ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

<u>C343a</u> N-678

2815/2-24

Е.В.Инопин, В.С.Кинчаков, В.К.Лукьянов, Ю.С.Поль

ОСОБЕННОСТИ ПОВЕДЕНИЯ ЗАРЯДОВЫХ ФОРМФАКТОРОВ АЛЬФА-КЛАСТЕРНЫХ ЯДЕР

P4 - 7874

P4 - 7874

Е.В.Инопин, В.С.Кинчаков, В.К.Лукьянов, Ю.С.Поль³

ОСОБЕННОСТИ ПОВЕДЕНИЯ ЗАРЯДОВЫХ ФОРМФАКТОРОВ АЛЬФА-КЛАСТЕРНЫХ ЯДЕР

Направлено в сб. "Ядерные реакции при высоких энергиях"

Объщинствые институт прерных исследованые БИБЛИОТЕКА

¹ Физико-технический институт АН УССР, Харьков.

² Дальневосточный государственный университет, Владивосток.

³ Физический институт им. П.Н.Лебедева АН СССР, Москва.

Инопин Е.В., Кинчаков В.С., Лукьянов В.К., Поль Ю.С. Р4 - 7874

Особенности поведения зарядовых формфакторов альфакластерных ядер

В альфа-кластерной модели с проектировкой исследуется зависимость зарядовых формфакторов ядер ¹²С и ²⁴ Mg от исходных параметров пробных функций. Установлена кластерно-структурная природа поведения формфакторов альфа-кластерных ядер при больших переданных импульсах.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Inopin E.V., Kinchakov V.S., Lukianov V.K., P4 - 7874 Pol Yu.S.

Peculiarities in the Behaviour of Charge Form Factors of Alpha-Clustering Nuclei

In the framework of the alpha-cluster projection model (the Brink model) the dependence of the charged form factors of 12 C and ^{24}Mg on the basic trial nucleon wave function parameters is investigated. An interpretation of the peculiarities of the form factor behaviour of the alpha-clustering nuclei is made. The cluster-structural nature of their behaviour at large momentum transfer q > 3 fm⁻¹ is found.

> Preprint. Joint Institute for Nuclear Research. Dubna, 1974

©1974 Объединенный институт ядерных исследований Дубна

1. Ранее было показано /1/, что поведение формфакторов при малых переданных импульсах q и положение их первых минимумов хорошо воспроизводятся для всех четно-четных ядер, начиная с ⁴Не, с помощью феноменологического распределения плотности заряда / рпэ/ в виде двухпараметрической симметризованной фермифункции

 $\rho_{\rm SF}(r) = \rho_0 \left(ch \frac{R}{b} + ch \frac{r}{b} \right)^{-1},$

где R - "радиус полуспада" плотности, a b - параметр диффузности поверхностного слоя ядра. Эта функция, имеющая гауссоподобное поведение при г - 0 и экспоненциальную асимптотику, удачно параметризует поведение рпз в области поверхности ядра /для средних и тяжелых ядер она переходит в традиционную фермиплотность/. Поэтому естественно назвать первый минимум в формфакторах ядер "размерным", связанным с фактом конечных размеров ядра, и интерпретировать его как результат дифракции электронной волны на ядре, имеющем характерный спад рпз в районе ядерной поверхности. Как было установлено /1/, рассчитанные для /1/ формфакторы удачно согласуются с экспериментальными лишь в области переданных импульсов q<q₀= =7.7 $A^{-1/3} \Phi^{-1}$. Однако в настоящее время накоплен большой экспериментальный материал при переданных импульсах за пределами указанной области. Так, для ядер р-и sd-оболочек в области q > q₀ наблюдаются интересные особенности в поведении формфакторов: минимумы или необычное пологое поведение, что, по-видимому, связано уже с индивидуальными для каждого

ядра деталями поведения рпз. В принципе можно усложить вид феноменологической функции рпз и добиться таким образом согласия с экспериментом для всей области q. Однако параметрам такой функции уже трудно придать конкретный физический смысл. Поэтому более естественным в этом случае представляется расчет рпз на основе какой-либо модели ядра.

В предыдущих работах $^{/2,3/}$ для этой цели использовалась альфа-кластерная модель с проектировкой /АКМП/ $^{/4/}$. Было получено согласие с экспериментальными формфакторами ядер 12 С , 16 О , 24 Mg , 28 Si , 32 S и 40 Са при всех измеренных в настоящее время переданных импульсах вплоть до q \approx 3,75 Φ^{-1} . При этом пришлось отказаться от обычно используемых в этой модели гауссовских пробных функций нуклонов и ввести вместо них другие, симметризованные ферми-функции с экспоненциальной асимптотикой.

Цель настоящей работы - выяснить в рамках АКМП, какие черты структуры ряда ядер /p-и sd-оболочек/ ответственны за указанные выше особенности поведения формфакторов при больших переданных импульсах. Аналогичная попытка ^{/5/} была сделана в рамках более простой, альфа-частичной модели ядра-/АЧМ/, когда особенности формфакторов ядер ¹²С и ¹⁶О связывались с фактом существования минимума в экспериментальном формфакторе альфа-частицы при q = 3,3 Ф⁻¹. При этом в известном выражении ^{/6}/для формфакторов ядра в АЧМ формфактор альфа-частицы брался прямо из эксперимента.

Ниже мы будем пользоваться борновским приближением /точные расчеты формфакторов в высокоэнергетическом приближении были сделаны в /3/ /. Оно позволяет четко проследить основные черты поведения формфакторов в зависимости от изменения параметров АКМП.

2: Основные предположения АКМП состоят в следующем $^{/4/}$. В ядре выделяются центры расположения альфакластеров \vec{R}_i (i = 1, 2... - индекс кластера, N - полное число кластеров в ядре с A = 4N/. Характерный пример выбора альфа-конфигураций показан на рис. 1 для ядер 12 С и 24 Mg. Относительно каждого из этих центров четыре

Рис. 1. Альфа-конфигурации для ядер ¹² С и ²⁴ Mg, используемые в расчетах формфакторов.

нуклона находятся в ^S-состояниях с волновыми функциями

$$a(\vec{r}-\vec{R}_i) = \chi_{\sigma} \chi_{\tau} u(|\vec{r}-\vec{R}_i|).$$
 (2/

Здесь $a = i, \sigma, \tau$ - индекс одночастичного состояния. На основе /2/ пробная многочастичная антисимметризованная функция

 $U(\vec{r}_{1} \dots \vec{r}_{\Lambda}; \vec{R}_{1} \dots \vec{R}_{N}) = \sum_{p} \epsilon_{p} \prod_{a=1}^{A} u_{a}(pa), \qquad /3/$

из которой с помощью операторов проектирования по четности \hat{P}_{π} и угловому моменту \hat{P}^{J}_{MK} и условий симметрии, соответствующих выбранной альфа-конфигурации ядра, строится волновая функция ядра с заданными квантовыми числами | $JM\pi$ >.

Обычно /2/ выбираются в виде гауссовских пробных функций → → → 2

$$u_{G}(|\vec{r}-\vec{R}_{i}|) = \exp[-\frac{(r-R_{i})}{2b_{a}^{2}}],$$
 /4/

4 :

где b_а - параметр, характеризующий быстроту убывания функции.

В работе ^{/2/} в качестве пробных функций /2/ были использованы симметризованные ферми-функции с экспоненциальным спадом

$$u_{\text{SE}}(|\vec{r} - \vec{R}_i|) = [ch\frac{Ra_i}{b_{a_i}} + ch\frac{|\vec{r} - \vec{R}_i|}{b_a}]^{-1} /5/$$

Здесь параметры R_a и b_a определяют радиус "полуспада" и ширину области спада функции при г ≈ R_a.

Формфакторы рассеяния электронов в борновском приближении

$$F_{L}^{2}(q) = G(q) |4\pi (2L+1) \int \int ((qr) \rho_{L}(r)r^{2} dr)^{2} dr |^{2} /6/$$

выражаются через радиальную плотность перехода $\rho_{\rm L}(\mathbf{r})$, которая вычисляется с помощью полученных в АКМП ядерных функций $|JM\pi\rangle$, G(q) - фактор, учитывающий размеры протона и движение центра масс ядра ⁷⁷. Таким образом, в рамках АКМП формфактор ядра зависит от параметров R_j, определяющих центры расположения альфа-кластеров и параметров пробных функций нуклонов / b_{a_i} - для функции /4/ и R_a и b_{a_i} для функций /5//.

3. На основе функций /2/ можно построить рпз ядра, ⁴Не. В этом случае следует положить $R_i = 0$ и N = 1, тогда

 ρ (r) = c² u²(r, R = 0), 4 He

где с - нормировочная постоянная.

Введение этой плотности интересно по следующим причинам.

С гауссовскими пробными функциями /4/ при условии b_i = b_j =b борновский формфактор ядра в АКМП можно факторизовать, так же как и в АЧМ, на структурный и формфактор альфа-кластера

$$F_{G} = F_{a}(q,b) F_{A}(q,R,b),$$
 /8/

Рис. 2. Формфакторы упругого рассеяния электронов на ⁴Не для пробных гауссовских и симметризованных ферми-функций нуклонов.

Гауссовская функция /4/ дает гауссовское опз /7/ и приводит к гауссовскому же поведению формфактора /6/, который в принципе не может описать наблюдаемый на эксперименте минимум формфактора ядра ⁴Не при а ≈ ≈ 3,3 Φ^{-1} . /рис. 2/. В этом случае все особенности формфактора ядра должны бы определяться структурной частью F_A. Однако мы уже отмечали выше, что без выделения подструктур в феноменологическом рпз вида /1/ невозможно добиться согласия с экспериментом при больших 9. С другой стороны, из рис. 2 видно, что экспоненциальная функция /5/ дает рпз для альфа-частицы, которое при значении параметров R = 1,59 Ф и b_a = 0,545 Ф правильно объясняет "размерный" минимум и весь ход формфактора свободной альфа-частицы. И хотя условия факторизации формфактора в виде /8/ для экспоненциальных функций не выполняются, все же в данном случае есть основания считать, что наблюдаемые в эксперименте дополнительные минимумы и особенности формфакторов ряда ядер 12 С , 16 О , 24 Mg , 28 Si , 32 S , 40 Са, при $q \approx 3,1 \div 3,4 \Phi - 1$ связаны с наличием в этих ядрах альфа-кластеров. В то же время указанные особенности нельзя интерпретировать как точные "копии" минииумов в формфакторе альфа-частицы при q ≈ 3,3 Ф⁻¹, как это делалось в /5/. Действительно, методический расчет в АКМП показывает /табл. 1/, что для одинаковых R_a и b_а минимумы в формфакторах свободной альфа-частицы и ядер ¹²С и ²⁴Мg не совпадают по своим положениям, однако направления их "движения" с изменением R и b_a соответствуют друг другу. Для ядра ²⁴ Mg расчеты производились при следующих значениях структурных параметров: $R_1 = 0,9 \Phi, R_2 = 2,0 \Phi, \theta = 0,314$.

4. Перейдем к обсуждению результатов методических расчетов формфакторов на примере двух ядер: из Роболочки ядра ¹²С с альфа-конфигурацией в виде равностороннего треугольника и из sd - оболочки ядра ²⁴ Mg битетраздр из альфа-кластеров /рис. 1/. Первое характеризуется одним структурным параметром расстояния от центра ядра до центров альфа-кластеризации R для ядер sd -оболочки приходится вводить уже три -

Таблица 1

Сравнение положений минимумов формфакторов ядер ⁴ Не, 12С и ²⁴ Mg при больших переданных импульсах для одинаковых параметров пробных ферми-функций нуклонов альфа-частицы и альфа-кластеров внутри ядра

, ¹		e di seri i			م مع الدي يونية م ومناطقة الموسطين			.
	Рисунок 7 № кривой !	6	5	4	7	8	9	
	q _{min} ⁽¹² C)	3.8	3.6	3.4	2.75	2.75	2.75	
	q _{min} ⁽⁴ He)	3.45	3.25	3 . I	2.45	2.45	2.45	

2	4	M	0
			м.

Значения альфа- кластерных	$R_{\alpha_1} = R_{\alpha_2} = 1.7$ $b_{\alpha_1} = b_{\alpha_2} = 0.8$	$R_{\alpha_1} = R_{\alpha_2} = 1.7$ $b_{\alpha_1} = b_{\alpha_2} = 0.9$	$\begin{array}{rcl} R_{\alpha_1} = & R_{\alpha_2} = \mathbf{I} \cdot 8 \\ b_{\alpha_1} = & b_{\alpha_2} = 0 \cdot 8 \end{array}$
параметроь Q _{min} (²⁴ Mg)	3.70	3.70	3.30
quin (4He)	2.90	2.90	2.75

параметра: R₁ и R₂ -расстояния до внутренних и внешних альфа-кластеров соответственно и угол θ направления на внешние кластеры. Вводятся также параметры пробных функций b для /4/ и R_a и b_a для /5/. Последние могут быть разными для внутренних и внешних кластеров и, вообще говоря, не должны совпадать с их значениями для свободных альфа-частиц. Значения параметров, соответствующих кривым на рис. 3-8, привелены в табл. 2 и 3.

5. Вначале рассмотрим результаты методических расчетов с гауссовскими пробными функциями. На рис. 3 показана зависимость формфакторов ядра ¹² С от изменения структурного параметра R. Размеры ядра как целого растут с ростом R, и это проявляется в сдвиге первого, "размерного" минимума формфактора упругого рассеяния влево - в сторону меньших q. Альфа-кластерный параметр b определяет характер спада рпз на границе

Таблица 2

Параметры расчетов формфакторов ядра¹² С и соответствующие среднеквадратичные радиусы

Рис. №	, кривая №	R	Ra	ba	R(a)	R (*2C) 2.425 2.31 2.21	
Рис.3	I 2 3	I.8 I.6 I.4		I.3 I.3 I.3	I.59 I.59 I.59		
Рис.4	I 2 3	I.0 I.0 I.0		I.6 I.2 0.8	I.96 I.47 0.98	2.47 I.92 I.43	
Рис.7	I 2 3 4 5 6 7 8 9	I.8 I.5 I.3 I.0 I.0 I.0 I.7 I.7 I.7	I.6 I.6 I.6 I.5 I.4 2.0 2.0 2.0	0.573 0.573 0.573 0.8 0.8 0.8 0.8 0.7 0.6 0.5	I.66 I.66 2.047 2.01 I.98 2.05 I.91 I.77	2.482 2.32 2.233 2.53 2.483 2.483 2.439 2.80 2.65 2.52	

Таблица 3 Параметры расчетов формфакторов ядра²⁴ Мg и соответствующие среднеквадратичные радиусы

					N						
РИС №	кривая Ж	R,	Rai	baı	R٤	R _{≈2}	bae	Ð	$\overline{R}(\alpha_{4})$	$\overline{R}(\alpha_2)$	R (24Mg
	I	I.0	· - · ·	I.6	2.2	·	I.5	.314	I.96	I.84	2.91
	2	I.0	2	I.6	2.2	- 5	I.6	.314	I.96	I.96	3.00
	3	I.0	· ()	I.6	2.2		I.7	.3I4	I.96	2.07	3.09
Рис.5	4	I.0	. -	I.6	2.2		I.5	.314	I.96	I.84	2.906
	5	I.0		I.6	2.2	-	I.5	.628	I.96	I.84 .	2.890
	6	1.0		I.6	2.2	:_ -	I.5	.942	I.96	I.84	2.888
	I	I.0	_	I.6	2.2		I.5	.314	I.96	I.84	2.906
	2	I.0	_	I.6	2.0	2 <u>-</u> 2-1-	I.5	.314	I.96	I.84	2.83
	3	I.0	-4	I.6	I.6	_	I.5	.314	I.96	I.84	2.71
	4	I.0		I.5	2.0		I.5	.314	I.84	I.84	2.79
Рис.6	5	I.3	-	I.5	2.0	. – 1	I.5	.314	I.84	I.84	2.82
	6	I.8		I.5	2.0	1 - 1	I.5 .	.314	I.84*	I.84	2.89
	7	I.0	-	I.6	2.0	-	·I.5	.314	I.96	I.84	2.83
	8	I.0	- 1	I.5	2.0		I.5-	.314	I.84	I.84	2.79
	9.	1.0		I.4	2.0	-	I.5	.314	I.7I	I.84	2.76
	I	I.3	I.4	.7	2.4	I.5	.7	.314	I.79	I.834	2.92
	2	1.3	· I.5	.7	2.4	I.5	.7	.314	I.834	I.834	2.936
1.1	3	I.3	I.6	.7	2.4	I.5	.7	.314	I.875	I.834	2.948
Puc.8	4	I.3	I.5	.7	2.4	I.4	.7	.314	I.834	I.79	2.91
	5	1.3	I.5	07	2.4	I.5	.7	.314	I.834	I.834	2.936
	6	1.3	1.5	.7	2.4	I.6	.7	.314	I.834	I.875	2.96
1				$(a_{i}) \in A$	1.0						

н

Рис. 3. Зависимость формфакторов ядра ¹²С в АКМП, рассчитанных с гауссовскими пробными функциями, от параметра R /табл. 2/.

ядра; в гауссовской модели он также сильно связан с размером ядра как целого. Видно, что с ростом b наклон кривых формфакторов увеличивается /рис. 4/. Такая зависимость формфактора от параметров модели R и b имеет наглядную интерпретацию, и ее можно назвать "нормальной". Несколько необычно для гауссовских функций появление вторых "размерных" минимумов в формфакторах /рис. 3, кривые 1,2/, которые, правда, возникают лишь для нереально больших для данного ядра значений R

Перейдем к ядру ²⁴ Mg. Прежде заметим, что у всех ядер sd -оболочки в формфакторе появляется еще один. второй, минимум, который располагается при значениях переданного импульса ниже области альфа-кластерных особенностей формфактора. Чтобы понять его природу, обратимся к методическим расчетам на рис. 5 и 6. Из кривых 1,2,3 рис. 5 и 1,2,3 рис. 6 видно, что с изменением параметров внешнего кластера R₂ и b₂, ходформфактора следует сформулированной выше нормальной зависимости. Однако интереснее то, что наиболее сильно эта зависимость проявляется не в области первого минимума, как это было в ядрах р -оболочки, а в области второго минимума: с ростом R, второй минимум "ползет" влево, с ростом b₂ наклон кривой формфактора увеличивается. Далее любопытно, что при аналогичных изменениях параметров внутренних кластеров R₁ и b₁ формфактор в области второго минимума следует "аномальной зависимости": с ростом R₁ второй минимум усдвигается вправо по q /кривые 4,5,6 рис. 6/, а с ростом b₁ наклон кривой формфактора уменьшается /кривые 7,8,9 рис. 6/. Это связано с перераспределением заряда внутри ядра при заданных значениях параметров внешних кластеров. В то же время движение первых минимумов формфактора следует "нормальной" зависимости от R, и b, с их ростом, то есть с ростом размеров внутренней области ядра, минимум сдвигается по q влево. Зависимость от параметра в - угла "разворота" внешних альфа-кластеров оказывается весьма слабой, что согласуется с выводами простой альфа-частичной модели /8/. Действительно, изменение θ в три раза почти не меняет поведения формфактора /кривые 4,5,6 рис. 5/. Итак, вторые

минимумы в формфакторах ядер sd -оболочки естественно интерпретировать как "структурные". Они сильно зависят от относительного расположения в ядре внешних и внутренних альфа-кластеров и этим отличаются от первых "размерных" минимумов, которые связаны с размером ядра как целого и мало зависят от его внутренней структуры.

6. Обсуждая табл. 1, мы уже отмечали, что в рамках АКМП особенности поведения экспериментальных формфакторов ряда легких ядер при больших q связываются с наличием в ядре альфа-кластеров. Действительно, из рис. 7 для ядра ¹²С /кривые 4,5,6/ видно, что изменение параметра размера альфа-кластера R_a-раднуса полуспада его пробной функции /5/ приводит в основном к сдвигу в формфакторе только альфа-кластерного минимума. С другой стороны, изменение основного параметра размера ядра - расстояния R от его центра до альфакластера - изменяет положение только первого минимума /кривые 1,2,3 рис. 7/. Вообще же пробные симметризованные ферми-функции дают более содержательное описание формфакторов. Зависимость последних от изменения R, R_a и b_a для ядер р - оболочки следует нормальному закону: с ростом R и R_a соответствующие минимумы сдвигаются влево, с ростом параметра диффузности b_a наклон кривой формфактора увеличивается /кривые 7,8,9 рис. 7/. Интересно, что при достаточно больших размерах ядра, то есть с ростом R, у формфактора появляется второй "размерный" минимум /для кривой 2 это при q≈3,8 Ф-1 /. При этом могут возникать характерные особенности в поведении формфактора, как например, на рис. 7, кривая 1, когда третий максимум сдвигается с ростом R влево и налагается на альфа-кластерный

Рис. 6. Расчет формфакторов ядра ²⁴ Mg в АКМП на базе гауссовских пробных функций. Кривые 1,2,3 соответствуют изменению параметра R₂; 4,5,6 - параметра R₁;7,8,9 - параметра b₁ /табл. 3/.

минимум, что приводит к общему пологому ходу формффактора в этой области q

Именно такое пологое поведение в области альфакластерных особенностей формфактора наблюдается на эксперименте для ядра ²⁴ Mg. На рис. 8 показана зависимость такого поведения от изменения параметра размеров внутреннего R_{a1} и внешнего R_{a2} альфа-кластеров /соответственно кривые 1,2,3 и 4,5,6/. При этом положения "размерного" и "структурного" минимумов почти не меняются, но меняется характер кривых в районе альфа-кластерного минимума q = 3,8 Ф -1. И опять, как и в случае гауссовских пробных функций, увеличение параметров R_{a 1} и R_{a 2} действует в противоположные стороны: в первом случае этот минимум исчезает с ростом R_{al}, во втором - с ростом R_a появляется. Здесь проявляется также отмечавшийся уже факт неполной факторизации формфактора ядра на структурный и альфакластерный для пробных ферми-функций. В самом деле, из кривых рис. 8 видно, что альфа-кластерный минимум не может проявить себя там, где имеется "структурный" или "размерный", как в случае ядер р -оболочки /кривая 1 рнс. 7/, максимум формфактора.

7. В заключение отметим, что аналогичным образом ведут себя формфакторы и других кластерных ядер: 16 O, 28 Si, 32 S и 40 Ca.

Резюмируя полученные здесь результаты, подчеркнем следующее:

а/ Первые минимумы в формфакторах всех ядер являются "размерными", они чувствительны лишь к размерам всего ядра как целого и слабо зависят от его внутренней структуры.

б/ Вторые минимумы в формфакторах ядер sd -оболочки можно считать "структурными"; в модели АКМП их положение весьма чувствительно к взаимному расположению внутренних и внешних альфа-кластеров ядра.

в/ Особенности поведения формфакторов при больших переданных импульсах q = $3,1 \div 3,4 \Phi^{-1}$ АКМП связывает с наличием в этих ядрах образований альфа-кластерной природы; из-за этого здесь могут возникать характерные альфа-кластерные минимумы /на эксперименте

- 19

<u>.</u>

Рис. 8. Расчет формфакторов ядра ²⁴ Mg в АКМП на базе пробных симметризованных ферми-функций. Кривые 1,2,3 соответствуют изменениям R_{a_1} ; 4,5,6 - параметра R_{a_2} /табл. 3/.

они наблюдаются в ядрах 16 O, 32 S, 40 Ca / или пологое поведение формфакторов /как в ядрах 12 C, 24 Mg, 28 Si /, связанное с "наложением" размерных или структурных максимумов на альфа-кластерные минимумы.

г/ Все детали такого поведения при больших q могут быть объяснены и поняты только при использовании пробных симметризованных ферми-функций с правильной, экспоненциальной асимптотикой на больших расстояниях.

Литература

- 1. Ю.Н.Елдышев, В.К.Лукьянов, Ю.С.Поль. ЯФ, 16, 506 /1972/.
- 2. Е.В.Инопин, В.К.Лукьянов, Ю.С.Поль. Препринт ОИЯИ, P4-7350, Дубна, 1973.
- 3. Е.В.Инопин, В.С.Кинчаков, В.К.Лукьянов, Ю.С.Поль. Препринт ОИЯИ, Р4-7741, Дубна, 1974.
- 4. D.M.Brink. Intern. School of Phys. "Enrico Fermi" XXXVI, 247 (1966).
- 5. L.J.McDonald, H.Uberall, S.Numrich. Nucl.Phys., A147, 541 (1970); L.J.McDonald, H.Uberall. Phys.Rev., CI, 2156 (1970).
- 6. Е.В.Инопин, А.А.Креснин, Б.И.Тищенко. ЯФ, 2, 802 /1965/.
- 7. T. De Forest, J.D. Walecka. Adv. in Phys., 15, No. 57, 1 (1966).
- 8. P.S.Hauge, S.A.Williams, G.H.Duffey. Phys.Rev., C4, 1044 (1971).

9. H.Crannel. Phys.Rev., 148, 1107 (1966); I.Sick, J.S.McCarthe. Nucl.Phys., A150, 631 (1970); G.C.Li, I.Sick, M.R.Yearian. HEPL 691, Stanford (1973).

> Рукопись поступила в издательский отдел 16 апреля 1974 года.

> > 21