

Объединенный институт ядерных исследований дубна

36.56 2-80

4/8-80 P4-80-400

В.Б.Беляев, А.Л.Зубарев, О.И.Картавцев

О ВОЗМОЖНОЙ ПЕРЕСТРОЙКЕ СПЕКТРОВ МЕЗОМОЛЕКУЛЯРНЫХ СИСТЕМ

Направлено в "Письма в ЖЭТФ"

Беляев В.Б., Зубарев А.Л., Картавцев О.И. Р4-80-400

0 возможной перестройке спектров мезомолекулярных систем

Дан качественный анализ, указывающий на возможность перестройки спектра уровней в мезомолекуле $dT\mu$ с L=0 за счет сильного dT-взаимодействия.

Наличие перестройки приводит к резкому возрастанию ширин уровней системы $dT\mu$, которое просто объясняет наблюдаемое отсутствие температурной зависимости в реакции $d + T\mu \rightarrow {}^{4}{\rm He} + n + \mu$.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1980

Belyaev V.B., Zubarev A.L., Kartavtsev O.I.

On a Precible Da

P4-80-400

1. Известно ^{/1/}, что в квантовомеханической системе двух тел, взаимодействующих посредством дальнодействующих сил, включение короткодействующего потенциала может привести к существенной перестройке спектра в том случае, когда короткодействующий потенциал имеет близкий к нулю уровень. Примером системы, где реализуется такая ситуация, является атом pp^{-/2/}.

Представляет интерес рассмотреть возможность перестройки спектра в 3-частичной системе с кулоновским взаимодействием при включении короткодействующего ядерного потенциала между парой частиц. Одним из кандидатов является мезомолекулярный ион $dT\mu$, описание которого в адиабатическом приближении ^{/8/} фактически соответствует эффективной двухчастичной трактовке. В то же время сильное взаимодействие дейтерия и трития имеет резонансный характер / d и T образуют ⁵Не* при энергии ~70 кэВ ^{/4/} /.

Кроме того, экспериментальный факт независимости выхода нейтронов от температуры в реакции $dT\mu \to {}^{4}\,\mathrm{He} + n + \mu \,{}^{/5/}$ находит простое объяснение, если имеет место перестройка уровней мезомолекулы $dT\mu$.

2. Перейдем к конкретной оценке изменений кулоновского спектра $dT\mu$ -молекулы в состоянии с полным моментом L = 0, которые возникнут, если включить сильное взаимодействие между d и T.

Гамильтониан системы в адиабатическом приближении имеет вид

 $H = H_0 + V_c + V_s, \qquad (1)$

где H_0 -свободный гамильтониан; V_c - суммма кулоновского и эффективного dT -потенциала, который возникает за счет взаимодействия с μ -мезоном; V_s - короткодействующий сильный потенциал между d и T. Уравнение на собственные значения в операторной форме имеет вид

$$1 + (G_0(E) - G_e(E)) T = 0,$$
 /2/

здесь

a

$$G_0(E) = (E - H_0)^{-1}$$
, $G_c(E) = (E - H_0 - V_c)^{-1}$,
Г - матрица удовлетворяет уравнению Липпмана-Швинг

 $T = V_s + V_s G_0(E) T.$

объецияный институт инорган весьниканий БИЗЛИЮТЕНА epa

131

В импульсном представлении уравнение /2/ имеет вид

$$\delta(\vec{p}_1 - \vec{p}_2) + \int \langle \vec{p}_1 | G_0(E) - G_c(E) | \vec{q} \rangle \langle \vec{q} | T | \vec{p}_2 \rangle d\vec{q} = 0, \qquad /4,$$

 \vec{p} – относительный импульс d и T. Будем для оценки считать, что интегрирование в /4/ обрезается на импульсах q ~ 1/r₀, где r₀ – протяженность сильного dT –потенциала. В случае взаимодействия dT r₀ ~ 7 Фм. Т –матрица < $\vec{q} \mid T \mid \vec{p}_2 >$ в интересующем нас интервале энергий и импульсов является плавной функцией своих аргументов, и мы для оценки воспользуемся приближением: $^{/6/}$

$$\langle \vec{p} | T(E) | \vec{p} \rangle \approx t = \frac{h^2 a_s}{4\pi^2 m},$$
 /5/

где а $_{\rm s}$ - сильная длина упругого dT -рассеяния, а $\,\rm m$ -приведенная масса системы dT.

Используя спектральное представление для функций Грина $G_{n}(E)$ и $G_{n}(E)$, из /4/ получаем искомое уравнение *

$$1 + 2\pi a_{s} \left[-\sum_{n} \frac{|\psi_{n}(0)|^{2}}{\epsilon - \epsilon_{n}} + \int d\vec{k} \frac{(2\pi)^{-3} - |\psi_{k}(0)|^{2}}{\epsilon - k^{2}/2} \right] = 0.$$
 (6)

Вклад от дискретного спектра может быть оценен на основе соображений, изложенных в работе 77 , это дает величину $|\psi_1(0)|^2 \sim - |\psi_2(0)|^2 \sim 10^{-9}$. Оценим теперь вклад в /6/ от непрерывного спектра. Сначала проведем оценку, опуская вклад от эффективного потенциала, а затем покажем, к чему приводит его учет. В первом случае

$$|\psi_{k}(0)|^{2} = \frac{1}{4\pi^{2}k(e^{2\pi/k}-1)}$$
 /7/

и при
$$\epsilon = 0$$

 $k_{\max} \frac{|\psi_k(0)|^2 d\vec{k}}{\int \frac{|\psi_k^2/2}{k^2/2}} \approx 1/20$, /8/

в то время как вклад от свободной функции Грина при $\epsilon = 0$ составляет величину .k_{max} $\approx 3,5$. Грубый учет адиабатического эффективного потенциала можно осуществить, заменяя в выражении /7/ k на $\sqrt{k^2 + k_0^2}$, где $\frac{k_0^2}{2} = W_0$, а W_0 - глубина эффективного потенциала. Такая аппроксимация приводит к тому, что включение

*Здесь и далее энергии определены в единицах $E_0 = \frac{me^4}{h^2} \approx 54$ кэВ, а единицей длины является $a_0 = \frac{h^2}{me^2} \approx 25$ Фм, единицей импульса будет a_0^{-1} . адиабатического потенциала не сильно меняет результат, полученный с использованием /7/. Вклад от свободной функции Грина остается доминирующим.

Итак, для сильной длины рассеяния a_s , при которой произойдет перестройка спектра, т.е. возникнет уровень с $\epsilon = 0$, из условия /6/ получаем:

$$a \frac{kp}{s} \approx \frac{\pi}{k_m} \approx 1 \rightarrow 25 \ \Phi M.$$

Оценим теперь область изменения $a_{\rm s}$, в которой происходит "полная" перестройка, т.е. значение возникшего уровня меняется от 0 до E $_2$ - энергии возбужденного состояния молекулы $dT\mu$ с L = 0.

$$1 - \frac{a_{s}^{k} \max 1 - \frac{2\pi}{k} (e^{2\pi/k} - 1)^{-1}}{\frac{\epsilon_{2} + k^{2}/2}{\epsilon_{2} + k^{2}/2}} k^{2} dk = 0.$$

Учитывая, что $\frac{2\pi}{k} (e^{2\pi/k} - 1)^{-1} = f(k) <<1$, полагая $a_s \rightarrow a_s + \Delta a_s$, име-ем:

$$\frac{\Delta \mathbf{a}_{s}}{\mathbf{a}_{s}} \stackrel{\sim}{=} \frac{\pi}{\mathbf{k}_{\max}} \sqrt{\frac{\epsilon_{2}}{2}} \sim 10^{-2} .$$

Наличие неупругого канала $d+T \rightarrow {}^{4}\text{He}+n$ приводит к тому, что упругая длина рассеяния становится комплексной и у́ровни системы приобретают ширину. Уравнение /6/ остается справедливым и в этом случае. Полагая длину рассеяния равной а $_{s}=b_{s}^{'}(1+i\gamma),$ бу́дем искать собственное значение в виде $E+i\Gamma$. Вводя обо-значение

$$V(E, \Gamma) = \int \frac{k^2 dk (1 - f(k))}{E + i\Gamma - k^2/2}, \qquad (9)$$

уравнение /6/ перепишем в виде

$$b_{s}(1+i\gamma) (\text{ReJ}(E, \Gamma) + i \text{ImJ}(E, \Gamma)) = \pi$$
,

откуда для ширины в момент появления уровня получаем

$$\Gamma \sim \gamma \frac{k^2}{2},$$

средний импульс в подынтегральном выражении /9/.

Из расчета работы $^{/8/}$ следует, что $\gamma \sim \frac{1}{2}$, откуда для ширины Γ получаем $\Gamma \sim \frac{1}{2} \approx 30$ кэВ.

Отсюда следует, что при параметрах ядерного потенциала dT -взаимодействия, обеспечивающих перестройку спектра, будет наблюдаться выход нейтронов, постоянный в широком интервале температур среды. Если параметры сильного взаимодействия та-

- *

3

ковы, что перестройка спектра отсутствует, то энергия и ширина уровня связаны с длиной рассеяния линейной зависимостью, которая получается из /6/ при учете только полюсного члена. Для ширины получаем обычную оценку

$$\Gamma \simeq 2\pi b_{s} \gamma | \psi_{s}(0) |^{2} \sim 10^{-3} \text{ sB}.$$

Таким образом, при изменении параметров сильного взаимодействия ширина Γ может меняться в широких пределах от 10 3 до 10 $^{-3}$ эВ.

Поскольку параметры сильного взаимодействия d и T известны с большой неопределенностью $^{/8/}$, желательно произвести экспериментальные измерения положений уровней dT μ -молекулы. Сравнение результатов таких измерений с точным расчетом $^{/9/}$, использующим только кулоновские потенциалы, даст однозначный ответ на вопрос: есть перестройка или нет.

Другая возможность состоит в непосредственном изучении dT-взаимодействия при низких энергиях / $E\,\leq\,1\,$ кэВ/, например, в реакциях типа

 $d + {^7}Li \rightarrow d + T + {^4}He$,

 $T + {}^{6}Li \rightarrow d + T + {}^{4}He.$

Для мезомолекулярных систем $pd\mu$ и $dd\mu$ и др. нет экспериментальных указаний на резонансное поведение сильновзаимодействующих подсистем, т.е. pd, dd, при низких энергиях, что приводит к заключению о невозможности перестройки спектра этих систем.

ЛИТЕРАТУРА

- 1. Зельдович Я.Б. ФТТ, 1959, 1, с.1637.
- 2. Кудрявцев А.Е., Маркушин В.Е., Шапиро И.С. ЖЭТФ, 1978,74, c.432; Попов В.С., Кудрявцев А.Е., Мур В.Д. ЖЭТФ, 1979,77, c.1727.
- 3. Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции. М., "Наука", 1976.
- 4. Ajzeuberg F. Nucl.Phys., 1979, A320, p.1.
- 5. Быстрицкий В.Н. и др. ОИЯИ, Д1-12696, Дубна, 1979.
- 6. Deer S. et al. Phys.Rev., 1954, 96, p.774.
- 7. Зельдович Я.Б., Герштейн С.С. УФН, 1960, 71, с.581.
- 8. Flowers B.H. Proc.Roy.Soc., 1951, 204, p.503.
- 9. Виницкий С.И. и др. ОИЯИ, Р4-13036, 1980, Дубна.

Рукопись поступила в издательский отдел 10 июня 1980 года.