou}}G_{23}.$$

Две γ -моды зануляются, а выражения для двух остальных γ -мод и для β -мод являются решениями биквадратного уравнения:

$$\begin{vmatrix} -\frac{\omega^{2}}{2} + \Omega^{2} - C_{11} & \frac{\omega^{2}}{2} - \Omega^{2} - C_{12} & -C_{13} \\ -\frac{\omega^{2}}{2} + \Omega^{2} + C_{21} & -\frac{\omega^{2}}{2} + \Omega^{2} - C_{22} & \omega^{2} + C_{23} \\ C_{31} & C_{32} & C_{33} \end{vmatrix} = 0,$$

Fige

$$C_{11} = \frac{\sigma_{0u}^{2}}{\rho_{ou}} (3B_{11} - B_{12}) + \frac{T_{ou}}{\rho_{ou}} (\frac{a_{2}^{2}}{a_{2}^{2}} (\tilde{d}_{12} - 3 (\tilde{d}_{11})),$$

$$C_{12} = \frac{\sigma_{0u}^{2}}{\rho_{ou}} (B_{12} - 3B_{22}) + \frac{T_{ou}}{\rho_{ou}} (3 (\tilde{d}_{22} - \frac{a_{1}^{2}}{a_{2}^{2}} (\tilde{d}_{12})),$$

$$C_{13} = \frac{\sigma_{0u}^{2}}{\rho_{ou}} (B_{13} - B_{23}) + \frac{T_{ou}}{a_{3}^{2} \rho_{ou}} (B_{13} - B_{23}),$$

$$C_{21} = \frac{\sigma_{0u}^{2}}{\rho_{ou}} (2B_{13} - 3B_{11} - B_{12}) + \frac{T_{ou}}{\rho_{ou}} (3 (\tilde{d}_{11} + \frac{a_{2}^{2}}{a_{1}^{2}} (\tilde{d}_{12} - 2\frac{a_{3}^{2}}{a_{1}^{2}} (\tilde{d}_{13})),$$

$$C_{22} = \frac{\sigma_{0u}^{2}}{\rho_{ou}} (3B_{22} + B_{12} - 2B_{23}) + \frac{T_{ou}}{\rho_{ou}} (2\frac{a_{3}^{2}}{a_{2}^{2}} (\tilde{d}_{23} - 3 (\tilde{d}_{22} - \frac{a_{1}^{2}}{a_{2}^{2}} (\tilde{d}_{12})),$$

$$C_{23} = \frac{\sigma_{0u}^{2}}{\rho_{ou}} (6B_{33} - B_{13} - B_{23}) + \frac{T_{ou}}{\rho_{ou}} (\frac{a_{1}^{2}}{a_{2}^{2}} (\tilde{d}_{13} + \frac{a_{2}^{2}}{a_{3}^{2}} (\tilde{d}_{23} - 6 (\tilde{d}_{33})),$$

$$C_{31} = \frac{1}{a_{1}^{2}}; \quad C_{32} = \frac{1}{a_{2}^{2}}; \quad C_{33} = \frac{1}{a_{3}^{2}}.$$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В методе Чандрасекхара очень просто получаются скалярные величины - это следы соответствующих тензоров второго порядка. Поверхностная и кулоновская энергия капли записываются как

$$\begin{split} & E_{S} = \sum_{\substack{i=1 \\ 3 = 1}}^{3} \Sigma_{ii} = 2T_{ou} (\hat{d}_{1} + \hat{d}_{2} + \hat{d}_{3}), \\ & E_{C} = \sum_{i=1}^{2} \pi_{ii} = 2\sigma_{ou}^{2} (a_{1}^{2}A_{1} + a_{2}^{2}A_{2} + a_{3}^{2}A_{3}). \end{split}$$

Сравнивая написанные выражения для сферической капли с аналогичными выражениями, в которых используются параметры формулы Вайцзекера для энергии связи ядер $^{/8/}$, получаем связь этих параметров с параметрами T_{ou}, σ_{ou}^2 :

8 ·

$$T_{ou} = \frac{a_0^4 b_{\Pi OB}}{4}; \sigma_{ou}^2 = \frac{-0.7 Z^2 (1 - 0.76 Z^{-2/3}) a_0}{4 A^{1/3}}$$

где $b_{\Pi OB} \approx 17$ МэВ. В выражении для σ_{ou}^2 поправочный член возник из~за того, что учтена корреляция протонов, обусловленная антисимметризацией волновой функции ^{/8/}. Вращательная энергия капли выражается как

 $E_{R} = \frac{1}{4} \cdot (a_{1}^{2} + a_{2}^{2}) \Omega^{2} \rho_{ou} = \frac{1}{20} (a_{1}^{2} + a_{2}^{2}) m A \Omega^{2},$

где m- масса нуклона. Все частоты ω_i и Ω измеряются в так называемых единицах осцилляторной частоты оболочечной модели ω_0 которая определяется соотношением $\hbar\omega_0 = 41/A^{1/3}$ MэB. Задавая параметры деформации δ , γ , мы однозначно получали

Задавая параметры деформации δ , γ , мы однозначно получали вначале равновесную угловую скорость вращения Ω , соответствующую данной конфигурации. Это делалось и для сфероидов Маклорена ($a_1 = a_2$), и для трехосных форм /эллипсоидов Якоби/. Для полученного значения Ω вычислялись характеристические частоты собственных квадрупольных колебаний около данной равновесной конфигурации капли, вращающейся с постоянной угловой скоростью Ω вокруг оси x_3 .

При Ω = 0 равновесная форма является сферически симметричной. Нормальные квадрупольные частоты колебаний положительной четности совпадают для всех мод и равны

$$\omega_{\rm cd} = \left[\frac{4}{15} \cdot \frac{10 \ a_0 b_{\rm HOB} \ A^{2/3} - 3 \ e^2 Z^2}{m \ a_0^3 \ A} \right] \frac{1}{2}$$
(15/

в соответствии с известным результатом для квадрупольных колебаний ядер в гидродинамической модели ^{/9/.}

При малых значениях Ω зависимость $\omega_i(\Omega)$ может быть приближенно описана формулами

$$\omega_{\gamma} = \omega_{c,\phi} - \frac{\Omega^2}{\omega_{c,\phi}} \pm \Omega$$

$$\omega_{\beta} = \omega_{c\phi} + \frac{\Omega^{2}}{\omega_{c\phi}} (1 + \frac{2}{3} \cdot \frac{2 T_{ou} + 5 \sigma_{ou}^{2} a_{0}^{3}}{2 T_{ou} - \sigma_{ou}^{2} a_{0}^{3}}).$$

$$\omega_{a} = \omega_{c\phi} [1 + \frac{1}{8} (1 + \frac{q_{ou}^{2} a_{0}^{3}}{2 T_{ou} - \sigma_{ou}^{2} a_{0}^{3}}) \frac{\Omega^{2}}{\omega_{c\phi}^{2}}] \pm \frac{\Omega}{2}.$$

Типичные картины спектра собственных квадрупольных частот для произвольных значений Ω приведены на <u>рис.1а,б.</u> Сплошные линии соответствуют колебаниям около аксиальной равновесной формы, пунктирные – около трехосной формы. Видно, что моды квадрупольных колебаний с различными значениями проекции угло-

11

вого момента на ось вращения расщепляются по энергии. Зависимость от Ω для нормальных частот жидкой капли качественно совпадает с полученной в приближении случайной фазы /ПСФ/ для модели ядра со средним полем гармонического осциллятора /для аксиальных ядер/.

Кроме решений для нормальных мод, указанных на рис.1а,б, имеются моды $\omega = 0$ /в решениях уравнений для ω_{β} и ω_{a} /, а также мода $\omega_{a} = \Omega$. Такие же моды имеются и в решениях уравнений в ПСФ при параметризации гамильтониана, принятой в работах / 1-3/. Таким образом, условия выделения голдстоуновских ветвей возбуждения, принятые в вышеупомянутых работах, явно выполняются в рассматриваемой здесь модели. В указанных работах среди решений, соответствующих по симметрии β -колебаниям и поперечноскошенным модам при $\Omega \neq 0$, присутствуют дополнительные моды. Одна из них соответствует колебаниям объема ядра, связанным с β -колебаниями поверхности, и ее отсутствие в решениях гидродинамической модели вызвано принятым здесь условием сохранения объема капли. Вторая мода, родственная колебаниям нутационного типа, также отсутствует в данной модели. Таким образом, подтверждается вывод работы в рамках микроскопической теории колебательных состояний во вращающихся ядрах / 10/ о том, что для количественного описания низколежащих коллективных состояний подобного типа нельзя пользоваться формулами модели жесткого прецессирующего тела, необходим учет динамики системы.

Из рис.1 видно, что одна из мод возбуждения / γ -мода/ аксиальной капли зануляется. Значит, данная аксиальная конфигурация становится нейтральной по отношению к этой моде. Следовательно, здесь возможно появление неаксиальных равновесных форм, т.к. γ -колебания нарушают аксиальность. Проведенные расчеты для эллипсоидов Якоби показали, что эта точка действительно является точкой бифуркации. Именно здесь появляется возможность существования трехосных равновесных форм равномерно вращающейся жидкой капли. Следовательно, с ростом Ω до этой точки $\Omega = \Omega_{\rm HC}$ /назовем ее точкой нейтральной стабильности/ имеются только аксиальные равновесные формы.

Интересным фактом оказалось то, что моды квадрупольных колебательных возбуждений для сфероидов существуют и при $\Omega > \Omega_{\rm HC}^{\bullet}$ Они становятся мнимыми /тем самым теряется устойчивость системы/ только при $\Omega > \Omega_{\rm ACC}$ /точка аксиальной сверхстабильности/. Отметим, что в работах /1-3/ область $\Omega_{\rm HC} < \Omega < \Omega_{\rm ACC}$ осталась неисследованной, т.к. полагалось, что с занулением γ -моды наступает неустойчивость системы по отношению к увеличению аксиальной сплюснутой деформации. Так что при $\Omega > \Omega_{\rm HC}$ возможны и трехосные, и аксиальные конфигурации капли. Расчеты момента инерции для обеих ветвей равновесных конфигураций при $\Omega > \Omega_{\rm HC}$ показали, что трехосные формы являются более выгодными энергетически, чем аксиальные /момент инерции неаксиальной капли больше момента инерции аксиальной капли для данного значения Ω /. Также следует отметить, что моды колебаний около трехосных равновесных форм являются по сравнению с аксиальным случаем более жесткими. Как уже отмечалось выше, одна из *у*-мод в случае неаксиальных форм занулилась, что означает появление одной дополнительной степени свободы, отвечающей движению ротационного типа, для капли с трехосной равновесной формой

ционного типа, для капли с трехосной равновесной формой. Известно^{78,97}, что для ядер с параметром делимости X, близн ким к единице, ираст-конфигурации имеют аксиальную симметрию при всех значениях угловой скорости вращения. Этот вывод иллюстрируется <u>рис.2</u>. Область существования действительных решений уравнений на нормальные частоты для неаксиальных фигур равновесия /уравнения /11/-/14// ограничена в этом случае сверху значением угловой скорости в точке нейтральной стабильности (Ω_{HC}). Поэтому в области Ω > Ω_{HC} неаксиальные фигуры неустойчивы; а в области Ω < Ω_{HC} они не представляют ирастсостояния системы. Значение X = 1 является предельным, и при больших X заряженная жидкая капля неустойчива относительно деления при Ω = 0. Соответственно в области 0 ≤ X <1 нормальные частоты уменьшаются по абсолютной величине с ростом X.

частоты уменьшаются по абсолютной величине с ростом X. Как было показано в работе ⁶⁷, приближение сфероидальными фигурами равновесия приводит лишь к небольшим погрешностям в определении $\Omega_{
m HC}$ и $\Omega_{
m ACC}$. Для определения критического значения Ω , при котором заканчиваются ветви квадрупольных возбуждений сфероидов и эллипсоидов, нами рассчитаны величины $\Omega_{
m HC}$, $\Omega_{
m ACC}$, $\Omega_{
m HCC}$ для ядер, лежащих на дорожке eta-стабильности. Результаты приведены на рис.3 в виде зависимости соответствующих угловых моментов от А. Кривая НСС соответствует максимальному критическому значению углового момента капли в случае трехосных форм, а кривая АСС - в случае сфероидов. Этот рисунок неплохо согласуется с аналогичным рисунком из работы / 11/ Расхождение по горизонтальной оси / кривые заканчиваются у нас при А≈ 360 вместо А≈320 в работе / 11/ / связано с тем, что в нашем расчете в формуле Вайцзекера для энергии связи ядра учитывалась корреляция протонов, обусловленная антисимметризацией волновой функции /8/ Расчеты без учета этого эффекта согласуются с результатами работы / 11/ Мы получили еще одну интересную кривую НС, которая ограничивает сверху область. где трехосные конфигурации еще невозможны /не достигнута еще точка бифуркации/. Интересно заметить, что в области А≤ 130 для ядер на дорожке *β*-стабильности аксиальные равновесные конфигурации существуют для больших угловых моментов капли, чем неаксиальные.

Рис.2. Спектр нормальных частот квадрупольных колебаний вращающейся жидкой капли с параметром X≈1 / $\frac{Z^2}{A}$ ≈48,4/.

Как известно, численные значения ω_{сф}, полученные по формуле /15/ при реалистических значениях параметров b_{пов} и a₀, не соответствуют значениям энергии возбуждения коллективных состояний атомных ядер. Для описания ядерных коллективных состояний квадрупольной симметрии необходим учет оболочечных эффектов /и парных корреляций/. Как отмечалось выше, в качественном отношении изменения с угловым моментом состояния спектра ГКР, определенного в рамках микроскопического подхода в работах / 1-3/. имеют много сходных черт с аналогичной зависимостью нормальных частот заряженной жидкой капли. Поэтому имеются основания считать, что результаты работ /1-3/ правильно отражают тенденции в изменениях характеристик ГКР с увеличением углового момента состояния. С другой стороны, модель, рассмотренная в работах / 1-3/, правильно описывая энергию возбуждения ГКР при $\Omega = 0$, не согласуется с существующими данными о величине критических угловых моментов ядер / 11/, Последовательное описание коллективных возбуждений ядер в широкой области углового момента остается, таким образом, открытой проблемой. Один из подходов к ее решению состоит в сочетании ПСФ с методом оболочечной поправки Струтинского для определения равновесной деформации ядер. Возможная модифи-

кация гидродинамической модели для описания гигантских резонансов при $\Omega = 0$ предлагается в работе ^{/ 12/}. Последовательность

Рис.3. Критические угловые моменты вращающейся жидкой капли в приближении эллипсоидальными фигурами равновесия.

предложенного в ней подхода может быть проверена применением его к задаче, рассмотренной в данной работе.

ЛИТЕРАТУРА

- 1. Акбаров А. и др. ОИЯИ, Р4-12772, Дубна, 1979.
- Акбаров А. и др. ОИЯИ, P4-80-187, Дубна, 1980.
- 3. Акбаров А. и др. ОИЯИ, Р4-80-218, Дубна, 1980.
- Chandrasekhar S. In: Lectures in Theor.Phys. Colorado, 1964, vol.6,p.1.
- Чандрасекхар С. Эллипсоидальные фигуры равновесия. "Мир", М., 1973.
- Rosenkilde C.E. J.Math. Phys., 1967, 8, p.98.
- Rosenkilde C.E. J.Math. Phys., 1967, 8, p.88.
- Бор О., Моттельсон Б. Структура атомного ядра, т.1. "Мир", М., 1971, с.143-147.
- Бор О., Моттельсон Б.
 Структура атомного ядра,
 т.2. "Мир", М., 1977, с.575.
- Janssen D. et al. Phys.Lett., 1978, 79B, p.347.
 Cohen S., Plasil F., Swiatacki W.J. Ann. of Phys., 1974, 82, p.557.
- 12. Nix J.R., Sierk A.J. Phys.Rev., 1980, C21, p.396.

Рукопись поступила в издательский отдел 22 июля 1980 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индеко	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

-