

Объединенный институт ядерных исследований

дубна

P4-80-3

11/8-80

3792/2-80

Ю.А.Аристов, А.В.Кравцов, Н.П.Попов, Г.Е.Солякин, Н.Ф.Трускова, М.П.Файфман

МОЛЕКУЛЯРНЫЙ МЕХАНИЗМ ПЕРЕЗАРЯДКИ МЕЗОАТОМОВ ВОДОРОДА НА ЯДРАХ ГЕЛИЯ

Направлено в ЯФ



#### 1. ВВЕДЕНИЕ

Теоретическое  $^{/1/}$  и экспериментальное  $^{/2/}$  исследование  $\mu$ -катализа реакций синтеза ядер изотопов водорода требует вычисления скоростей различных мезомолекулярных процессов  $^{/3/}$ . К настоящему времени выполнено несколько таких расчетов, однако для некоторых процессов необходимо более детальное изучение  $^{/4,5/}$ .

В данной работе рассмотрены реакции перезарядки типа

$$^{1}$$
 p $\mu$  +  $^{3}$ He<sup>++</sup> + ( $^{8}$ He $\mu$ )<sup>+</sup> + p, (1)

в которых  $\mu^{-}$  -мезон переходит из основного состояния мезоатомов р $\mu$ ,  $d\mu$  и  $t\mu$  в основное состояние мезоатомов  ${}^{3}{
m He}\mu$  и  ${}^{4}{
m He}\mu$ и в результате выбывает из процессов  $\mu$  -катализа.

Согласно выполненным ранее расчетам  $^{6,7/}$  скорость перезарядки для реакций типа /1/ равна  $\lambda_{ex} \sim 10^{-6}$  с<sup>-1</sup> и мала по сравнению со скоростями основных процессов, сопровождающих  $\mu$  -катализ  $^{74/}$ . Малая величина этой скорости объясняется отсутствием пересечений и псевдопересечений между молекулярным термом 2р $\sigma$ , соответствующим системе типа  $p\mu + {}^{3}\text{He}^{++}$ , и термами системы  $({}^{8}\text{He}\mu)^{+}+p$ .

В настоящей работе предложен новый механизм реакций перезарядки, схематично изображенный на <u>рис.1</u>. Суть такого процесса, имитирующего прямую перезарядку /1/, заключается в том, что если в терме 2po существуют связанные состояния системы вида (<sup>8</sup> Нерµ)<sup>++</sup>, то при столкновении мезоатомов изотопов водорода с ядрами изотопов гелия образуются промежуточные комплексы - мезомолекулы, которые затем распадаются на мезоатом гелия и ядро изотопа водорода.

Образование мезомолекул происходит в возбужденном состоянии 2pµ /по движению µ-мезона/:

$$p_{\mu} + {}^{9}He \rightarrow [({}^{9}Hep_{\mu})*e^{-}]^{+} + e^{-},$$
 /2/

а выделившуюся энергию связи мезомолекулы уносит электрон конверсии. В дальнейшем возможен переход мезомолекулы из возбужденного в основное состояние, соответствующее терму 1во. Этот переход осуществляется либо с конверсией на электроне атомного иона, ядром которого является рассматриваемая молекула, либо Рис.1. Схема молекулярной перезарядки мезоатомов водорода на ядрах гелия. Термы 2ра и 1sa соответствуют при R → ∞ системам pµ + He<sup>++</sup> и p + (Heµ)<sup>+</sup>. Слева схематически изображен спектр У-квантов, испущенных при девозбуждении мезомолекул.



как радиационный:

$$[(^{3}\text{Hep}\mu)*e^{-}] + [(^{3}\text{Hep}\mu)^{++} e^{-}] + \gamma .$$
 /3a/  
 [(^{3}\text{Hep}\mu)^{++} e^{-}] + \gamma . /36/

В терне 1so нет связанных состояний, и поэтому мезомолекула диссоциирует на ядро изотопа водорода и мезоатом гелия:

$$({}^{3}\text{Hep}_{\mu})^{++} \rightarrow ({}^{3}\text{He}_{\mu})^{+} + p$$
. /4/

Таким образом, на конечной стадии цепочки процессов /2/-/4/, как и в случае прямой перезарядки /1/, µ-мезон оказывается в основном состоянии мезоатома гелия.

В работе вычислены уровни энергий мезомолекул  ${}^{3}$  Нер $\mu$ ,  ${}^{4}$  Нер $\mu$ ,  ${}^{3}$  Нес $\mu$ ,  ${}^{4}$  Нес $\mu$ ,  ${}^{4}$ 

### 2. ОБРАЗОВАНИЕ МЕЗОМОЛЕКУЛ

При рассеянии мезоатомов водорода на ядрах гелия происходят реакции типа /2/, в результате которых образуются своеобразные атомные ионы, ядрами которых являются мезомолекулы, а выделившаяся энергия передается одному из электронов атома гелия. Подобный механизм образования мезомолекул подробно рассматривался в работах  $^{/3,8\cdot10/}$ , в которых было отмечено, что основную роль в этом процессе играют электрические дипольные E1 - переходы.

В данной работе вычисление скоростей образования мезомолекул, состоящих из ядер изотопов водорода и гелия, проведено на основе схемы расчетов, последовательно изложенной в работе<sup>/10</sup>. Выражение для скорости образования мезомолекул с конверсией электрона имеет вид <sup>/3,10/</sup>

$$\lambda = \frac{64\pi^2}{3} (N_0 a_e^3) \left(\frac{m_e}{m}\right)^5 \frac{Z_0^3}{q} |I(q)|^2 |\langle d \rangle|^2 \frac{m_e^2}{h^3} e^{-1} .$$
 /5/

Здесь N<sub>0</sub>=4,25·10<sup>22</sup> см<sup>-3</sup> – плотность жидкого водорода, q =  $[2m_e(|\epsilon_{J_V}| + \epsilon_0 - |\epsilon_1|)]^{\frac{1}{16}}$  – импульс электрона конверсии, m<sub>e</sub> – масса электрона,  $\epsilon_1 = -24,58$  эВ – энергия связи электрона в основном состоянии атома гелия,  $a_e = \frac{1}{2}^2/m_e e^2$  – атомная единица длины,  $\epsilon_{J_V}$  – энергия связи мезомолекулы в состоянии с орбитальным моментом J и колебательным квантовым числом v,  $\epsilon_0 = \frac{k_0^2}{2M}$  – энергия относительного движения мезоатома водорода и ядра гелия, M – эффективная масса системы трех тел, состоящей из  $\mu^-$  -мезона, ядра изотопа водорода M<sub>1</sub> и ядра изотопа гелия M<sub>2</sub>/112

$$M = \frac{M_0}{m}, \ \frac{1}{M_0} = \frac{1}{M_1} + \frac{1}{M_2}, \ \frac{1}{m} = \frac{1}{m_{\mu}} + \frac{1}{M_1}.$$
 /6/

Значение I(q) в атомных единицах равно /10/

$$I(q) = \left[\frac{\eta}{(1 - e^{-2\pi\eta})(1 + \eta^2)}\right]^{\frac{1}{2}} \left[(1 + \frac{Z_0}{Z^*})\exp(-2\eta \operatorname{arcctg}\frac{Z_0}{q}) + 1 - \frac{Z_0}{Z^*}\right], \quad /7/$$

где  $\eta = Z^*/q$ ,  $Z_0 = 1,6875$  – эффективный заряд ядра иона  $H_B^{+/12/}$ ,  $Z^*$  – эффективный заряд системы типа [(Hepµ)e]<sup>+</sup>.

Величина (<d>)<sup>2</sup> определена следующим образом:

$$|\langle d \rangle|^{2} = \frac{1}{4\pi} \sum_{m_{J}} |\int d\vec{R} \, d\vec{r} \, \Psi^{(f)}(\vec{r}, \vec{R}) \, \vec{d}(\vec{r}, \vec{R}) \, \Psi^{(i)}(\vec{r}, \vec{R}) | . \qquad /8/$$

Здесь  $\vec{R}$  - радиус-вектор, соединяющий ядра водорода и гелия,  $\vec{r}$  - радиус-вектор  $\mu$ -мезона с началом в середине отрезка R,  $\vec{d}$  - дипольный момент системы, состоящей из ядра изотопа водорода, ядра изотопа гелия и  $\mu$ -мезона:

$$\vec{d} = -e \left[ \left[ \frac{\kappa}{2} \left( 1 - \frac{2m_{\mu}}{M_{tot}} \right) - \frac{M_{1}}{M_{1} + M_{2}} \right] \vec{R} + \left( 1 + \frac{2m_{\mu}}{M_{tot}} \right) \vec{r} \right],$$

$$\kappa = \frac{M_{2} - M_{1}}{M_{2} + M_{1}}, \quad M_{tot} = M_{1} + M_{2} + m_{\mu}.$$
(9)

Волновые функции  $\Psi^{(i)}(\vec{r},\vec{R})$  и  $\Psi^{(0)}(\vec{r},\vec{R})$  представляют соответственно систему мезоатома водорода (pµ)+ ядро гелия ( ${}^{3}\text{He}^{++}$ ) и образовавшуюся мезомолекулу ( ${}^{3}\text{Hep}\mu$ ). В одноуровневом приближении адиабатического нетода решения задачи трех тел ${}^{/14/}$  эти волновые функции имеют вид

$$\Psi^{(i,f)}(\vec{r},\vec{R}) = \Phi_1(\vec{r};R) \phi_1^{(i,f)}(\vec{R}), \qquad /10/$$

где  $\Phi_1(\vec{r}; \mathbf{R}) = \Phi_{2p\sigma}(\vec{r}; \mathbf{R})$  является решением задачи двух центров <sup>/15/</sup> и представляет движение  $\mu^-$ -мезона в поле двух закрепленных ядер / р и <sup>3</sup>He<sup>++</sup> / в состоянии  $2p\sigma$ . Волновые функции  $\Phi_1(\vec{r}; \mathbf{R})$  ортонормированы условием

$$\int d\vec{r} \Phi_{i}(\vec{r}; R) \Phi_{j}(\vec{r}; R) = \delta_{ij} . \qquad (11)$$

Численные расчеты показывают, что учет в выражении /10/ энергетически более низкого состояния 1so практически не влияет на результаты вычислений скоростей образования мезомолекул /5/.

Волновые функции  $\phi_1^{(i,f)}(\vec{R})$  представляют относительное движение ядер в начальном и конечном состояниях и равны соответственно  $70^{-10}$ 

$$\phi_{1}^{(i)}(\vec{R}) = \frac{1}{\sqrt{v_{0}}} \sum_{J=0}^{\infty} i^{J} (2J+1) \frac{1}{k_{0}R} \chi_{1}^{(i)}(R) P_{J}(\cos\theta), \qquad (12a)$$

$$\phi_{1}^{(f)}(\hat{R}) = \frac{1}{R} \chi_{1}^{(f)}(R) Y_{Jm_{J}}(\theta, \Phi) , \qquad (126)$$

где  $\underline{k}_{0}^{2} = 2M\epsilon_{0}$ ,  $v_{0} = k_{0} / M$ ,  $\theta$ ,  $\Phi$  - угловые координаты вектора  $\overline{R} = \overline{R}(R, \theta, \Phi)$ . Волновая функция  $\phi_{1}^{(i)}(\overline{R})$  нормирована на единичную плотность потока в падающей плоской волне  $^{/12/}$ , а волновая функция  $\phi_{1}^{(i)}(\overline{R})$  - условием

$$\int d\vec{R} |\phi_{1}^{(f)}(\vec{R})|^{2} = 1.$$

Радиальные функции  $\chi_{1}^{(i,0)}(R)$  являются решениями уравнения

$$\frac{d^2 \chi_1^{(1,1)}}{dR^2} + [2M_{\ell} - \frac{J(J+1)}{R^2} - V(R)]\chi_1^{(1,1)} = 0, \qquad (13)$$

Эффективный потенциал V(R), выраженный через терм  $E_{2p\sigma}$  задачи двух центров и через матричные элементы от оператора  $\Lambda_{\vec{R}}$  по волновым функциям  $\Phi_{2p\sigma}(\vec{r};R)$ , вычислен с помощью алгоритма, приведенного в работе  $^{\prime 16\prime}$ .

Для начального состояния выполняются следующие граничные условия:

$$\chi_{1}^{(i)}(0) = 0, \qquad (14/2)$$

$$\chi_{1}^{(i)}(R) \approx \sin(k_{0}R - \frac{\pi J}{2} + \delta_{J}).$$

Уровни энергии мезомолекул находятся из уравнения /13/ и граничных условий

$$\chi_{1}^{(f)}(0) = 0,$$
  
 $\chi_{1}^{(f)}(R) = \exp[-(-2M\epsilon_{Jv})^{\frac{1}{2}} R].$ 
(15/

Функция  $\chi_1^{(f)}(R)$  нормирована условиен  $\int_0^{\infty} dR [\chi_1^{(f)}(R)]^2 = 1$ , а функция  $\chi_1^{(i)}(R)$  нормирована на единичную амплитуду при  $R \to \infty$ . Значения энергий столкновения  $\epsilon_0$  и связи  $\epsilon_{Jv}$  отсчитываются от основного уровня энергии изолированного мезоатома водорода /рис, 1/.

Функции  $\chi_1^{(i,f)}(\mathbf{R})$  и уровни энергии  $\epsilon_{Jv}$  были вычислены нами различными методами. Грубые оценки, подтверждающие существование связанных состояний, были получены при аппроксимации эффективного потенциала V(R) в уравнении /13/ функцией Морзе <sup>/3/</sup>. Для более точных вычислений уравнение /13/ с граничными условиями /14/ и /15/ было решено численно как задача Коши с заданными начальными условиями. Вместе с тем, для решения уравнения /13/ с граничными условиями /14/ использовался метод фазовых функций <sup>/17/</sup>, а в случае граничных условий /15/ был выбрак алгоритм, использующий непрерывный аналог метода Ньютона <sup>/13/</sup>. Результаты, полученные различными методами, согласуются с относительной точностью  $-10^{-2} - 10^{-3}$ .

Согласно выражениям /9/, /10/, /12а,б/ окончательный вид матричного элемента <d>в формуле /8/ следующий:

$$= J_1 + J_2,$$
 /16/

где

$$J_{1} = \left[\frac{\kappa}{2}\left(1 - \frac{2m\mu}{M_{tot}}\right) - \frac{M_{1}}{M_{1} + M_{2}}\right] \frac{1}{k_{0}} \int_{0}^{\infty} \chi_{1}^{(i)}(R) \chi_{1}^{(f)}(R) R dR,$$
  

$$J_{2} = \left(1 + \frac{2m\mu}{M_{tot}}\right) \frac{1}{k_{0}} \int_{0}^{\infty} \chi_{1}^{(i)}(R) \chi_{1}^{(f)}(R) D(R) dR,$$
  

$$D(R) = \frac{R}{R} \int \Phi_{1}^{2}(\vec{r}; R) \vec{r} d\vec{r}.$$
/17/

Подробности вычислений величин, входящих в формулы /5/, /17/, приведены в работе  $^{/10/}$ .

## 3. ДЕВОЗБУЖДЕНИЕ МЕЗОМОЛЕКУЛ

Рассмотренный механизм приводит к образованию мезомолекул в возбужденном молекулярном состоянии  $2p\sigma$  с орбитальным моментом J=1 и колебательным квантовым числом v = 0. Основной молекулярный терм 1s\sigma является отталкивательным  $^{(7,15)}$  и соответствует непрерывному спектру системы  $\mu$ -мезоатом гелия + ядро изотопа водорода. Переход из состояния  $2p\sigma$  с уровня J=1, v = 0 в состояние 1so с J = 0 возможен как электрический дипольный переход E1, сопровождающийся конверсией электрона /3a/ или испусканием y -кванта /36/.

Процессы девозбуждения мезомолекулы с конверсией на электроне рассмотрены в работах <sup>/3,9,20 /</sup>. Скорость девозбуждения, соответствующая относительному движению частиц в конечном состоянии в интервале импульсов k и k + dk равна <sup>/20/</sup>

$$d\lambda_{e}(k) = \frac{32\pi^{2}}{3} \left(\frac{m_{e}}{m}\right)^{2} \frac{Z_{0}^{3}}{q} |I(q)|^{2} \frac{|\langle d \rangle|^{2}}{2J+1} d\vec{k} \frac{m_{e}e}{h^{3}} c^{-1}.$$
 (18)

Здесь использованы обозначения формулы /5/ и определения /6/-/8/.

Волновая функция  $\Psi^{(1)}(\vec{r},\vec{R})$  начального состояния мезомолекулы в матричном элементе дипольного момента /8/ есть функция  $\Psi^{(1)}(\vec{r},\vec{R})$ , определенная выражением /10/. Волновая функция  $\Psi^{(1)}(\vec{r},\vec{R})$ , представляющая систему мезоатом гелия + ядро изотопа водорода, в адиабатическом приближении без учета закрытого верхнего канала  $2p\sigma$  равна

$$\Psi^{(f)}(\vec{r},\vec{R}) = \Phi_{g}(\vec{r};R) \phi_{2}^{(f)}(\vec{R}) , \qquad /19/$$

где волновая функция  $\Phi_2(\vec{r}; R) = \Phi_{1s\sigma}(\vec{r}; R)$  является по-прежнему решением задачи двух центров, для которой остаются справедливыми соотношения /11/.

Волновая функция  $\phi_2^{(f)}(\mathbf{\hat{R}})$  описывает относительное движение ядер в конечном состоянии и должна иметь вид  $^{\prime 12^{\prime }}$ 

$$\phi_{2}^{(f)}(\vec{R}) = \frac{1}{4\pi k} \sum_{J=0}^{\infty} i^{J} (2J+1) e^{-i\delta J} \frac{1}{R} \chi_{2}^{(f)}(R) P_{J}(\cos\theta), \qquad /20/$$

где  $\mathbf{k}^2 = 2\mathbf{M}\epsilon$ ,  $\theta$  - угол между векторами  $\mathbf{k}$  и  $\mathbf{R}$ . Функции  $d_2^{(1)}(\mathbf{R})$  нормированы на  $\delta(\mathbf{k} - \mathbf{k}')$ .

Функция  $\chi \frac{(0)}{2}(\mathbf{R})$  является решением уравнения /13/ с граничными условиями

$$\chi \frac{(f)}{2}(0) = 0,$$

$$\chi \frac{(f)}{2}(R) = \sqrt{\frac{2}{\pi}} \sin(kR - \frac{\pi J}{2} + \delta_J).$$
(21/

Интегрируя по координатам г и R и усредняя по проекциям m<sub>J</sub> начального состояния в формуле /8/, получим

$$\frac{|\langle d \rangle|^2}{2J+1} = \frac{1}{48\pi^2 k^2} J_{12}^2, \qquad (22)$$

где

$$J_{12} = (1 + \frac{2m_{\mu}}{M_{10t}}) \int_{0}^{\infty} \chi_{2}^{(f)}(R) \chi_{1}^{(1)}(R) D_{12}(R) dR ,$$

$$D_{12}(R) = \frac{\vec{R}}{R} \int d\vec{r} \Phi_{1s\sigma}(\vec{r}; R) \vec{r} \Phi_{2p\sigma}(\vec{r}; R) .$$
/23/

С учетом выражения /22/ и соотношения  $k = 2M \epsilon$  скорость перехода /18/ равна

$$d\lambda_{e}(\epsilon) = \frac{8\pi}{9} \left(\frac{m_{e}}{m}\right)^{2} \frac{Z_{0}^{3}}{q} |I(q)|^{2} J_{12}^{2} \rho(\epsilon) d\epsilon \frac{m_{e}a^{4}}{h^{3}} c^{-1} , \qquad /24/$$

где

$$\rho(\epsilon) = \sqrt{\frac{M}{2\epsilon}} . \qquad (25)$$

7

Формула для скорости дипольного радиационного перехода, соответствующая разлетанию частиц в интервале импульсов  $\vec{k}$  и  $\vec{k}$  + d $\vec{k}$ , имеет хорошо известный вид  $^{/18,19/}$ :

$$d\lambda_{\gamma}(k) = \frac{16\pi}{3} \left(\frac{\alpha E_{\gamma}}{\epsilon_{m}}\right)^{3} \frac{|\langle d \rangle|^{2}}{2J+1} d\vec{k} \frac{me^{4}}{\hbar^{3}} e^{-1} , \qquad /26/$$

где  $E_{\gamma}$  - энергия испущенного фотона /<u>рис.1</u>/,  $\alpha = e^{2}/\hbar c$  постоянная тонкой структуры,  $\epsilon_{\rm m} = {\rm me}^4/\hbar^2$  - единица энергии задачи. Матричный элемент дипольного момента <d>, как и в случае перехода с конверсией, определяется формулами /8/, /22/. В выражении /26/ выделены размерные множители:  $a_{\rm m}^{-3/2}$ ,  $a_{\rm m}^{-3/2}$ . ( $a_{\rm m} = \hbar^2/{\rm me}^2$ ) и 1 соответственно для функций  $\Phi_{\rm j}({\bf r};{\bf R}), \phi_{\rm l}^{({\bf i})}({\bf R})$ и  $\phi_{\rm S}^{({\bf R})}$ , содержащихся в определении /8/ величины <d>.

Скорость радиационного перехода с учетом выражения /22/ и замены переменной k  $^2 = 2M \epsilon$  равна

$$d\lambda_{\gamma}(\epsilon) = \frac{4}{9} \left(-\frac{\alpha E \gamma}{\epsilon_{m}}\right)^{3} J_{12}^{2} \rho(\epsilon) d\epsilon \frac{me^{4}}{\pi^{3}} c^{-1} . \qquad /27/$$

Коэффициент конверсии в случае электрического дипольного перехода E1 равен

$$\beta(E1) = \frac{\lambda_{e}}{\lambda_{\gamma}} = 2\pi \left(\frac{\epsilon_{me}}{\alpha E_{\gamma}}\right) - \frac{Z_{0}^{3}}{q} |I(q)|^{2} =$$

$$= \frac{\pi}{8} Z_{0}^{3} a^{4} \left(\frac{2m_{e}c^{2}}{\hbar\omega}\right)^{7/2} |I(q)|^{2},$$
(28)

где  $\epsilon_{\rm m} = m_{\rm e} e^4 / \hbar^2$ ,  $\omega = E_{\gamma} / \hbar$ , с - скорость света.

## 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В табл.1 приведены вычисленные уровни энергий мезомолекул, состоящих из изотопов водорода и гелия. Мезомолекулы <sup>3</sup> Нерд и <sup>4</sup> Нерд существуют в двух вращательных состояниях с орбитальными моментами J = 0 и J = 1 и колебательным числом v = 0. Для мезомолекул <sup>3</sup> Недд , <sup>4</sup> Недд , <sup>3</sup> Нецд , <sup>4</sup> Нецд возможны три связанных состояния: по одному уровню (v = 0) в состояниях J = 0,1,2. Особо следует отметить существование в мезомолекул лах уровня в состоянии J = 1, на который при столкновении мезо-атомов водорода с атомами гелия возможен дипольный переход, обеспечивающий эффективный механизм молекулярной перезарядки.

| Энергии связи мезомолекул |                     |       |                   |      |                   |       |  |  |  |
|---------------------------|---------------------|-------|-------------------|------|-------------------|-------|--|--|--|
| L                         | . <sup>3</sup> Нерµ | "Нерµ | <sup>3</sup> Hedµ | Hedu | <sup>3</sup> Hetµ | "Hetµ |  |  |  |
| 0                         | 67,2                | 73,9  | 69,5              | 77,6 | 71,6              | 80,5  |  |  |  |
| I                         | 34,2                | 41,6  | 46,5              | 55,9 | 52,4              | 62,9  |  |  |  |
| 2                         | -                   | -     | 7,25              | 16,7 | 18,2              | 30,8  |  |  |  |

Мезомолекулы существуют лишь в состояниях v = 0. В вычислениях приняты следующие значения масс /в единицах массы электрона/  $^{/22/}$ : m<sub>µ</sub> = 206,769; M<sub>p</sub> =1836,152; M<sub>d</sub> = 3670,398; M<sub>t</sub> = = 5496,918; M<sub>3</sub> = 5495,882; M<sub>4 He</sub> = 7294,195.

Таблица 2

| Ę. (3B) | <sup>3</sup> Нерµ | "Нери | <sup>3</sup> Hedµ | "Hedy | <sup>3</sup> Het <sub>ju</sub> | "Hety |
|---------|-------------------|-------|-------------------|-------|--------------------------------|-------|
| 0,004   | 0,91              | 0,47  | I,77              | 3,37  | I4,2                           | 2,84  |
| 0,04    | 0,87              | 0,44  | 1,48              | 2,03  | 5,62                           | I,98  |
| 1,0     | 0,83              | 0,41  | I,22              | I,29  | 2,98                           | I.34  |
| Ι,Ο     | 0,57              | 0,27  | 0,47              | 0,28  | 0,51                           | 0.26  |
| 10,0    | 0,18              | 0,085 | 0,10              | 0,050 | 0,085                          | 0.039 |
| 20,0    | 0,09              | 0,044 | 0,052             | 0,025 | 0.041                          | 0.018 |

Вычисленные значения соответствуют E1 -переходам из состояния J =0 непрерывного спектра в состояния J =1, v = 0 мезомолекул, энергии связи которых представлены в табл.1.

В табл.2 представлены скорости образования мезомолекул в зависимости от энергии столкновения мезоатома изотопа водорода и ядра гелия. Основной погрешностью в приведенных величинах является замена иона типа  $[({}^{3}{\rm Hep}\mu)e]^{+}$ , в поле которого движется электрон конверсии, кулоновским центром с эффективным зарядом  $Z^{*}=Z_{0}$ . Такой выбор представляется оправданным ввиду

того, что размеры мезомолекул на два порядка меньше атомных, а энергия, передаваемая электрону конверсии, примерно равна его энергии связи в атоме гелия, т.е. длина волны испущенного электрона сравнима с размерами атома.

При варъировании значения Z\* в пределах  $1 \le Z* \le Z_0$  величины скоростей образования мезомолекул изменяются на 20-40%. На <u>рис.2</u> представлены скорости образования мезомолекул <sup>3</sup>Hetµ, <sup>4</sup>Hetµ как функции энергии столкновения  $\epsilon_0$ . Из <u>табл.2</u> и <u>рис.2</u> видно, что скорости  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\mu_{1}$ ,  $\lambda_{1}_{Hedµ}$ ,  $\lambda_{1}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\lambda_{2}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ ,  $\lambda_{3}_{Hedµ}$ ,  $\lambda_{4}_{Hedµ}$ 

При вычислении скорости девозбуждения мезомолекул в основное состояние использован принцип Франка-Кондона, согласно которому из-за малости отношения массы мезона к массам ядер положение ядер в мезомолекуле за время перехода практически не меняется.

<sup>20</sup> λ, τσ<sup>4</sup> c<sup>-1</sup>

08

Замена в выражении /27/  $\rho(\epsilon) d\epsilon \rightarrow \rho(\epsilon) \Delta \epsilon$ , где  $\epsilon_{max}$  отвечает максимальному выходу  $\gamma$ -квантов,  $\Delta \epsilon$  - полуширина линии излучения /рис.1/, приводит к следующей оценке для величины скоростей девозбуждения мезомолекул:

 $\lambda_{\gamma} \sim 10^{-12} \ \mathrm{c}^{-1}$  .

При таком переходе / Е  $_{y} \approx 7$  кэВ,  $\pi/2 |I(q)| \approx 1$  определение /28/ совпадает с выражением для обычного коэффициента конверсии дипольного ядерного перехода  $^{/21/3}$ , что естественно, поскольку размеры мезомолекул значительно меньше размеров электронной оболочки:

Ea(JB)

12

цессах девозбуждения коэффициент конверсии  $eta \approx 0.15$ , и, таким образом, мезо-

молекулы переходят в

Рис.2.Зависимость скоростей обра-зования мезомолекул $^{3}$ Не $t_{\mu}$ 4 Не $t_{\mu}$ от энергии столкнове-ния  $\epsilon_{0}$ .

\* В отличие от ядерного перехода в данном случае конверсия происходит на одном оставшемся электроне К-оболочки.

# Таблица 3

Скорости перезарядки  $\lambda_{ex}$ , 10<sup>8</sup> с<sup>-1</sup>

| Источных                                      | Р#+ <sup>3</sup> Не | рµ+   | <sup>4</sup> He | dµ + 38 | e dµ + 4He | tµ + <sup>З</sup> не | tμ+ 4He |
|-----------------------------------------------|---------------------|-------|-----------------|---------|------------|----------------------|---------|
| Schiff (1961)                                 | 4                   |       |                 | 0       |            |                      |         |
| Займидорога<br>и др. (1963)                   | < I                 |       |                 | -       |            |                      | -       |
| Placci et al. (1962)                          |                     |       |                 | ۷۵      | ,I         |                      |         |
| Геритейн (1962)                               | ~10 <sup>-3</sup>   |       |                 | -       |            |                      | -       |
| Матвеенко и<br>Пономарев (1972)               | 0,063               | 0,055 |                 | 0,013   | 0,010      | -                    |         |
| Данная работа<br>при 8 <sub>0</sub> = 0,04 эВ | 0,87                | 0,44  |                 | 1,48    | 2,03       | 5,62                 | I,98    |

основное состояние большей частью за счет радиационного перехода со скоростью  $\lambda_y \sim 10^{12} \, {\rm c}^{-1}$ . Отсюда следует, что скорость перезарядки /1/ определяется скоростью образования незомолекул.

В табл.3 приведены измеренные и вычисленные скорости перезарядки. Отметни имеющиеся расхождения между экспериментальными оценками <sup>/28/</sup>и величинами, вычисленными в настоящей работе. Причина же отличия от прежних теоретических расчетов заключена в том, что в данной работе рассмотрен новый механизм перезарядки – молекулярный. Для подтверждения существования такого механизма и устранения расхождений с экспериментальными оценками было бы желательно провести прямой эксперимент по измерению скоростей перезарядки мезоатомов изотопов водорода на ядрах гелия.

## 5. ЗАКЛЮЧЕНИЕ

Вычисленные в данной работе скорости перезарядки представляют определенный интерес для экспериментов по изучению поведения  $\mu^-$ -мезонов в смеси изотопов водорода и гелия. Поскольку скорости образования мезомолекул  $dt\mu$  и <sup>3</sup>Hed $\mu$ , <sup>4</sup>Hed $\mu$ , <sup>3</sup>Het $\mu$ , <sup>4</sup>Het $\mu$  примерно одинаковы, то перезарядка мезоатомов водорода на ядрах гелия существенно влияет на кинетику процессов, сопровождающих  $\mu$ -катализ в смеси дейтерия и трития <sup>757</sup>. Достигнутую в данной работе точность вычислений при необходимости можно повысить, учитывая в разложении /10/ высшие состояния задачи двух центров, а также рассмотрев переходы  $\mu^-$  -мезона из возбужденных состояний мезоатома водорода в возбужденные состояния мезоатома гелия.

В заключение авторы выражают глубокую благодарность С.С.Герштейну, И.В.Комарову, Л.И.Пономареву за многочисленные полезные обсуждения, С.И.Виницкому, Т.П.Пузыниной, Л.Н.Сомову за помощь на различных этапах работы.

#### ЛИТЕРАТУРА

- 1. Gerstein S.S., Ponomarev L.I. Phys.Lett., 1977, 72B, p.80.
- 2. Быстрицкий В.М. и др. Письма в ЖЭТФ, 1980, 31, с.249.
- Зельдович Я.Б., Герштейн С.С. УФН, 1960, 71, с.581; Gerstein S.S., Ponomarev L.I. Mesomolecular Processes Induced by µ<sup>-</sup> and n<sup>-</sup> -Mesons. In: Muon Physics, Ed. W.Hughes, C.S.Wu. Academic Press, New York, 1975, v.111, p.143.
- Ponomarev L.I. Proc. of the VI Int. Conf. on Atomic Phys., August 17-22, 1978. "Zinante", Riga, Plenum Press, New York and London, 1978, p.182.
- 5. Герштейн С.С. и др. ОИЯИ, Р4-12910, Дубна, 1979.
- 6. Герштейн С.С. ЖЭТФ, 1962, 43, с.706.
- 7. Матвеенко А.В., Пономарев Л.И. ОИЯИ, Р4-6254, Дубна, 1972.
- 8. Беляев В.Б. и др. ЖЭТФ, 1959, 37, с.1652.
- Cohen S., Judd D.L., Riddel R.J. Phys.Rev., 1960, 119, p.384.
- 10. Пономарев Л.И., Файфман М.П. ЖЭТФ, 1976, 71, с.1689.
- Ponomarev L.I., Vinitsky S.I. J.Phys.B: Atom.Molec.Phys., 1979, 12, p.567.
- Ландау Л.Д., Лифшиц Е.М. Квантовая механика. "Наука", М., 1974.
- Ponomarev L.I., Puzynin I.V., Puzynina T.P. J.Comp.Phys., 1973, 13, p.1.
- 14. Матвеенко А.В., Пономарев Л.И. ТМФ, 1972, 12, с.64.
- Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции. "Наука", М., 1976; Bates D.R., F.R.S., Carson T.R. Proc.Roy.Soc., 1950, A234, p.207; Пономарев Л.И., Пузынина Т.П. ЖЭТФ, 1967, 52, с.1273; Winter T.G., Duncan M.D., Lane N.F. J.Phys.B: Atom.Molec. Phys., 1977, 10, p.285.
- 16. Трускова Н.Ф. ОИЯИ, Р11-11218, Дубна, 1978.

- Бабиков В.В. Метод фазовых функций в квантовой механике.
   "Наука", М., 1976; Файфман М.П. ЯФ, 1977, 26, с.433.
- 18. Дирак П.А. Принципы квантовой механики. "Наука", М., 1979.
- Coolidge A.S., James H.M., Present R.D. J.Chem.Phys., 1936, 4, p.193; Mies F.H., Smith A.L. J.Chem.Phys., 1966, 45, p.994; Mies F.H. Mol.Phys., 1973, 26, p.1233.
- 20. Пономарев Л.И., Файфман М.П. ОИЯИ, Р4-10635, Дубна, 1977.
- Блатт Д.М., Вайскопф В.Ф. Теоретическая ядерная физика. ИИЛ, М., 1954.
- Cohen E.R., Taylor B.N. J.Phys.and Chem. Ref.Data, 1973, 2, p.663.
- 23. Займидорога О.А. и др. ЖЭТФ, 1963, 44, с.1852; Schiff M. Nuovo Cim., 1961, 22, р.66; Placci A. et al. Nuovo Cim., 1967, 52A, р.1274.

Рукопись поступила в издательский отдел 29 мая 1980 года.