ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

1-678

2337/2-74

..........

И.В.Инопин, В.С.Кинчаков, В.К.Лукьянов, Ю.С.Поль

ЗАРЯДОВЫЕ ФОРМФАКТОРЫ ЯДЕР

В АЛЬФА-КЛАСТЕРНОЙ МОДЕЛИ

С ПРОЕКТИРОВКОЙ

12/01-74

P4 - 7741

P4 - 7741

И.В.Инопин, В.С.Кинчаков, В.К.Лукьянов, Ю.С.Поль³

ЗАРЯДОВЫЕ ФОРМФАКТОРЫ ЯДЕР

В АЛЬФА-КЛАСТЕРНОЙ МОДЕЛИ

С ПРОЕКТИРОВКОЙ

¹ Физико-техни ческий институт АН УССР, Харьков. ² Дальневосточный государственный университет, Владивосток.

³ Физический институт им. П.Н.Лебедева АН СССР, Москва. Инопин Е.В., Кинчаков В.С., Лукьянов В.К., Поль Ю.С.

P4 - 7741

Зарядовые формфакторы ядер в альфа-кластерной модели с проектировкой

Рассчитаны переходные плотности ряда состояний альфа-кластеризованных ядер 12 C, 16 O, 24 Mg, 28 Si, 32 S и 40 Ca. Дано сравнение с экспериментом соответствующих им зарядовых формфакторов рассеяния электронов.

Препринт Объединенного института ядерных исследований. Дубна, 1974

Inopin E.V., Kinchakov V.S., Lukianov V.K., Pol Yu.S.

P4 - 7741

Charge Form Factors in Nuclei in the Alpha-Cluster Projection Model

Transition densities are calculated for a series of states of alpha-clusterized nuclei 12 C , 16 O , 24 Mg , 28 Si 32 S and 40 Ca . The corresponding charge form factors of the electron scattering are compared with experiment.

Preprint. Joint Institute for Nuclear Research. Dubna, 1974

©1974 Объединенный институт ядерных исследований Дубна

§1. Введение

Альфа-кластерная модель с проектировкой /АКМП/ или модель Бринка^{/1/} - одна из последовательных моделей альфа-кластеризованных ядер. В ней состояния вращения генерируются оператором проектировки из антисимметризованной многочастичной функции, построенной из гауссовских пробных функций нуклонов в ^s-состояниях относительно центров альфа-кластеризации ядра. Цель данной работы - провести в этой модели анализ формфакторов группы ядер р-и s^d-оболочек. Такой анализ дополнит известные результаты расчетов энергий и других характеристик ряда ядер /1-4/, что позволит судить о действительном характере альфа-кластеризации ядер.

an a tha an an the an ar an ar he had a star a far the start and the start of the

and the second second and the second s

and the second second

化成化化 电子子 化合理橡胶 建离子 化乙酰胺 机合金机

Ранее формфакторы альфа-кластеризованных ядер анализировались в рамках простой альфа-частичной модели /АЧМ/ /5,6/. где было получено согласие с экспериментом при малых переданных импульсах. В такой модели положение альфа-частиц в ядре фиксировано, антисимметризация нуклонов не учитывается. Интересно. что если появляющийся в этой модели гауссовский формфактор связанной альфа-частицы формально заменить на формфактор свободной альфа-частицы, взятый из эксперимента, то для ядер p- н sd - оболочек удается получить качественное согласие с экспериментом не только при малых, но и при больших передаваемых импульсах $q \approx 3 \Phi^{-1/7,8/}$. Расчеты формфакторов проводились также и в близкой к этим моделям модели нуклонных ассоциа-: ций ^{/9} /. Все эти и другие подобные расчеты основаны на использовании базиса нуклонных функций гармонического осциллятора, имеющих, вообще говоря, неправильную асимптотику гауссовского типа. Часто именно это является главным препятствием в объяснении поведения формфакторов при больших q.

Преимущества АКМП перед этим и рядом других подходов состоят в следующем. Во-первых, модель позволяет довольно просто /по сравнению, например, с методом Хартри-Фока/ отыскивать волновую функцию альфа-кластерного ядра в основном и возбужденных состояниях вращения. Во-вторых, как будет показано ниже, в этой модели можно провести расчеты с пробными функциями нуклонов реалистической экспоненциальной асимптотики. Это существенно расширяет возможности описания формфакторов в области больших переданных импульсов.

Очевидно, что анализ формфакторов позволяет определить волновую функцию ядра более точно, нежели минимизация энергни связи. Такое восстановление ядерной функции - основная задача исследования рассеяния электронов, и не может быть в принципе выполнена в рамках АЧМ. В модели Бринка до сих порформфакторы рассчитывались лишь в виде отдельных примеров /3,4/. Широкие расчеты и сравнения с экспериментом формфакторов O⁺2⁺3⁻ вращательных состояний ядра ¹² С были выполнены в предыдущей работе /10/, там же дан первый анализ с пробными функциями экспоненциальной асимптотики. Здесь мы на базе того же подхода проведем анализ зарядовых формфакторов целой группы ядер альфа-кластерной природы ¹² С, ¹⁶O, ²⁴Mg, ²⁸Si, ³²S H ⁴⁰ Ca.

§2. Зарядовые формфакторы и переходная плотность в АКМП

Если влияние кулоновского поля ядра на относительное движение электрона оказывается достаточно сильным /на практике это начинается с ядер тяжелее 16 O /, то необходимо отказываться от плосковолнового, борновского приближения. В работе /11/ было показано, что метод высокоэнергетического приближения /ВЭП/ дает результаты, практически совпадающие с точными, рассчитанными по фазовому анализу, если выполнены условия E/U(0) >>1, kR>>1 и $E >> E_1$ где E_3 - энергия возбуждения данного состояния ядра. В дальнейшем все расчеты будем проводить в рамках этого подхода. В ВЭП зарядовый формфактор четного ядра имеет вид

$$F_{L}^{2}(E,q) =$$

$$= G(q) |q^{2} \int d\vec{r} \frac{g(\vec{r})}{q^{2}(\vec{r})} e^{i\vec{q}\vec{r} + i\phi(\vec{r})}\rho_{L}(r)Y_{L0}^{*}(\hat{r})|^{2}.$$

$$G(q) = \exp \left[-\frac{q^2}{3} \left(\overline{R}^2(p) - \frac{R^2(a)}{A} \right) \right], /2/$$

где $\overline{R}(p)$ и R(a)- среднеквадратичные радиусы протона и a -кластера. В плосковолновом борновском приближении q , g=1, $\phi = 0$, в результате получаем

 $F_{L}^{B^{2}}(q) = G(q) |i^{L}\sqrt{4\pi(2L+1)} \int r^{2} dr \rho_{L}(r) j_{L}(qr) |^{2}/3/$

По определению, радиальная переходная плотность ρ_{l} естьматричный элемент соответствующего коэффициента разложения оператора плотности заряда ядра, состоящего из точечных нуклонов, в ряд сферических гармоник:

and the second secon

$$\langle I.0 | \rho(\vec{r}, \zeta) | 00 \rangle = \sum_{L} \rho_{L}(r) Y_{LM}^{*}(\vec{r}) /4 /$$

$$\rho(\vec{r}, \zeta) = \frac{1}{z} \sum_{k=1}^{A} e_{k} \delta(\vec{r} - \vec{r}_{k}) = \sum_{LM} \mathcal{P}_{LM}(\vec{r}, \zeta) Y_{LM}^{*}(\vec{r}) /5 /$$

$$\mathcal{P}_{LM} = \sum_{k=1}^{A} \mathcal{P}_{LM}^{(k)} = \sum_{k=1}^{A} \frac{e_{k}}{Z} \delta(r - r_{k}) \frac{1}{r^{2}} Y_{LM}(\vec{r}_{k}) /6 /$$

$$\rho_{L}(r) = \langle L0 | \mathcal{P}_{L0} | 00 \rangle . /7 /$$

пределение плотности заряда ядра, нормированное на единицу.

В рамках АКМП мы будем изучать формфакторы упругого и неупругого рассеяния, для чего потребуется получить и вычислить соответствующие плотности перехода /7/.

Суть модели состоит в том, что в ядре выделяются центры расположения альфа-кластеров: \vec{R}_i : $i = 1, 2 \dots N$ -

- индекс кластера, N - полное число кластеров в ядре/. Относительно этих центров четыре нуклона находятся в s - состояниях с функциями

$$\mathbf{r}_{a}(\vec{\mathbf{r}} - \vec{\mathbf{R}}_{i}) = \chi_{\sigma} \chi_{\tau} \mathbf{u}(|\vec{\mathbf{r}} - \vec{\mathbf{R}}_{i}|) , /8/2$$

где $a = i, \sigma, \tau$ - индекс одночастичного состояния. Затем, на основе /8/, строится пробная многочастичная антисимметризованная функция

$$U(\vec{R}) = \sum_{p} \epsilon_{p} \prod_{a=1}^{n} u_{a} (pa) , /9/$$

из которой с помощью операторов четности P_{π} , проектировки $P_{MK}^{J/14/}$ составляются функции с заданными квантовыми числами | JMK π >, где К - проекция момента J на внутреннюю ось ядра. Полная функция есть суперпозиция

$$|JM\pi\rangle = \sum_{K} C_{K} |JMK\pi\rangle, \qquad /10/$$

где коэффициенты C_{K} для нижних состояний определяются из соображений симметрии, выбранной альфа-частичной конфигурации ядра. С помощью этих функций вычисляются матричные элементы оператора плотности заряда ядра /5/-/7/. Можно показать /10/, что в этой модели для четного ядра распределение плотности заряда /р.п.з./ и переходная плотность /7/ оказываются равными

$$\rho_{\rm L} = \frac{1}{4\pi^2 \, N_{00}^{\frac{1}{2}} \pi_0} \sum_{\rm K} C_{\rm K}^{\rm L} \, N_{\rm LK\pi}^{-\frac{1}{2}} \int d\theta [\langle U(\vec{R}) | \mathcal{P}_{\rm LK} | U(\vec{S}) \rangle - \frac{11}{4\pi^2 \, N_{00}^{\frac{1}{2}} \pi_0} \langle U(\vec{R}) | \mathcal{P}_{\rm LK} | U(\vec{S}) \rangle]$$

где N - нормировочные множители волновых функций. Интегрирование ведется по углам Эйлера и возникает из-за поворота, предписываемого оператором проектировки, исходной альфа-конфигурации ядра $R = \{R_i\}$ кновой, повернутой конфигурации $S = \{S_i = \hat{R}(\theta), R_i\}$. Многочастичные матричные элементы выражаются через детерминанты

 $\langle U(\vec{R}) | \mathcal{P}_{LK} | U(\epsilon \vec{S}) \rangle = 2] \det B_{ij}(\epsilon)]_{n=1}^{3} \int_{n=1}^{A} \det B_{ij}^{(n) LK}(\epsilon) / 12/2$

ne per la companya de la companya de

которые определяются одночастичными функциями

$$\begin{array}{c} \begin{array}{c} (n) & LK \\ B_{ij} & (\epsilon) = (u(\vec{r} - \vec{R}_i), \mathcal{P}_{LK}^{(i)}u(\vec{r} - \epsilon \vec{S}_j) \delta_{ni} + /13/ \\ + B_{ij}(\epsilon) (1 - \delta_{ni}) \\ B_{ij}(\epsilon) = (u(\vec{r} - \vec{R}_i), u(\vec{r} - \epsilon \vec{S}_j)) . /14/ \end{array}$$

Итак, в техническом плане задача состоит в вычислении сначала одночастичных /13/, /14/, затем многочастичных /12/ матричных элементов и проведении трехмерного интегрирования /15,16/ в /11/ по углам Эйлера.

§3. Вид пробных функций. Сравнение с экспериментом

Естественно, результат зависит от того, какая выбрана геометрическая конфигурация расположения центров альфа-кластеров \vec{R}_i и какого вида пробные функции $u(\vec{r} - \vec{R}_i)$ используются в расчетах. Что касается альфа-конфигураций, то расчеты характеристик основных состояний ряда ядер по АКМП $^{/1-4/}$, а также расчеты формфакторов по альфа-частичной модели $^{/5-8/}$ позволяют выбрать их в виде, изображенном на *рис. 1.* А именно, 12 С - равносторонний треугольник, 16 О - тетраэдр, 24 Mg - битетраэдр, 28 Si - D - структура, 32 S - D - 3h структура, 40 Са - тетраэдр внутри октаэдра, (T - 0h) структура. На основе присущих этим фигурам симметрий можно найти коэффициенты $C_{\rm K}$ в волновой функции /10/. Одночастичные пробные функции выбирались в $^{/10/}$ как в форме традиционных гауссовских

$$u_{\rm G}(|\vec{r} - \vec{R}_{\rm i})| = \exp\left[-\frac{(|\vec{r} - \vec{R}_{\rm i}|)^2}{2|\mathbf{h}|^2}\right],$$
 /15/

так и виде функций с экспоненциальной асимптотикой,

$$u_{sF}(\vec{r} - \vec{R}_{i}) = (ch\frac{R_{\alpha i}}{b_{\alpha i}} + ch\frac{\vec{r} - \vec{R}_{i}}{b_{\alpha i}})^{-1} / 16/$$

где R_{ai} и b_{ai} определяют раднус и ширину области полуспада функции наклона от центра альфа-кластера. Оказывается, что одночастичные матричные элементы с функциями /15/ и /16/ вычисляются в явном виде ^{/10/}, что весьма ценно в практических приложениях.

Результаты расчетов распределений плотности заряда и перехода и формфакторов в ВЭП, согласно изложенной схеме, представлены на *рис. 2-10.* Общее замечание, касающееся ядер, состоит в том, что возможности гауссовских пробных функций весьма ограничены. Так, расчеты с этими функциями не дают особенностей поведения формфакторов в области второго минимума ядер р-оболочки и третьего минимума ядер sd-оболочки. Это поведение интересно связать с появлением дифракционного минимума в формфакторе ⁴ Пе при q \approx 3.3 Φ^{-1} . Дейст-

вительно, гауссовская функция р.п.з. $\rho(^{4}\text{He}) = \exp(-\frac{r^{2}}{l^{2}})$

Рис. 1. Альфа-конфигурации ядер р-и sd-оболочек, используемые в расчетах формфакторов.

Рис. 2. Формфакторы упругого рассеяния электронов на ⁴ Не для пробных гауссовских и симметризованных фермифункций нуклонов.

принципе не может дать минимума /см. рис. 2//. В то же время функция /16/ с реалистической асимптотикой дает такую плотность $\rho({}^4 \text{ He}) = u_{SF}^2(r,R_i=0)$, которая при $R_a =$ =1,59 Ф и $b_a = 0,545 \Phi$ объясняет не только "размерный" минимум свободной альфа-частицы, но и весь ход ее экспериментального формфактора. Поэтому естественно считать, что те "дополнительные" минимумы или особенности при $q \approx 3 \div 3.3 \Phi^{-1}$, которые наблюдаются в формфакторах указанных ядер, являются не обычным проявлением размеров ядра как целого, а несут в себе черты

Рис. 3. Зарядовые формфакторы 12 С, 16 O, 24 Mg u 28 Si, рассчитанные при фиксированных по 4 He параметрах пробных симметризованных ферми-функций нуклонов с подгонкой только по параметрам альфа-конфигураций /параметры в табл; 1/.

11

Параметры упругого рассеяния для кривых, изображенных на рис. 3. Расчёт прово-дился с пробными симметризованными ферми-функциями

2

Kpune	Å,	Rai	b.,	R.	R.2	6m2	Þ	R (41)	<u>R</u> (42)	R(A)
С С	I.5	I.59	0.545	T	. L .	8	1	I.62		2.275
0	6•1	I.59	0.545	l ,-	. 4		I	I.62	. 1	2.539
545	I.5	I.59	0.545	2.7	I.59	0.545	0.314	I.62	I.62	2.917
IS ₂₂	0.0	2.0	0*I	2.3	I.59	0.545	I.256	2.56	I.62	2.92
						ст <u>и</u> ,		•		
	j.									· . .v
•										

13

 \sim Таблица

				ndu unt	oud waar	4	
Идентификация	Kpurake	В	R	¢,		(d)	R (A
V 61	I	0.7		1.6		.96	2. 4I
ر <u>ب</u>	2	I •0		I.55	г	.06	2.40
	~	I.I5	1	I.5	Η	-84	2.37
U GAUSS	4	I.45	. 1	1.4	Η	.71	2.35
	·				· · · · · · · · · · · · · · · · · · ·		•
12 C	н	0.7	I.45	0.85	5	60•	2.48
ر ا	2	6.0	I.35	0.85	N.	•06	2.488
	Ś	I.I	I.4	0.8	н	.98	2.47
U FERMI	4	I.3	I.4	0.7	н ,	.80	2.354
16.0	L L	I.6		I.5	Π	.84	2.585
202	2	I.3	Í	I. 6	н	.96	2.595
	δ	0.8	1	1.7	N	.07	2.6I4
C2- 64035	4	I-0	1	I.75	N	•14	2.624
16 D	I	6.0	I.8	0.8	2	.131	2.658
2	2	0.3	I.75	0.85	N	-199 	2.646
	m	I-0	I.7	6 • 0	N,	.27	2.701
U- LERMI	4	I.7	I.5	0.7	F-1	.834	2.617

Рис. 5. Расчеты формфакторов неупругого рассеяния на 12 С и 16 О с использованием пробных ферми-функций экс-поненциальной асимптотики /параметры в табл. 3/.

14

с пробными симметри-Расчёг ഹ് зованными функциями Параметры неупругого рассеяния для кривых рис.

Рис. 6. Распределения плотности заряда и перехода в упругом /O⁺ / и неупругом /2⁺, 3⁻ / рассеянии электронов на ¹²(, соответствующих формфакторам наилучшего согласия с экспериментом. Сплошные кривые соответствуют подгонке на рис. 4, кр. 2 /O⁺ гаусс/; пунктирные кр. 1 /O⁺ Φ /; штрих-пунктирные - рис. 5, кр. 2 /2⁺ Φ /; пунктир-две точки - кр. 2 /3⁻ Φ /.

17

Рис. 7. Распределения плотности заряда и перехода в упругом /O⁺ / и неупругом /3⁻ / рассеянии электронов на ¹⁶О .Сплошная соответствует кривой 4 рис. 4 /O⁺ гаусс/, пунктир р.п.з. - кривой 3 рис. 4 /O⁺ Ф/. Для р.п.з. пунктир соответствует кривой 1 рис. 5 /3⁻ Ф/, пунктир - две точки соответствует кривой 3 рис. 5 /3⁻ Ф/.

18

α Параметры упрогого рассеяния для кривых рис.

Итентили-								1			
кация	Кривые	à	Rai	- pari	R2	Res	642	Ф	R(al)	<u>R</u> (d2)	<u>R</u> (A)
²⁴ M,	ы	0 [•] 1	8	. I •6	2-2		I.5	0.314	1.%	1.8 1	2.906
	2	0.7		I.7	I.5	I N	1.7	0.314	2.07	2.07	2.935
U GAUSS	m	I.4	1	I.5	2.0	l	I.5	0.314	1.84	1.84	2.86
	4	I•0	1	I.75	I.0	. 1 .	I.75	0.314	2•I4	2.14	2.947
24 Mo	I	6-0	I.7	0.8	6 . 1	1.7	0.8	0.314	2.1	2.1	3.00
n	2	· I.3	I.5	0.7	2.4	I.5	0.7	0.314	I.834	I.834	2.94I
U - FEAMI	m	ς. Π	I.6	0.65	2.6	I.6	0.65	0.314	г.79	I.79	2.93
	4	I•5	I.59	0.545	2.7	I.59	0.545	0.314	I.62	I.62	2.917
28 S.	I	0.0	1	I.8	I.4		1.7	I.256	2.20	2.07	3.003
5	2	0.0	I	I.8	I.3	1	I.7	I.256	2.20	2.07	2.98I
U GAUSS	~ ·	0.0	. 1	I.8	I.2	1	I.7	I.256	2.20	2.07	2.96I
	4	0.0	I	I•8	1.0	, I	I.7	I.256	2.20	2.07	2.932
28 Si	Ţ	0.0	I.8	0 I	I.8	- 9° I	0.85	I.256	2.49	2.142	3.113
	2	000	I.7	0°I	I.4	9°I	0.9	I.256	2.456	2.235	3.08
U FERMI	<u></u>	0.0	I.7	0•I	I.8	I.5	0.85	I-256	2.456	2.107	3.063
	4	0.0	I.6	0. H	1.7	Τ.5	0.85	I.256	2.423	2.107	3.025
-			*e - 1		4 				1		

Рис. 9. Формфакторы ядер ³²5 и⁴⁰ Са Расчет с гауссов-скими пробными функциями /параметры из табл. 5/.

20

гауссовскими пробными υ Pacyër **.** puc. для кривых функциями рассеяния упругого

Идентификация Кривне R_1 L_{d1} R_2 L_{d2} R_1 $\overline{R}(J_1)$ $\overline{R}(J_2)$ $\overline{R}(J_1)$ 32 S_1 I I.9 I.4 2.5 I.4 0.628 I.71 I.71 5.1 32 L_{d-} GAUSS 3 I.6 0.628 I.96 I.96 3.1 U_{d-} GAUSS 1 I.8 I.5 2.3 I.5 0.628 I.84 I.84 3.1 $4^0 C_{d1}$ I I.8 I.6 2.8 I.6 0.955 I.96 I.96 3.4 U_{d-} GAUSS 3 I.9 I.6 2.6 I.6 0.955 I.96 I.96 3.4				•		•	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Идентификация	Кривие	à	6at	R2	642	ø	Ē(41)	<u>Ř(</u> 42)	R(A)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32 0	H	6•I	1.4	2.5	I.4	0.628	I7.I	1.71	3.13
u_{a^-} GAUSS 3 I.8 I.5 2.3 I.5 0.628 I.84 I.84 B.17 $4^0 Ca$ I I.8 I.6 2.8 I.6 0.955 I.96 I.96 3.4 u_{a^-} GAUSS 3 I.9 I.6 2.8 I.6 0.955 I.96 I.96 3.4 u_{a^-} GAUSS 3 I.9 I.6 2.6 I.65 0.955 I.96 I.96 3.4	א 	2	I.6	1.6	2.0	1.6	0.628	1.96	1.96	3 .I 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		m	I.8	1.5	2.3	I.5	0.628	1.8°	1.84	3.I 46
40Cα I I.8 I.6 2.8 I.6 0.955 I.96 I.96 3.4 2 I.7 I.7 2.4 I.65 0.955 2.07 2.01 3.3 U ₄ - GAUSS 3 I.9 I.6 2.6 I.6 0.955 I.96 I.96 3.4	u _a - gauss		•				•			
UL-GAUSS 2 1.7 2.4 1.65 0.955 2.07 2.01 3.31 UL-GAUSS 3 1.9 1.6 2.6 1.6 0.955 1.96 1.96 3.44	40 L U	H	I.8	9°I	2.8	I.6	0.955	1.96	I.%	3.454
U₄ - GAUSS 3 I.9 I.6 2.6 I.6 0.955 I.96 I.96 3.40	3	~	I.7	I.7	2.4	I.65	0.955	2.07	2.0I	3.392
	U. GAUSS	ñ	6•I	I.6	2.6	1.6	0.955	1.96 1	, I.96	3.403
	- - 	2 * - 12 - 1 								
			, , ,			, e - s				•

Рис. 10. Распределения плотности заряда ядер ²⁴ Mg, ²⁸ Si ,³² S и ⁴⁰ Ca, соответствующие /с той же нумерацией кривых/ формфакторам на рис. 8 и 9.

структуры альфа-кластера внутри ядра. В то же время попытки / puc. 3/ описать наблюдаемые формфакторы ядер 12 С, 16 О и 28 Si с параметрами R_{α} и b_{α} свободной альфа-частицы и подгонкой только по конфигурационным параметрам R_i /см. табл. 1/ не дали согласия при средних и больших q. Исключение составило ядро 24 Mg, которое, таким образом, можно считать близким к альфачастичному. В остальных же ядрах размеры альфа-кластеров сильно отличаются от альфа-частичных.

22

Так, на рис. 4 даны формфакторы упругого рассеяния электронов на ядрах ¹² с и ¹⁶ О рассчитанные с пробными функциями гауссовской и экспоненциальной асимптотик. Параметры R, R, н b, подгонялись так, чтобы во всех расчетах среднеквадратичные радиусы этих ядер совпадали с известными экспериментальными значениями. Это достигалось в основном подгонкой формфактора в области первого дифракционного минимума. Оказалось, что в обоих случаях имеется довольно большой класс кривых, каждая из которых с хорошей точностью описывает эксперимент по упругому рассеянию /17,18/ во всей наблюдаемой области переданных импульсов, если пользоваться пробными симметризованными ферми-функциями. Среди наборов параметров наилучшей подгонки / табл. 2/ имеются и такие, которые близки или совпадают с найденными в других работах /1-3/ из вариационных расчетов энергий ядерных состояний с разного вида нуклон-нуклонными взаимодействиями. В этом смысле надежды на успешное описание формфакторов как критерия отбора вариантов N-N сил пока себя не оправдывают.

Пробные симметризованные ферми-функцин дают более содержательное описание формфакторов. Так, если в будущем эксперимент для ядра ¹² С действительно обнаружит второй минимум в формфакторе упругого рассеяния при q 3,5 ϕ^{-1} , то кривые, найденные на базе гауссовских пробных функций, уже не будут соответствовать эксперименту. Наоборот, кривые расчетов с фермифункциями содержат такую возможность.

Отметим, что для ядра ¹⁶ О гауссовские пробные функции вообще не способны дать описания второго минимума одновременно с правильным предсказанием величины среднеквадратичного радиуса. Это указывает на преимущества использования в альфа-кластерных и оболочечных моделях функций с экспериментальной асимптотикой.

Из физических следствий анализа формфакторов в рамках АКМП следует выделить то, что для ядра ¹² С среди возможных наборов имеются кривые с малыми значениями параметров размера треугольника R =0,7 - 1,1 Ф. Учитывая, что при R→0 АКМП переходит в модель оболочек, можно заключить, что результаты сравнения с данными упругого рассения не противоречат предположению о слабой кластеризации ядра 12 С в основном состоянии. Относительно ядра 16 О можно заключить, в соответствии с выводами других работ /1/, что оно в основном состоянии фактически не кластеризовано, так как наилучшая подгонка упругого формфактора оценивается при очень малом значении параметра R. Тот же вывод следует и из типичного вида распределения плотности заряда этих ядер /puc. 6,7/. Видно характерное для модели оболочек понижение кривых р.п.з. в центральной области ядра.

В работе^{/10}/ было показано, что для ¹² С не удается найти набора параметров, одинаково хорошо описывающих как упругое, так и неупругое рассеяние при всех значениях q. Поэтому представляет интерес независимая подгонка за счет вариации параметров пробных функций формфакторов неупругого рассеяния без привязки к параметрам упругого. Это позволит детальио понять структуру возбужденных состояний ядра, например, их плотности перехода и соответствующие среднеквадратичные радиусы. Естественно, подгонка должна вестись на базе пробных функций с экспоненциальной асимптотикой, чтобы описать область минимума неупругих формфакторов в районе q 2,5 ÷ 3,0 ϕ^{-1} .

На рис. 5 приведены результаты таких расчетов и их сравнение с экспериментом. Во-первых, и в этом случае видиа неоднозначность модели, так как, по крайней мере, по три кривые на каждое состояние /1,2,3 для 2+ и 1,2,3 для 3⁻ ядра 126. / можно считать удачно описывающими эксперимент. Далее среднеквадратичные радиусы ядер с параметрами подгонки под неупругое рассеяние оказывается примерно на 0,2 Ф больше соответствующих R (12C) упругого рассеяния /ср. табл. 2 и 3/. Требо: вание наилучшей подгонки неупругого рассеяния для 12 С приводит к параметрам $R_a = 2,0 \Phi$ и $b_a = 0,5 \div 0,6 \Phi$ $/\bar{R}(\alpha) = 1.77 \div 1.9 \Phi/$, то есть альфа-кластеры в возбужденных состояниях ядра ¹² С становятся более компактными, чем в основном, где $R_{\alpha} = 1,35 \div 1,45 \ \phi$, $b_{\alpha} = 1,35 \div 1,45 \ \phi$ =0,7÷ 0,85 ϕ R (a) = 1,8 ÷ 2,1 ϕ и имеют тенденцию к сближению с параметрами свободной альфа-частицы.

Этот же эффект формирования кластеров при возбуждении ядра виден и из *рис.* 6, где плотности перехода с параметрами наилучшей подгонки неупругих формфакторов /штрих-пунктирные кривые/ выдвинуты от центра ядра значительно дальше / \approx на 1 Φ /, чем рассчитанные с параметрами наилучшей подгонки упругого рассеяния /сплошные и пунктирные кривые/. Об этом же говорит и изменение параметра треугольника R. По данным упругого рассеяния, он оказывается заметно меньшим, чем для возбужденных состояний.

На рис. 8 представлены результаты соответствующих расчетов для ядер ${}^{24}\,{\rm Mg}\,{\,\rm u}$ ${}^{28}\,{\rm Si}$. Для каждого ядра имеется по крайней мере одна кривая наилучшей подгонки. Остальные кривые дают представление о зависимости поведения формфакторов от входных параметров.

Результаты проведенных расчетов показывают следующее / maga. 4/. Для ядра 24 Mg согласие с экспериментом достигается с одинаковыми параметрами R_a и b_a для внутренних и периферийных кластеров, причем их величины близки к R_a =1,59 Фн b_a = 0,545 Ф свободной *a* -частицы. Параметр R_2 оказывается примерно вдвое большим, чем R_1 -расстояния до внутренних кластеров, что говорит о равномерном распределении центров кластеризации по объему ядра. Это обстоятельство позволяет сделать вывод об *a* -частичной природе ядра

 24 Mg Поскольку характерный угол θ направления векторов $\vec{R_i}$ здесь является острым, то ядро является в то же время вытянутым.

Иная ситуация обнаруживается у ядра ²⁸ Si . В выбранной конфигурации "внутренний" альфа-кластер расположен в центре ядра, поэтому $R_1 = 0$.Согласие с экспериментом удается достичь только при сильно отличающихся параметрах центрального и периферийного кластеров, причем их величины далеки от альфа-частичных.

Таким образом, нуклоны в ядре сильно "размешаны". В то же время значение расстояния $R_2 = 1,5 \div 2\Phi$, которое необходимо выбирать для успешного описания эксперимента, является немалым, поэтому делать вывод о простой оболочечной структуре этого ядра нельзя. Скорее следует говорить об альфа-кластерной структуре ²⁸ Si Для ядер 32 в 40 Са сравнение было сделано на базе гауссовских пробных функций / *рис.* 9/, поэтому найденное согласие может оказаться не всегда отражающим физическую картину истинного р.п.з. в ядре / *рис.* 10/.

§4. Заключение

Основные результаты работы следующие:

1. В рамках АКМП получены выражения для зарядовых формфакторов упругого и неупругого рассеяния электронов на альфа-кластерных ядрах. Выполнены их численные расчеты с пробными функциями нуклонов с гауссовской экспоненциальной асимптотикой.

2. Модель с хорошей точностью описывает формфакторы ядер 12С, 16 0, 24 Mg, 28 Si, 32S, 40 Ca. Нанлучшая подгонка осуществляется для пробных функций нуклонов с экспоненциальной асимптотикой, когда согласие с экспериментом получается не только в области малых переданных импульсов $q < 2 \phi^{-1}$, что возможно сделать и для гауссовских пробных функций и в рамках альфачастичной модели, но и в области больших q, вплоть до предельного в известных пока экспериментах $a \approx 3.5 \phi^{-1}$. При этом естественно связывать особенности поведения формфакторов в области q $\approx 2.7 \div 3.5 \ \phi^{-1}$ /минимумы или пологий ход экспериментальных кривых/ с проявлением конечных размеров альфа-кластеров внутри ядра. Тогда остальные дифракционные минимумы при q ≦ 2,7 ø⁻¹ можно считать структурными, размерными минимумами ядра как целого.

3. Анализ показывает, что ядро 12 С в основном состоянии слабо кластеризовано; ядро 16 О фактически не кластеризовано; ядро 24 Mg близко к альфа-частичному, причем альфа-кластерная конфигурация имитирует вытянутое неаксиальное деформированное ядро; в ядре 28 Si альфа-кластеры сильно "размыты", особенно центральный, однако природа ядра остается альфа-кластерной, и можно говорить о кластеризации поверхности этого ядра. Относительно ядер 32 S н 40 Ca пока можно лишь сказать, что предположение об их альфа-кластерной при-

роде не противоречит возможности соответствующего описания зарядовых формфакторов. На примере ядра ¹² С видно, что в возбужденных вращательных состояниях кластеризация усиливается, причем сами альфа-кластеры становятся более компактными и приближаются по своим размерам к свободной альфа-частице.

4. Расчеты показывают, что модель не может дать однозначного описания формфакторов ядер p-оболочек. Имеется хорошее согласие с экспериментом для целого ряда наборов параметров в случае упругого рассеяния, и, по крайней мере, по три набора параметров для каждого из формфакторов /2⁺ и 3⁻ / неупругого рассеяния. При этом в некоторых наборах параметры оказываются близкими к тем, которые были найдены ранее в вариационных расчетах энергий состояний при различного рода предположениях о нуклон-нуклонных силах. Таким образом, эти результаты не противоречат тем, которые были получены в энергетических расчетах. Однако неоднозначность параметров при описании формфакторов ядер р-оболочки приводит к тому, что их анализ в измеренной области ч пока не дает возможности сделать заключение о преимуществе того или иного вариационного расчета энергий. Что касается ядер sd-оболочки, то здесь практически отсутствуют расчеты энергий и других основных характеристик ядер в рамках АКМП, поэтому делать обоснованные: выводы об альфа-кластерной природе этих ядер только на основе сравнений формфакторов было бы преждевременно.

В заключение авторы благодарят А.И.Салтыкова за консультации по составленной им стандартной программе многомерного интегрирования.

나라 중에 가지?

- 1. Д.Бринк. В сб. "Структура сложных ядер", Москва, Атомиздат, 1966.
- D.M.Brink. Intern. School of Physics ('Enriko Fermi'', course XXXVI (1965). D.M.Brink, H.Friedrich, A.Weignny, C.W.Wong. Phys.Lett., 33B, 143 (1970).

- 2. И.Ш.Вашакидзе, Т.Р.Джалагания. ЯФ, 6, 941 /1971/.
- 3. N. Tagikawa, A.Arima. Nucl. Phys., A168, 593 (1971).
- 4. J.Yamashita, Y.Abe, J.Hiura, H.Tanaka. Int.Conf. on Clustering, Bochym IIAFA, 1969) p. 281.
- 5. Е.В.Инопин, Б.И. Тищенко. ЖЭТФ, 38, 1160 /1960/.
- Е.В.Вадиа, Е.В.Инопин, М.Юсеф. ЖЭТФ, 45, 1164 /1963/.
- Е.В.Инопин, А.А.Креснин, Б.И.Тищенко. ЯФ, 2, 802 /1965/.
- 6. А.Н.Антонов, Е.В.Инопин. ЯФ, 16, 326 /1972/.
- 7. L.J.McDonald, H.Uberrall, S.Numrich. Nucl. Phys., A147, 541 (1970).
- 8. P.S.Hauge, S.A. Williams, C.H.Duffey. Phys. Rev., v. C4, 1044 (1971).
- 9. В.Г.Неудачин, Ю.Ф.Смирнов. Нуклонные ассоциации в легких ядрах. Москва, Наука, 1969 г.
- 10. Е.В.Инопин, В.К.Лукьянов, Ю.С.Поль. Препринт ОИЯИ P4-7350, Дубна, 1973.
- 11. В.К. Лукьянов, Ю.С. Поль. ЯФ, 11, 556 /1970/.
- 12. И.Ж.Петков, В.К.Лукьянов, Ю.С.Поль, ЯФ, 4, 57 /1966/.
- 13. T. de Forest, J.D. Walecka. Adv. in Phys., 15, no 57, 1 (1966).
- 14. R.E.Pierls, J.Yossoz. Proc.Roy.Soc., A70, 381 (1957).

- Н.М.Коробов. Теоретико-численные методы в приближенном анализе. Физматгиз. М., 1963.
 А.И.Салтыков. ЖВМ и МФ, 3, 181-/1963/.
- 16. А.И.Салтыков. В сб. Труды совещания по программированию и математическим методам решения физических задач: Д10-7707, Дубна, 1974.
- 17. R.F.Frosch, J.S.McCarthy, R.E.Rand, M.R.Yearian. Phys.Rev., 160, 874 (1967).
- H.Grannel. Phys.Rev., 148, 1107 (1966).
 I.Sick, J.S.McCarthy. Nucl.Phys., A150, 631 (1970).
 C.C.Li, I.Sick, M.R.Yearian, HEPL 691, Stanford 1973.
 J.B.Bellicard, P.Bourin, R.Frosch et al. Phys.Rev.Lett., 19, 527 (1967).

Рукопись поступила в издательский отдел 19 февраля 1974 года.