СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P4

3938/2-44

C341a

K-21

11 11 11

........

Д.Караджов

АППРОКСИМАЦИЯ МОМЕНТА ИНЕРЦИИ КАК ФУНКЦИЯ ЭНЕРГИИ РОТАЦИОННОГО СОСТОЯНИЯ

2/4.24

7978

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

P4 - 7978

Д.Караджов

٩

٠.

АППРОКСИМАЦИЯ МОМЕНТА ИНЕРЦИИ КАК ФУНКЦИЯ ЭНЕРГИИ РОТАЦИОННОГО СОСТОЯНИЯ

Введение

Реалистическое описание ротационного движения требует знания того, как меняются коллективные характерастнки вращающегося ядра /параметры квадрупольной деформации β и γ , парные параметры Λ_n , Λ_n и т.д./ с увеличением угловой частоты вращения /или спина/. Имеется ряд гипотез для интерпретации наблюдаеэкспериментального увеличения /или, в обмого момента инерции изменения/ с ростом спищем, Среди возможных причин неалнабатичности Ha. ядерного вращения можно упомянуть: увеличение параметра квадрупольной деформации /т.н. центробежное растяжение ядра/, разрушение куперовских пар при вращение /т.н. кориолисово антиспаривание/, отклонение от акснально-симметричной формы ядра во вращающихся состояниях, сильное взаимодействие ротации с остальными модами и т.д. Эти эффекты неаднабатичности вращения занимают центральное место в современных исследованиях ядерной ротации с точки зрения структуры ядра.

Однако, как известно, изменение разных коллективных параметров ведет к подобным /неразличимым/ отклонениям энергии ротатора от аднабатического закона

$$E_{1} = \frac{I(I+1)}{2 f}$$
 /1/

Благодаря этому факту приходится обращаться к феноменологическим /формальным/ методам описания энергетики вращения реальных ядер. В таких же моделях все неадиабатические эффекты входят обычно вместе (in toto) в формулу для ротационной энергии. Установленную таким путем зависимость вращательной энергии от спина ядерного состояния нужно потом анализировать в рамках определенной микросколической теории, чтобы выделить роль отдельных факторов.

В практически реализуемых случаях задача о феноменологическом описании вращательных энергий сводится к задаче об аппроксимации дискретной функции $-E_1$ /или g_1 / непрерывными, гладкими функциями с конечным числом свободных параметров. Эти последние следует определять решением обратной задачи об описании имеющихся экспериментальных данных по ротационным энергиям рассматриваемой полосы. Задачи такого типа являются переопределенными и имеют статистический характер.

Отметим, что при формулировке феноменологических моделей часто вводятся такие динамические переменные /угловая частота, например/, которые трудно построить в квантовой, микроскопической теории ротации. Это обстоятельство, как и нарастающая сложность используемых аппроксимационных функций, затрудняют микроскопический анализ феноменологических параметров.

В настоящей работе мы исследуем численно предложенный нами /1/ феноменологический подход к описанию энергий основных полос четно-четных ядер, основывающийся на аппроксимации момента инерции функцией /в конкретном случае - полиномом/ от энергии вращающегося состояния: $\int = \int (E_1, \{\bar{b}_k^{(N)}\})$, / $\bar{b}_k^{(N)}$ - свободные параметры модели/. Такой подход /если подставить $\int (E_1)$ в формулу /1// можно рассматривать как "разложение" собственных значений полного спина I по степеням ротационной энергии E_1 , являющееся обратным по отношению к классическим "разложением" Бора-Моттельсона энергии по степеням I(I+1)

$$E_{1} = a_{1}I(1+1) + a_{2}[I(1+1)]^{2} + a_{3}[I(1+1)]^{3} + \dots /2/$$

\$1 настоящей работы отведен для анализа рассматриваемой модели: поставленная переопределенная задача о нахождении параметров $b_k^{(N)}$ исследуется относительно ее обусловленности и корректности: выбран подходящий итерационный метод для ее решения. Сформулирован и использован критерий для определения максимальной степени аппроксимирующего полинома. Рассмотрен вопрос о нахождении статистических ошибок неизвестных $b_k^{(N)}$.Сами решения для ряда ядер редкоземельной области представлены и кратко обсуждаются в \$2.

Аппроксимация момента инерции полиномами от энергии

При описании энергий основных ротационных полос ядер редкоземельной области мы аппроксимируем момент инерции как функцию от энергии состояния $E_1(1=2,4,6,...,M;$ М - четное/, полиномами от $(E_1)^k$ (k=0,1;2,...,N),с выбранной подходящим образом максимальной степенью N

$$\Im(E_{1}, \{\overline{b}_{k}^{(N)}\}) = \sum_{k=0}^{N} \overline{b}_{k}^{(N)}(E_{1})^{k}.$$
 (1.1/

Амплитуды $\vec{b}_{k}^{(N)}$ определяются решеннем следующей нереопределенной системы уравнений, которая получается. из соотношений /1.1/ и /1/:

$$\frac{1}{2} I(I+1) = \sum_{k=1}^{N} b_{k}^{(N)}(E_{1}), \quad I = 2, 4, 6, \dots, M; \quad (N \le \frac{M}{2}). \quad /1.2/$$

Здесь $b_k^{(N)} = \overline{b}_{k-1}^{(N)}$, а Е₁ - экспериментально измеренные энергии состояний рассматриваемой полосы.

Запишем систему /1.2/ в векторном виде

$$Ax = y$$
, /1.3/

где

$$\mathbf{x} = [b_1^{(N)}, b_2^{(N)}, ..., b_N^{(N)}]^T \subset \mathbf{R}^N$$

$$y = \begin{bmatrix} 1 & 1 & (1+1) \end{bmatrix}; \ I = 2, 4, \dots, M \end{bmatrix}^{T} \in \mathbb{R}^{M/2}$$

$$A = \begin{bmatrix} E_{1=2} & (E_{1=2})^{2} & \dots & (E_{1=2})^{N} \\ \dots & \dots & \dots \\ E_{1=M} & (E_{1=M})^{2} & \dots & (E_{1=M})^{N} \end{bmatrix}$$

 $/R^{N}$ и $R^{M/2}$ вещественные координатные пространства с размерностью N иM/2, соответственно. Верхним индексом^{*}T^{*} обозначена операция транслонирования матрицы/.

Решением переопределенной системы /1.3/ "в смысле наименьших квадратов", по определению, является решение х* нормальной задачи

$$(A^{T}A)x = A^{T}y$$
. /1.4/

При решении системы /1.4/ мы сравниваем три разных метода: прямой метод исключения Гаусса (G)², метод обыкновенных итераций Гаусса-Ньктона (GN)² и регуляризованный вариант метода итераций Гаусса-Ньютона (RGN)^{3,4}. Как критерии решения задачи /1.4/ используем функционалы

$$RO = ||(A^{T}A)x - A^{T}y|| \qquad H \qquad \chi^{2} = ||Ax - y||_{s}$$

Здесь в в дальнейшем символ $|| \dots ||$ обозначает равномерную норму вектора ($|| x || = \max_{i} \sum_{j=1}^{n} |A_{ij}|$) вли норму квадратной матрицы ($||A|| = \max_{i} \sum_{j=1}^{n} |A_{ij}|$); символ $|| \dots ||_{s}$

- сферическую норму. Критернем поведения применяемых итерационных процессов может служить число обусловленности матрицы А^ТА Т Т -1

$$COND = ||A^{T}A|| \cdot ||(A^{T}A)^{-1}||.$$

Пусть система /1.4/ задана с ошибкой в правой части Δy . Вызванную ошибку в решении /1.4/ обозначим через Δx . Тогда ямеет место следующая оценка /2/;

/1.5/

 $\frac{||\Delta \mathbf{x}||}{||\mathbf{x}||} \leq \text{COND} \frac{||\Delta \mathbf{y}||}{||\mathbf{y}||}.$

Это неравенство относится к типу неулучшаемых $^{/2/}$, что дает нам возможность /хотя /1.5/ является оценкой сверху/, использовать его при эффективной оценке нормы ошибки Δx .

Отметим некоторые особенности рассматриваемой задачи.

Матрица А в /1.3/, при значениях $E_1^{
m эксп.}$, типичных для деформированных ядер, сродни матрицам типа Гильберта, известным своей плохой обусловленностью / 2/. Обусловленность матрицы $A^T A$ сильно ухудшается с ростом числа N и уже при N \simeq 4-5 задача/1.4/ становится плохо обусловленной.

Исходя из указанных особенностей задачи /1.4/, мы предлагаем отнести ее к типу "некорректно поставленных задач" и воспользоваться для ее решения R -процессами типа Гаусса-Ньютона ^{/3.4/}. В нашем случае, для решения системы /1.4/ использовалась стандартная программа COMPIL /библиотека ОИЯИ/.

В процессе численного анализа задачнаппроксимации /1.4/, мы сравнивали между собой три вышеуказанных метода /G, GN и RGN /.При изучении системы /1.3-1.4/ для рассматриваемых 62 ядер редкоземельной области были сделаны следующие выводы:

а/ прямой метод Гаусса может быть приложен только к задачам аппроксимации с N = 1,2;

б/ в большинстве случаев /при $N \ge 2$ / применение метода обычных итераций (GN) приводило к расходящемуся итерационному процессу. Типичен в этом отношении случай ядра ¹⁶⁸ Yb при N=10;/см. стр. 8 /.

Отметим также, что если GN-и RGN - итерационные процессы сходятся к одному и томуже решению, RGN является, как правило, более оптимальным как по числу необходимых итераций для достижения решения, так и по устойчивости и по независимости от начальных приближений. Например, для ядра ¹⁶⁶ Yb(N = 10) решение системы /1.3-1.4/, для которого

GN- APOLLECC

C EXTITI INTIT RO MAX DEFECT HI SQ TAU COND EPS NCROMMEN 83 380 .7389823E+10 .2973190E+04 .9539139E+07 .7503862E+13 1 0 .1540824E+21 D. работ UNKNOWNS Пe x (1)= +3392504683E+02 x (2)= +3229980469E+01 x (3)= +1427062988E+01 x (4)= -3619405270E+04 x(5)= .4156199604E+01 x(6)= -.2687499739E+01 x(7)= .1082031249E+01 x(8)= -.2363281250E+00 REMBBECTHEX X(9) = .3283691406E - 01 X(10) = -.1625061035E - 02EXTITI INTITT RO HAX DEFECT HI SO TAU COND EPS .2809745E+11 .1128903E+05 .1380717E+09 .7503882E+13 .1540824E+21 8. 2 8 8 ••• UNKNOWNS m x(1)= .3397485352E+02 x(2)= .2495625459E+01 x(3)= .3614562988E+01 x(4)= -.8869405270E+01 ĬĽ x(5)= .1028119960E+02 x(6)= -.5687499739E+01 x(7)= .2394531249E+01 x(8)= -.6113281250E+00 ٦ X(9)= .7092285156E-01 X(10)= -.4585266113E-02 значения EXTITT INTITT RO MAX DEFECT HI SO TAU EPS 8 Ŧ COND 3 -1104129E+12 .4437101E+05 .2131550E+10 .7503862E+13 .1540824E+21 0. a донной цомер UNKNOWNS X(1)≈ .3422875977E+02 X(2)≈ .1206054688E+00 X(3)≈ .1698956299E+02 X(4)≈ -.3211940527E+02 X(5)= .3128119960E+02 X(6)= -.2068749974E+02 X(7)= .4269531249E+04 X(6)= -.1986328125E+01 X(9)= .2896728516E+00 X(10)= -,1361846924E-01 итерации, энергий итерации) RGN - nPOyecc EXTITE INTITE RU MAX DEFECT HI SQ TAU COND FPS 1 0 .5286677E+DA .9184385F+02 .2487668F+05 .7583862F+13 .1000000E+09 .9656434E+05 × UNKNOWNS 2 x(1)= .7037071509E-05 x(2)= .1595350581E-04 x(3)= .3875588842E-04 x(4)= .97406666662E-04 X(5)= .2474850719E=03 X(5)= .6717589761E=03 X(7)= .1498123180E=02 X(8)= .3258553373E=02 HI. # x(9)= .5286676514E-02 x(10)= -.1322754636E-02 FPS EXTITT INTITT 80 MAX DEFECT HT SO TAU COND d-.3468754E+01 .8467904E+01 .1883434E+03 .7503862E+13 .4615932E+13 .2825862E+01 8 <u>''</u> ? 8 UNKNOWNS m x (1)= .13124427275+02 x (2)= .9389474441E+01 x (3)= .6455310500E+01 x (4)= .3392023916E+01 X(5)= .2272184653E+00 X(5)= -.1996152829E+01 X(7)= -.1488317587E+01 X(8)= .1591290830E+01 1 X(9)= -.4267984942E+00 X(10)= .3680359115E-01 BHAVERNO EPS TAU COND EXTITE INTITE HAX DEFECT HT S2 RO ,2251757E-02 6165277E-02 .1161780E-03 .75036E2E+13 .1829333E413 .7277927E+01 n 16 UNKNOWNS x(1)= ,3409020333E+02 x(2)= ,1264348977E+01 x(3)= .9139421597E+01 x(4)= -.1890869875E+02 X (5)= .21097823246+02 X (6)= -.13834475536+02 X (7)= .34911753166+01 X (8)= -.1294889684E+01 x(9)= .1666035782E+00 x(10)= -.8991187650E-02

$$\chi^{2} = 2 \cdot 10^{-16},$$

RO = 7 \cdot 10^{-3},
COND = 8 \cdot 10^{19},

получено после 22 нтераций RGN -методом; здесь же GN -методу необходимы 42 итерации, чтобы достичь решения, для которого

$$\chi^{2} = 5 \cdot 10^{-16},$$

RO = 5 \cdot 10^{-1},
COND = 6 \cdot 10^{-19}.

Остановимся на определении степени (N) аппроксимирующего полинома /1.1/. Для решения этого вопроса воспользуемся сначала оценкой /1.5/. В связи с этим рассмотрим поведение значений чисел χ^2 , RO и COND в конкретном случае ядра ¹⁶⁶ Yb - шабл. 1.

N	n*	χ^2	RO	COND
2	2	4,29.10	4,59.10 ⁻¹¹	3,23.10 ²
3	36	1,93.10	1,00.10-11	3,85.10 ⁴
4	42	1,37.10	7,28.10-10	4,49.10 ⁶
5	I	2,62	1,71.10-8	5,68.10 ⁸
6	38	1,60	5,38.10 ⁻⁹	6,40.10 ¹⁰
IO	22	2,33.10 ⁻¹⁶	7,40,10 ⁻³	8,52.10 ¹⁹

Таблица 1

<u>Примечание.</u> Число п* представляет собой номер итерации, в которой получено решение с наилучшим значением χ^2 .

Как видно из *табл. 1*, возрастание числа обусловленности задачи (COND) сравнимо с ростом 10^{2N-2} . /Эта тенденция сохраняется во всех редкоземельных ядрах/.

При минимальной ошибке во входных данных E_1 порядка 10⁻⁵ МэВ и значениях b_1 порядка 30 МэВ⁻¹ возмущению в матрице A^TA отвечает эквивалентная ошибка в правой части уравнений Δy порядка 10⁻⁴.Подставляя Δy -10⁻⁴ в соотношение /1.5/ /при соответствующих значениях COND , взятых из *табл.* 1/, находим, что задача аппроксимации при N \geq 4 приводит к недопустимо большим ошибкам в неизвестных.

С другой стороны, при приложении формул типа /1.2/ в микроскопических теориях возникают большие трудности, когда значение N превосходит 3; это связано с необходимостью вычисления матричных элементов от степеней оператора энергии / модельного гамильтониана" /1/ / рассматриваемого ядра. Отметим также, что при описании ротационных спектров нечетных ядер /см. §3 работы 1// *, рысшие степени оператора ротационной энергии дают малый вклад в энергию состояния.

На основе сказанного, в расчетах амплитуд $b_k^{(N)}$ для всех рассматриваемых ядер, мы ограничились случаями с N = 2 и 3. /Результаты представлены в следующем параграфе/.

При решении переопределенной задачи /1.3/ ставится вопрос об определении статистических ошибок в параметрах аппроксимации. Для этого мы используем теорию ошибок наименьших квадратов ^{6/}, прилагаемую к наилучшей итерации. Статистические ошибки неизвестных b^(N) вычисляются по формуле ^{7/}

 $\Delta b_{k}^{(N)} = \pm \sqrt{\frac{\chi^{2}}{(M/2-N)}} (A^{T} \hat{G} A)_{kk}^{-1}, \qquad (1.6/$

^{*} Подробнее о приложении предлагаемого феноменологического подхода см. работу: Л.Александров и др. Изв. АН СССР, сер. физ., 36, 1, 2585 /1972/.

где \hat{G} - матрица взвешивания уравнений в системе. Формула /1.6/ оценивает ошибки неизвестных $b_k^{(N)}$ аснмптотически, т.е. она имеет смысл только в том случае, когда число степеней свободы $m = \frac{M}{2} - N$ достаточно большое. Надо отметить, что в большинстве случаев число существующих экспериментальных данных недостаточно велико для хорошей оценки ошибок на основе формулы /1.6/ при N = 3.

Если стандартные отклонения σ^y величин, входящих в правую часть системы /1.3-1.4/, достаточно хорошо определены, матрица взвешивания G берется в виде

$$\hat{\mathbf{G}} = \begin{bmatrix} \frac{1}{(\sigma_1^{\mathbf{y}})^2} & \mathbf{0} \\ \vdots & \vdots \\ \mathbf{0} & \vdots & \frac{1}{(\sigma_{\mathbf{M}}^{\mathbf{y}})^2} \end{bmatrix},$$

Статистеческим критерием успешного решения задачи в этом случае служит праближенное равенство $\chi^{2/m} \approx 1$ /при малом значении функционала RO /. Однако закон распределения ошибок в экспериментально измеряемых величинах $\delta E_1 = E_1 - E_{1-2}$ не известен; это затрудняет нахождение стандартных отклонений величин E_1 , входящих в систему /1.4/ и, следовательно, нахождение эквиналентной ошибки правой части системы /1.4/. Ввиду этого обстоятельства мы решали задачи типа /1.4/ при \hat{G} , равной единичной матрице. При этом формула для енибок /1.6/ остается в силе '8.'.

Наконец, отметим, что вероятность того, чтобы находямые значения величин b^(N), лежали в интервале

$$(b_k^{(N)})^* - \epsilon \Delta b_k^{(N)} \le b_k^{(N)} \le (b_k^{(N)})^* + \epsilon \Delta b_k^{(N)}$$
 /1.7/

 $/(b_k^{(N)})^*$ - решення системы /1.4/, $\Delta b_k^{(N)}$ - статистические ошибки, найденные по формуле /1.6/, ϵ - заданное положительное число/, может быть оценена более корректно, если использовать распределение Стьюдента. Согласно методу Стьюдента-Фишера^{/9/}, эта вероятность является функцией от числа степеней свободы системы /1.4/ - m и от числа ϵ . При помощи таблицы B3^{/9/} мы установили, что при $\epsilon = 1$ найденные нами величины

н

 $b_{k}^{(N)}$ /см. §2/ лежат в интервале /1.7/ с вероятностью

$$P(m = 4,5) \approx 0.80$$

для N = 2 и З.

2. Численные значения амплитуд полиномиальной аппроксимации момента инерции для ядер области 128≲ A≤ 194 /58≤Z≤78/

Здесь мы приводим численные результаты, полученные при решении поставленной в §1 задачи о полиномиальной аппроксимации момента инерции в основной ротационной полосе четно-четных ядер редкоземельной области; максимальная степень аппроксимирующего полинома /1.1/ -N=2 и 3. Экспериментальные значения энергий E_I , входящие в систему /1.3-1.4/, получены на основе данных работы ^{/5/}. При решении задачи /1.4/ были использованы все имеющиеся экспериментальные значения E_I по данному ядру.

данному ядру. Кроме значений параметров $b_k^{(2)}$ и $b_k^{(3)}$ /k=1,2,3/, находили также параметры $a_k^{(2)}$ н $a_k^{(3)}$, входящие в "прямое" разложение Бора-Моттельсона /2/. Для этого, используя метод, описанный в §1, мы решали переопределенную систему

 $E_{I} = \sum_{k=1}^{N} a_{k}^{(N)} [I(I+1)]^{k}$, при N = 2,3. /2.1/

Основные результаты расчетов приводятся в *шабл. 2.* Размерности величин $b_k^{(N)}$ и $a_k^{(N)}$, данных в этой таблице, следующие:

$$[b_1] = M \Im B^{-1}, [b_2] = M \Im B^{-2}, [b_3] = M \Im B^{-3}$$

 $[a_1] = 10^{-3} M \Im B, [a_2] = 10^{-6} M \Im B, [a_3] = 10^{-9} M \Im B.$

Таблица 2

í

.

1

				· • • • • • • • • • • • • • • • • • • •			~		—
Ядро	7. M.16-1		К±1	K+2	K = 3	G.,		<i></i>	.
1	2	3	4	5	6	7	8	9	1*
		4.00	13.845±0.432	4 404 1 8 713	- 0.659 : 0271	\$1.32		930-1	
128	14.472	140	14 912 1 0 310	2.687 10 195	·	6 04		6 500	8.
l Ce		a, ⁽¹⁾	34.469 1 1 147	-218 05: 49 26	1256 8: 47 60		1	\$ 3 10	H
		a"	31.867: 8.850	- 89.45 - 13.44			2 82	7304	
	[6 a	11 491 \$ 4519	4.483 1 0 757	-0.463 : 0 255	18 28		100	
130 0 0	11. 805	6.00	12 336 : 4 397	2 548 : 0 22/		8.37		14	8'
Le		a	41 862 : 2.070	- 335 05 1 88.85	2080.2 : 860 2			3.010-1	M
		a'')	37.223 : / 458	- 122.20 1 22.51			\$ 28	2110'3	
		1.00	5 254 : 3 705	4 544 2 1 867	- 0.038 ± 0 226	82.29		88 1	
12 Co	9.219	SK A	5 829 : / 350	4 232 1 0 298		62 28		41 3	41
ue	ſ	a, ())	42.323 : 1.052	- 151.66 2 9.41	226 . 3 : 19 7			2710	6
		a."	31.381 2017	- 45 00 : 7 10			143	6 210'	
		6 (1)	6 26/ 20456	3442 10 484	- 0395 20118	4390	1	26.0	
134 0	7.331	6.40	7 658 1 8435	1.852 1 0 177		15 79	1	3110'	8*
Ce		a."	66 268 : 5 255	· 753 22: 225 61	· 4928.6121841		1 .	1 910-3	*
		a	55 277: 3445	- 228.81 : 53 81			4 14	1210	
		8,00	2016 : 0438	4 917: 0 608	* 0.624 : 0 195	2971		1410	
34 !	10.204	8.	10.387:0404	2 995 1 0 216	1	13 88		1 610'	8'
"Nd		a."	48 404 2 867	- 478 53: 123 08	3060.3 : // 9/ 5		T	100	H
		a(*)	41 579 1 2 098	- 165 39 : 32 84		1	398	4+10*	
		8,00	4 451 * 0.814	2 599 : 0747	0 476 : 0 163	6618		2610	
	5 452	8,00	2 250 : 0 6/1	4 753 : 0.228	1	459 32		14	101
		a,"	73 776 : 7 040	-788 55: 195.04	34.50 2 : 1243 8	1		23102	5
		a."	55 761 : 5 113	-25/ 11 : 53 72			4 50	110	
		E	5 872 10 182	9 969 + 0.6/3	-1 365 + 229	139.76		1 000 1	
<u>u_</u>		6.1	A 110 + 0 641	5 748 +0 401		43.80		4000'1	1.
័ទ៣		a."	51 212 5 6 816	. 777 61 + 744 50	54.395 . 2417 5		6.17	2400-1	N
	- 1	a'''	41. 187 1 3 803	-221 06 1 59 52	1	1	1	1410	-
		6.41	24 340 : 0.360	8 433 : 0 670	- 1 454 1 0 789	709	1	1.510	
8 a 1	24 415	8."	26 016 + 0 4 14	5 108 2 0 3/8	1	177		1 810	10.
Sm		4.	18 686 * 7 186	- 27 85 + 10 57	286 3: 67.7			6 7/0	-
ł		a'''	18 501 1 0 180	- 12 05 2 4 10	1		1.41	6.10	-
			19.441 - 4.388	1 42.30 - 4 13	<u> </u>		1.01	14.1.1	

13

.

/Продолжение табл. 2/

								<u> </u>	
,	2	3	4	5	6	7	8	9	10
<u>├</u> ──		6.	35845 2 0 153	7.336 2.8.528	-4434 : 0 387	7.85	1	5 010	打
154	36 590	6.41	37489 : 0471	1 401 20 573		0.55		3 710	8'
50		a."	13 888 10 033	- 32 36 : 141	253.9 + 156			< 10''	H
			13 322 : 0 162	- 6 38 1 2 54			048	2610	
		1.00	6 467 1 0 580	9 568 2 8 575	- 3 846 : 0 140	1/4 38		1 910	
152 04	8 7/4	4.	9 571 : 0 7/4	6 126 10 287	I	33 66		26	12
00		a, 11	40 207 : 3 5 18	- 275 672 69 54	8773:3128			2110	#
		a	31 076 12 444	- 63 19 1845			268	7810	
		1.0	25 678 : 0 345	5 317 : 0 306	-0 334 :0064	+03		2 210	
154 C.d	24 363	8.00	21 325 20 338	3 734 2 8 121		2 50		14	16'
		a. ⁰	18 237 : 0 320	-35 03 : 3 50	518 : 34		•	1210	H
		a,""	16 638 2.0.333	-15512140			095	8 410	
		8.	33 511 20 084	6.500 t 0 111	- 0 388 : 0 087	(91		5 410	
156 C. d	35 720	8.	33 852 :0891	3.5/8 :0075		153		\$ 10	10*
60		a,"	14 859 20049	-24 43 2 / 35	585:86			1810-6	H
		a,"	14 554 :0010	-15 32 : 0.03			105	2610 \$	
		1,**	37650 2 0 017	2 026 10 265	0 754 : 0 203	071		6810	
154 - 1	37 731	6.00	37 385 10 080	2 991 1 0 100		107		100	8'
60		a,"	13 286 : 0 023	-10 11 2 0 99	- 160 : 36	1		<10'	N
_		E,	13 322 : 0 012	- 11 74 2 0 19			010	< 10'7	
		1,"	6 299 : 0 599	NO 124 1 0 166	-1092 :0230	127 59		79102	
154 D.	8 963	1,	8 900 : 0 581	6 540 : 0 349		41 28		9710	10*
Uy		a;"	44 290 = 4 494	- 43/ 54 : 124 15	1945 4 : 788 4			9 110	H
		a,""	34 756 1 2 962	120 34 : 31 11			J 69	3710	
		Γ.	23 659 10 563	4 989 : 0 484	· 0 /89 : 0 098	446		6 //0 '	
1 ⁶⁶ 0	21 788	1.	24.646 : 0 285	4 067 : 0 099		3 35		11	15'
Uy		a;"	15 518 1 0 445	- 40 75 : 4 80	588 : 130			2 50.7	N
		а,	17 012 1 0 381	- 14 50 : 174			1.04	110	
		6, ⁽¹⁾	39 027 = 4 181	- 0 458 - 2 585	0 5 5 3 1 0 581	· 0 28		2410	
40	30 321	8.ª	33 368 22 233	3 095 : 0 540		1 39		3 210	22'
υy		4.07	15 735 : 0 065	- 18.79 : 0 40	14 2 2 0 6			3707	N
		0	14 145:0 251	- 847:062			060	3 200 4	

.

٩,

:

- 5

							_		
1	2	3	· 4	5	6	7	8	9	10
<u> </u>	<u>+</u>	6.	35 393 : 0 226	1478 : 0 185	0 424 2 0 036	059		1410	
100	34 566	1.0	32 298 : 0 437	3 633 : 0 MS		167		36	18'
Uy		a:	14 281 : 0 035	· 12 08 : 0 31	56:07		1	1 010 5	#
		0."	14 030 :0 046	- 3 71 : 0 16			0 69	5210*	
		8."	37 054 :0016	1 297 : 0 825	- 0 108 : 0 009	084		6 210 3	L_
#2 D.	37 193	8."	37 222 : 0 039	2 008 : 0 024		0 12	1	2 910 3	12'
l Dà		a,"	13 474 :0011	- 10 39 1 0 21	137:09		1	. 10 '	N
	[a."	13 331 20033	- 7 39 2 0 25			0 5 5	1 410 3	
		6."	40 801 : 0 053	1 686 1 0 195	0 950 : 0 181	051	1	200 '	
164 D.	40 876	8."	40 516 20 006	2 822 : 0 #5		086		1010	8.
U U Y		a,"	12 254 : 0013	-673 : 056	-224:54		I	. 10'	H
_		a."	12 308 : 0015	902 1023	T		073	.10'	
		8,10	6 318 : 0 647	7 621 : 0 729	-0 882:0 192	79 62		1 210 '	
154	8 7/1	8.0	9 6+0 : 0 720	4 317 : 0 322		23 23		1.6	10
l FL		a'"	47 107 : 4 296	- 4 /5 26 : //8 75	1861 7: 753 7	1		140	*
		0,	37 376 2 2 835	. 124 92 : 28 78			3 34	1410	
		8,00	17 958 : 1983	2 851: 1346	0 601 20 232	4 39	1	141	
158 -	15 625	8."	13 295 : 1 125	6 369 : 0 324		18 02	1	30 3	18
Er		a.'"	25 343 : 0 492	- 63 51 1 4 40	806992		1	590	6
		a,"	21 449 : 0730	- 21 51 1 2 61		1	1 28	8110'	- 1
		8,"	26 327 : 0 108	1496 : 0 567	0 632:0 104	108	1	10	-
160 E.	23885	8:"	21 974 : 0 827	5017:0250		520	1	14 6	18'
Er		u."	19 233 : 0 209	- 31 13 : 187	272139	1 141 141	1	1101	
		0,"	12 911 : 0 251	- 18 33 : 0 90		r · · ·	102	2 610	-
		6,'"	29 075: 1155	2 6 3 9 : 0 774	0 322 : 0 124	156	1	69	_
M2	29 349	8.	76 152 : 0 841	4 623 20 177		3.35		135	æ'
C F		0,	16 920 :0 156	-22 57 : 1 14	180:18		1	110'	5
		a."	15 625 :0 229	12 23 : 0 67			0 78	1510	
		6,"	32 831 20077	2 257 : 0 086	-0002 10022	1 04	1	4410	-1
MI	32 826	6,"	32 836 : 0 019	2 230 10013		103	1	+ 10	41
Er		a, -	15 177 20039	- 14 05 : 057	14 5 : 1 9		1	100	#
		a."	14 186 :0050	9 79 : 0 33			066	1110	

/Продолжение табл. 2/

•

								4	-
1	2	3	4	5	6	7	8	9	10
		8,00	37.036 : 0.007	2.633 2 0 016	0 090 1 0 008	0 96		2.00	
Mi	37 233	4"	36.965:0.018	2 805:0016	l	1.03		2110	HO'
Er		4	13 496 20.006	- 1268 1011	13.8 2.07	1		< 10-7	H
		a**	13.423 20.018	- 10.52 : 0.10			0.78	2.310	
		1	37.47720.002	1.504 : 0.006	- 0.105:0.005	3 54		<10'	Г
MR	37 584	1	37 545+0.00	1.365 : 0.0/4		348	1	2.210	8
FL		a'r	13 341 20.001	-704 : 0.05	11.4:04	7		< 40'7	#
		a,24)	13.315 20.007	- 5 88 1 0 11	T	1	044	(10'	
_	1	1	12.415	2 108	- 9 7/4	173		< 10-7	
	17 075	1.4	17 890	1 561	[1 54		1 110	6.
Er	1 10	000	11 33 2		441	1		<10"	H
	<u> </u>		13.222	- 6 74	- <u></u>	+	0.41	1 cm	t
	t1	111	11 86310660	5 202 - 0 8/3	- 0 505 * 0 318	1 22.06	+**	1 10	-
160	12 166	10	11 002-0.030	4 165 - 0 210	0000-0238	1	1	4 10	10
Ϋ́Ъ	1 270	n."	15 171 1 4 475	- 218 821 5465	9622 * 146 7		1	1.00	1
		a."	30 123 1 370	- 87 85 - 1507		+	281	1 7002	Ë
_	h	A'30	18 6 18 6 100	4 745 1 04 50	- 0 181 + 0 110	6.01	1.00	1.00	1-
a ()		100	10 433 - 0398	4 116 - 0 450	-0/0/-0/13		+	140	12.
ŤΥÞ	11 010	700	10 308 - 0189	4044.0023			+	1	12
		1141	23 406 : 0.007	- 44.51 - 17 68	2193:323	·f	1	6 10	<u>ŕ</u> -
_		914	23.202-0-30	- 41 10 - 4 23		+	1.4	1.2	
		0.	27 3/6: 1.417	- 0015 - 1252	1019:0202		1	3.3	10
" үь	14 131	-04	22 214 : 1 141	5013 0404		+ 5 ""	+	13 3	6
	}		19 025 20 200	28 68 2 3 14	110:02	·+	17.00	1 2007	a -
			10 300 2 0.149	- 22 26 : 0 86		+	1	110	
		- 8g	29.878 1 978	1431:1348	0 640:0219	280		19.5	-
" ҮЫ	19 33/	0. (4)	24 554: 1175	5 304 : 0 330		4 36	+	425	a
		<i>a</i> ,	11 101 : 0 330	- 23 18 2 2 41	170:47	·	+	5 110	0
		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	15 873 10 248	· 13 37 : 0.73		L	0.84	1 610	_
		<u> </u>	33 561 : 0 138	3 581 : 0 138	-0 034:0023	159		110	_
Yh	34 136	8.	35 827 1 0 090	3 379 = 0 026		148	 	2.50	20"
		<i>a_</i>	14 464 20031	- 14 96 2 0 23	122: 44	J	<u> </u>	¥ 74 *	1
		<i>a</i> ,	13 568:0150	- 7 95 2044		1	0.59	\$ 50	

•

÷.,

.

.

							5		
1	2	з	4	5	6	7	8	9	10
		1.4	35.753 20.108	1.505 : 0.126	0 159 : 0.035	0 59		1 510	
170	35605	6."	35.301:0.102	2.079 1 0.048		0.03		5 310 2	14
ΥD	, <u>, , , , , , , , , , , , , , , , , , </u>	4.00	13. 998 10.030	- 0 70 1 0.43	26 1 1.4			4 810 4	N
		a:"	13.849 20.015	- 7 93 : 0.09		T	0.57	a e10'6	Γ
		5.0	37 986 : 0.029	1.755 : 0 046	- 0.125 :0.017	0.61		2210"	
112 46	38 100	8.00	38.181 :0.045	1 421 1 0 028		0.49		4 110	12'
10		a, *	13 151 20 012	-7 40 2 0 23	101 : 1.0	1		< 10-7	H
		0,0	13 045 :0 024	·5.26 1 0.18	1		040	1010-4	
		1,00	39.072 10.015	1.826 20.053	-0.476 :0.042	0 61		3 010 -4	
174	39 235	8.0	39 243 20.047	1.257:0060		041		3 510	8 *
Y D		am	12 792 10.004	- 7.52 : 0.16	266:18	1		< 10 '	N
		a."	12.733 : 0.017	- 4.80 : 0 27			4.30	< 10'7	
		6, (4)	36 449 : 0.024	1 236 20079	0 007 ± 0 057	049	T	\$ 010	
116	36 527	0.00	35 445 20 007	1 305:0 008	1	049		\$ 00	8*
TD		0,00	13.718 : 0.009	-6 66 : 0.39	5.2 1 3.7			<10'	H
		an	13.106 : 0.004	- 6.12 : 0.06	1	1	045	< 10 '	-
		8,10	19 430 2 0.256	4.353 20 241	-0024 :0053	5 76		7 310	
166	18.904	8."	19.533 10.000	4 248 : 0.037		557	1	76102	14*
Ht		a."	23.977 : 0.442	- 68.24 1 6.39	1248 :215		1	9 +10"	H
		0,00	21.651 20.513	- 31 65 : 2 92			146	A 810 ⁻¹	
		8,	25.545 : 0757	2.757 : 0.773	0 402 : 0 191	211	1	4 810	
100	24 252	8,00	24 131 2 0 401	4 365 : 0 168		3 75	1	10	14*
нц		a'"	19.409 2 0.317	-37 53 24 58	474:154			4 8 10 "	6
		a;"	18 526 20219	-23 65:125		r · · ·	128	1 610	-
		8,00	29 556 : 0.099	4.965 : 0.068	- 0 201 ± 0.011	2.84		5010	
m	29.810	8.	31.201 2 8.276	3.740 : 0.076		1.92	1	15	20*
нт		a,"	15.756:0.145	- 20.85 1 1.06	200 = 18		1	1010	N
		a."''	14 312 : 0.253	- 9. 32 : 0.74			0 65	18104	
		6,4	\$1 774 20.107	2.756 1 0.083	0.068 : 0 015	137	1	35102	
12.14	31 523	8.	31 333 : 0.089	3.126 20.928		159		1610	81
- "1		a"	15 514 : 0.072	-16.63 :0 64	14.0 21.3			1 210	11
		a".	14.838:0.125	-10.03 : 0 45	····		0.58	240	-1
									_

/Продолжение табл. 2/

							6		
1	2	3	4	5	6	7	8	9	10
		5	32 936 : 0 039	2543:0000	0 132 : 0 019	1 17		2510	T
174	32 863	6	32 555 : 0 082	3 023 : 0 030		143		3 510	14
1.11		a."	15 141 20029	-18 53 : 0 42	158:14			4 0r0"	"
	1	4.	14 846 : 0 062	- 11 89 2036			0 00	1 310	1
		8	33 661 1 0 022	2 222 : 0 025	-0009:0007	097		5 510	4
175	33 936	3	33 889 10010	2 188 : 0 004		095		5 310	14
1 11		a."	14 722 - 0 018	- 12 03 : 0 26	130:09		Ι	2010	H
		a. '	14 479:0051	- 901 + 029			0 82	8 110 5	Г
	1	1.	32 034 :0 013	1886 : 0037	.0020 :0 024	0 92	-	2010	1
	52 105	6	32 043 : 0 004	1857 :0005		0.90		4 010	81
144		a,	15 606 20 007	-14 09 : 0 29	214-28			< 10 '	H
		a."	15 558 :0016	- 11 90 : 0 22	1	1	0 17	1 10'	1
	1	1.0	32 047 : 2 008	1 210 : 0018	- 0 126 - 0012	0 59	1	1010*	
	32 152	80	32 111 : 0019	1016:0019		049	1	7 810 5	8'
~ H1		a."	15 600 : 0 004	-8 98 :0 15	197:16	I	1	10'	H
	t	C.	15 556 : 0013	- 6 97 :020	f		045	(10"	
	1	5."	26 576 : 0 220	6 (74 : 0 177	-0274:0032	5.02	1	1510	
172	24 410	3.0	26.397 : 0 312	4 714 : 0 0.99		1.10	t	70	18
W		0,	18 130 .0 364	- 34 56 : 3 02	625:04			2910	H
	r	a."	16 079 :0 395	- 14 52 : 1 41	\$	t	0.00	240	-
	1	8. ¹¹	25 654 :0 085	4 695 : 0 092	- 0 230 : 0 023	3 28		62103	
(76	25 410	8.	27 447 20 186	\$ 742 :0072	1	240	t	1710'	41
W		3	18 143 : 0 156	16 17 1 2 75	621:76	+		1.200	N
	·	0,0	16 986 : 0 248	18 16 1 1 41			107	2110 3	Η
		S."	27 484 : 0.036	3 572 : 0 031	· 0 002 : 0 C27	2.36	1	210	
	22.540	6."	27 507:0014	3 564 :0 005		236		2610	-
w		a;"	17 691 :0 895	- 28 02 : 1 07	342:28	1		100	1
		a,"	16 635 : 0 207	- 15 13 : 0 92			0 91	970	-
		1."	28 083 : 0.011	3 / 36 2 8 844	. 0 112 20014	1 99		1900	-
78.00	28 265	6 m	28 328 : 0.052	2 741 : 0 0.50	f	1 73	<u> </u>	9 110	12
- W		a.a	17 661 :0 048	-28 43 2083	506:42			100	
		a;	17 134 : 8 121	.17 33 :0 92			101	1910	-
		_							

/Продолжение табл. 2/

i.

_						_	7		
1	2	3	4	5	6	7	8	9	10
		8,00	25 088 : 0 116	1. 852 : 0 155	8 336 ± 0 048	1 10		4 710	忄
49 347	20 055	6,"	28 311 : 0.171	2 9/9 : 0 09/		182	1	0.010	42
**		a,"	17 258:0 040	- 20 93 1 0 78	42:35			3010	• / *
		a,*	17 100 : 0 037	. 17 83 : 0 28			104	1 710	'
		4"	29 873:0025	1 528 : 0 044	- 0 124 :0010	086		6 810	1
148	28 969	8."	30 031 : 0 041	1 227 : 0 028		04		1 710	10
	· · · · · ·	a:"	16 723 : 0 017	- 13.40 10 48	26 0 : 30	1		1.10	141
		a;**	16 587:0 035	- 9 35 : 037			456	5 0.0	17
		8.	22353:0143	7 407:0193	- 0 738 : 0 06/	241		1210	17
17 0-	22 796	1."	23.8+1 : 0 361	5 097 : 0 194		445	T	1 610	12
0s		a,"	20 890 : 0 361	-1210 : 201	1890:315		I	\$ 110 "	1
		a;"	18 922 : 0466	- 30 71 23 52			1 1 42	2910	T
		8,'n	22 447 : 0004	4 947 : 0 087	-0017:0021	691	"i ——	6 310	П
100-	22693	6;"	22 509 : 0 034	4 887 : 0 0/4	1	401		1103	14
- Us		a."	21058:0230	55 90 : 1 35	903:112		-	2 510	14
		a:"	19 207 : 0 395	- 26 78 1 2 25		1	139	5 310	17
		1,"	25 299 : 0+56	0 392 : 0407	1205:0006	031	T	140'	П
(II) o	23 641	1."	19 001: 1 102	6 408 : 0 428		A 80	1	157	L 1
05		a.""	20 741 : 0 092	+ 4 3 44 : 102	460:27	+***	1	9510-3	6
		a,"	19 320 : 0 217	- 26 50 1 /23	1	1	737	5 810 3	F1
		8."	26 861 2 0 121	1 095 : # /94	- 0 107 -0012	269	1	20103	Н
	25 042	8."	75 534 : 0156	2067 : 0 097		1.50	· · · ·	1000	6
Os		a;"	19 894 : 0 122	- 39 06 : 3 36	1115:211	1	<u> </u>	1010	1
		a;"	19 200 : 0 100	- 20 76 : / 68		1	108	1110	H.
		4	21 878 : 0 167	2 825 : 0 242	· 0 764 : 0 081	2.95	+	4.610 3	H
110	21 174	6,"	27 375 : 0 / 10	2050 : 0077		201		2 910 1	
∵∪s		a."	22 627 : 0 106	. 41 12 + 5 41	110 4 + 44 4		t	1	21
- 1		0.	21842:0200	27.44 : 27.4		ŧ · -	120	1810	<u> </u>
1	1	£,'*	19410:0263	3 289 2 8 36 1	· 0 259 : 0 116	4.10		1. 100	
"	10 351	1.	19 947 : 0 162	2 500 0 047		14	t	1.10	
US		a."	25 272 : 0367	- 76 68 : 10 15	218 4 1 64 4			A 110-5	1
t		0,"	24 032 : 0 337	- 14 55 : 1 54		• • • • • • • • • • • • • • • • • • • •	145	1.800	Ψ.
		_						1.010	_

/Продолжение табл. 2/

)Л. "Д							8	
1	2	3	4	5	6	7	8	9	10
		Be	15 508 - 0485	5.379 ± 0.877	- 1 036 : 0.364	11.18		9.00	
- Oc	16.069	6.	16.781:0.399	2.909 ± 0.273		5.17		8.910	8
05		a,"	30.999 : 1.048	-191.71 : 44.98	11494 ± 435.4			1 710	H
		a,w	28.436 = 0.785	- 74.10 1 12.29			2.61	6.ZIO**	
		8,00	20 639 ± 0.821	9.188 ± 1.098	-1274 10 344	10 78		2.510	
/#2 DA	19.519	8.	23.411 :0.695	5.173 : 0.369		4.72		1.4	12*
- t		a.""	21.733 : 0.857	- 85.05 : 16.65	2424 14 9			1.210-3	H
		a."	19.210 : 0.652	- 31.68 1 4.92			1.66	5.510	
		8."	19945:0448	8.030 2 0 409	-0442:0.088	10.09		3.410	1
184 0+	18.507	8,00	21 984 : 0.418	6.011 2 0 155		6 2 2		2.0	18.
ן רי		a,"	20 997 : 0.601	- 58.86 1 6 77	958 177			4210	H
	<u> </u>	a."	18.036 : 0.618	-2272:275			1.26	2.910	1
		8.	15.446 = 0.953	9.059 1.82	- 1.014 * 0 344	16.75		3 910"	1
NIG DA	15.699	8.	19.003 : 0 673	5.625 : 0.333		7 79		1.5	12*
- F L		a,"	25.650 : 1.336	-119.03: 25.96	344.0 : 116.8		L	3.010	N
	L	a,"	22.059 :0.946	- 43.56 : 7.14	l	1	197	1.210	1
		8,130	10.504 : 0.725	6.951 1 0.884	- 0 822 : 0 252	31.50		1.310	1
MI DA	11.202	8.00	12.565 : 0.601	4.106 1 0.230		12 80		8.10	10
1 -(a,""	38 416 1 2 570	-277.6 : 71.1	1181.2 ±450.9			3 810 4	"
L		a'''	32.248 11772	- 93.61 18.62			290	1310	
		6."	7.356 = 0.031	5.778 : 0 893	-1.008 :0.293	62.63		2.810	1
14 01	9.132	1.	9.353 : 0.621	3.743 1 0.340		21.39		3.610	8
"		a."	52.754 : 4.873	-644 7 209.2	44052: 20252			1.710	H
_		a,"	42.930 = 3.098	- 194.0 : 48 5			4.52	9.610-3	1

. •

.

η.

•

1

В *табл. 2* вошли и некоторые другие основные характеристики энергетики основной рэтационной полосы:

а/ момент инерции "основного состояния"

$$\mathcal{I}_{0} = \mathcal{I} (E_{1} = 0) = b_{1} = \frac{3}{E_{1=2}^{3 \times C \Pi_{\bullet}}};$$

б/ "параметр мягкости" ядра, который в нашей схеме может быть определен как

 $\sigma_{I}^{(N)} = \frac{1}{g} \cdot \frac{dg_{I}}{dI} = \frac{2I+1}{2g^{2}(E_{I})} \left[\frac{I(I+1)}{2g^{2}(E_{I})} - \left(\sum_{k=2}^{N} (k-1)b_{k}^{(N)}E_{I}^{k-2} \right)^{-1} \right]^{-1}$

где $\mathcal{J}(\mathbf{E})$ дается формулой /1.2/; в частности, для

$$I_{\pm 0} \qquad \qquad \sigma_0^{(N)} = \frac{b_{12}^{(N)}}{2(b_{1}^{(N)})^2};$$

в/ в девятом столбце табл. 2 даны эначения χ^2 , соответствующие найденному решению задачи; в последнем столбце находится значение максимального спина I_{max} , до которого известны экспериментальные значения энергий E_i^{3KCII} ; под значением I_{max} буквой "б" обозначено, имеется ли в данном ядре быстрое нарастание момента инерции при высоких спинах /т.н. бэкбендинг/, соответственно, буква "н" означает, что в данном ядре бэк-бендинг отсутствует.

На рис. 1-3, соответственно, показан ход параметров $b_1^{(3)}$, $b_2^{(3)}$ и $b_3^{(3)}$ как функции от массового числа A. "Параметр мягкости" - $\sigma_0^{(3)}$ – представлен на рис. 4. Поскольку в настоящей работе не ставилась задача

Поскольку в настоящей работе не ставилась задача микроскопического истолкования значений ротационных параметров, ограничимся лишь несколькими замечаниями качественного характера относительно хода параметров $b_k^{(3)}$ и $\sigma_0^{(3)}$ при нарастании значения А/или числа нейтронов N /.

Во-первых, очевидьа корреляция между значениями параметров $b_1^{(3)}$ и $\sigma_0^{(3)}$. Их поведение /как функция массового числа/ обратно пропорционально. Параметр $b_1^{(3)}$ самый стабильный среди всех параметров, определяющих полиномнальную аппроксимацию. Его качественный ход мало изменяется при включении новых коэффициентов в формулу /1.1/, оставаясь близким к ходу момента

инерцин \mathcal{G}_0 . Как видно из *рис.* 1, у $b_1^{(3)}/при каждом значении Z / имеется максимум, соответствующий самому стабильному изотопу ядра <math>^{5,10/}$. Эта тенденция проявляется отчетливо в ядрах Dy , Er , Yb и Hf /которые принято считать "хорошими ротаторами"/, а в концах области редких земель /ядра: Ce , Sm , Gd и W , Os , Pt/, видна только одна ветвь кривой, не доходящая до точки перегиба. Можно отметить, что ход кривых $b_1^{(3)} = b_1^{(3)}$ (A) согласуется качественно с поведением равновесного значения параметра квадрупольной деформации среднего поля β_{20} для ядер редкоземельной области /11/.

Что касается параметров $b_{2}^{(3)}$ и $b_{3}^{(3)}$, то в их поведении обнаруживаются большие нерегулярности. Включение параметра $b_{3}^{(3)}$ в формулу /1.1/ изменяет, в среднем, на 25% значение $b_{2}^{(3)}$ /получаемое при двухпараметрической аппроксимации/. Разброс в значениях $b_{2}^{(3)}$ и $b_{3}^{(3)}$ особенно велик в переходных частях редкоземельной сбласти /ядра Се, Sm, Gd, Os, Pt /. Значение $b_{2}^{(3)}$ для "хороших ротаторов" имеет величину порядка $3\div 5$ $M_{3}B^{-2}$. В этих же случаях значение $b_{3}^{(3)}$ очень близко к нулю. Функциональные зависимости $b_{3}^{(3)} = b_{3}^{(3)}(A)$ и $b_{3}^{(3)} = b_{3}^{(3)}(A)$ проходят через минимум /максимум, соответственно/, в случаях бэк-бендинга, как это хорошо видно из рис. 2 и 3. /Это ядра: 132 Се, 148 Sm, $^{156-160}$ Dy, $^{158-162}$ Er, 164,166 Yb, 168 Hf и $_{(2)}^{(2)}$ Cos/.

Обращение в минимум значения параметра $b_2^{(3)}$ в случаях бэк-бендинга может быть истолковано в пользу интерпретации этого эффекта /бэк-бендинга/ как результата смешивания двух полос: одной, выстроенной над основным состоянием, и второй, начинаюь ейся с какого-то из возбужденных состояний ядра. Малое значение $b_2^{(3)}$, отвечающее быстрому наращиванию энергий первой полосы, является необходимым условнем пересечения обоих полос в некоторой точке по I; в противном случае - при больших значениях $b_2^{(3)}$ - энергия лервой полосы будет расти медленнее в может не "достичь" значения энергий второй полосы.*

* Так как число состояний до точки бэк-бендинга доминирует над остальными, то можно считать,что значение b⁽³⁾ определяется пренмущественно значениями энергии первой полосы. У значений обонх параметров $/b_2^{(3)}$ и $b_2^{(3)}$ / наблюдается тенденция к уменьшению по абсолютной величине с ростом A.

Может представлять интерес также и изменение "параметра мягкостк" ядра $\sigma_1^{(3)}$ /полученное при найденных значениях $b_1^{(3)}$, $b_2^{(3)}$ и $b_3^{(3)}$ /, которое показано на *рис.* 5 для двух ядер - ¹⁶⁰ Yb и ¹⁷² Yb. Хотя общая тенденция увеличения "мягкости" ядра с увеличением угловой частоты вращения является естественной /из-за нарастающей вероятности возбуждения других нормальных мод ядра, кроме ротационной/, нам не удалось, не входя в микроскопические рассмотрения, найти объяснения наблюдаемого в некоторых случаях уменьшения "мягкости" (σ_1) при высоких значениях 1.

Рассматриваемая полнномнальная аппроксимация /прв N = 2,3/ не претендует на описание случаев бэкбендинга. /На самом деле в этих случаях задача решается плохо: см. большие значения χ^2 в *шабл. 2/*. На *рис.* 6 мы показываем, в какой мере формула /1.1/ может качественно воспроизвести экспериментальные значения момента инерции $f(E_1)$ ядра¹⁵⁸ Dy, где имеет место сильное нарастание f_1 при спинах I = 14 ÷ 16 /обозначения S(2) и S(3) относятся к N= 2 и 3, соответственно, в формуле /1.1//.

Предположенную здесь аппроксимацию момента инерции мы не применяли к описанию вращательных слектров ядер вне редкоземельной области, хотя ее область применимости не меньше, чем у модели с переменным моментом инерции /10/.

Параметр неаднабатичности в двухпараметрической формуле Бора-Моттельсона а с

$$E_{1} = a_{1}I(I+1)[1-a_{e}I(I+1)]; a_{e} = -\frac{a_{2}^{1/2}}{a_{1}^{(2)}} \qquad /2.2/$$

показан на рис. 7. Если предположить, что неаднабатичность в основной полосе связана исключительно с эффектами центробежного растяжения, и воспользоваться соответствующими разложениями энергии и внутреннего квадрупольного момента по степеням параметра квадрупольной деформацки β , то a_e и параметр неаднабатичности a, входящий в B(E2) -факторов для переходов между состояннями полосы /12/,

$$B(E2; I \rightarrow I-2) = B_0(E2-; 2 \rightarrow 0) \frac{\langle 1020 | I-20^2 \rangle}{\langle 2020 | 00^2 \rangle} 1 + \frac{\alpha}{2} [I(I+1)+(I-2)(I-1)],$$
(2.3/

будут выражаться как

 $\alpha_e = \alpha = \frac{\Delta \beta(\mathbf{I})}{\beta(\mathbf{0})},$

где $\beta(1)$ - параметр квадрупольной деформации в состоянии со слином I, а $\beta(0)$ - этот же параметр в основном состоянии.

По известным из эксперимента значениям E_1 и B(E2; J - 1 - 2) можно получить a_e из /2.2/ и а из /2.3/ и сравнить их для проверки согласованности изменения E_1 и B(E2) со спином, при сделанных предположениях. Результаты такого сравнения для тех немногих случаев, когда известны значения $a^{ЭКСП}$; относящиеся к основной полосе, даны в *табл.* 3 /значения a и а умножены на фактор 10^3 /.

Хотя величины ошибок в а эксп. не позволяют сделать более строгих заключений, видно, что учет других эффектов, кроме центробежного растяжения, улучшает согласие с экспериментом.

Автор благодарит И.Н.Михайлова за ценные обсуждения при постановке задачи и выражает свою глубокую признательность Л.Александрову за его творческое участие в математической трактовке проблемы аппроксимации.

*۲

:

۳.

.

1.4

i

Puc. 7

Таблица	3
---------	---

.

,

	a _e	а ^{теор.} *	a ^{9KCII.} **
¹⁵² Sm	1,81	2,22	2,1 <u>+</u> 0,6
¹⁵⁴ Sm	0,48	0,55	0,6 <u>+</u> 0,6
¹⁵⁴ Gd	0,93	3,00	2,6 <u>+</u> 1,0
¹⁵⁶ Gd	1,05	0,54	0,6 <u>+</u> 0,6

* a ^{reop.} соответствует расчетам, проведенным в работе ^{/13/}, в которых, кроме эффектов центробежного растяжения, учитывалось также изменение спаривания и неаксиальной деформации ядра во вращающихся состояниях.

** Данные работы /12/.

1

. .

Литература

- 1. И.Н.Михайлов, Е.Наджаков, Д.Караджов. ЭЧАЯ, т. 4, в. 2, 311 /1973/.
- 2. Дж.Форсайт, К.Молер. Численное решение систем нелинейных алгебраических уравнений, Мир, М., 1969.
- 3. Л.Александров. Сообщение ОИЯИ, Р5-5215, Дубна, 1970.
- 4. А.Н.Тихонов. ЖВМ и МФ 5 / 4/, 718 /1965/.
- 5. O.Saethre, S.A.Hjorth, A.Johnson, S.Jagare, H.Ryde and Z.Szymanski. Nucl.Phys., A207, 486 (1973). 6. Ю.В.Линник. "Метод наименьших квадратов и основы
- Ю.В.Линник. "Метод наименьших квадратов и основы теории обработки наблюдений". Физматгиз, М., 1962.
- 7. Л.Александров. Сообщение ОИЯИ, Р5-7259, Дубна, 1973.
- 8. А.Фергюсон. "Методы угловых корреляций ву-спектроскопии". Атомиздат, М., 1973.
- 9. Д.Химмельблау. "Анализ процессов статистическими методами". Мир, М., 1973.
- IO. M.A.J.Mariscotti, G.S.Goldhaber and B.Buck. Phys.Rev., 178, No. 4, 178 (1969).
- 11. U.Gotz, H.C.Pauli, K.Alder, K.Junker. Nucl. Phys., A192, 1 (1972).
- 12. R.M.Diamond, G.D.Symons, J.L.Quebert, K.H.Maier, J.R.Leigh and F.S.Stephens. Nucl.Phys., A184, 481 (1972).
- 13. D.Karadjov, J.N.Mikhailov, J.Piperova. Phys.Lett., 46B, 135 (1973).

Рукопись поступила в издательский отдел 28 мая 1974 года.