ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

<u>C 346.36</u> 17-563

ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ НА АТОМНЫЙ И ЯДЕРНЫЙ ЗАХВАТ МЕЗОНОВ

P4 - 7269

P4 - 7269

Л.И.Пономарев

ВЛИЯНИЕ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ НА АТОМНЫЙ И ЯДЕРНЫЙ ЗАХВАТ МЕЗОНОВ

Направлено в "Annual Review of Nuclear Science".

Объединенный инстит CISCHER DECODORCE ENGINOTERA

ВВЕДЕНИЕ

Попадая в вещество, отрицательно заряженные мезоны (μ , π^- , K^-) тормозятся там и после остановки образуют с ядрами атомов атомоподобные системы -мезоатомы и мезомолекулы. Размеры таких систем в десятки и сотни раз меньше размеров соответствующих атомов и, как правило, целиком помещаются внутри их К-оболочек. Поэтому при изучении мезоатомных процессов электронные оболочки атомов обычно не принимают во внимание. По той же причине трудно предположить заранее, что захват мезонов на орбиты мезоатомов и их реакции с ядрами могут зависеть от особенностей строения химических связей между атомами вещества. В самом деле, химические свойства веществ определяются внешними электронными оболочками атомов, размеры которых(10^{-8} см) намного превышают радиус действия ядерных сил (10^{-13} см) и величину мезоатомов (10^{-11} - 10^{-10} см), с уровней которых происходит ядерный захват мезонов.

Тем не менее эксперименты последних десяти лет убедительно доказывают влияние молекулярной структуры веществ на процессы атомного и ядерного захвата мезонов. Обсуждаемые эффекты впервые наиболее отчетливо были установлены при изучении реакции перезарядки π^- -мезонов на ядрах химически связанного водорода, а затем – при исследовании структуры \mathcal{M} -рентгеновских серий элементов в химических соединениях и смесях.

Попытки интерпретировать указанные факты привели к существенному уточнению картины захвата отрицательных мезонов в веществе. В.частности, было установлено, что при торможении и остановке мезонов в химических соединениях значительная их часть за-

хветывеется не не уровни изолировенных этомов, а не уровни всей молекулы в целом. В теких возбужденных комплексех, которые были названы "большими мезомолекулами", мезоатомные орбиты сравнимы с размерами молекул вещества и в сотни раз превышают характерные мезоатомные расстояния.

Обнаружение и изучение упомянутых явлений позволяет в принципе использовать их для исследования электронной структуры молекул, а также в различных прикладных задачах качественного и количественного анализа веществ. Получение интенсивных мезонных пучков на мезонных фабриках делает эти надежды более обоснованными.

В данном обзоре представлены основные экспериментальные работы, в которых обнаружено и исследовано влияние химической структуры веществ на процессы захвата мезонов, и представления, которые используются в настоящее время для анализа результатов этих экспериментов. Подробная библиография по всем относящимся сюда вопросам опубликована в работах/I-3/. Смежные вопросы обсуждаются в обзорах/4-7/.

Последовательные стадии поглощения мезонов в веществе

В 1947 году Ферми и Теллер^{/8/} сформулировали так называемый Z -закон, согласно которому при торможении отрицательно заряженных мезонов (μ^-, π^-, K^-) в химических соединениях $Z'_k Z_m$ вероятности захвата мезонов W(Z) и W(Z') атомами пропорциональны зарядам их ядер Z и Z'

$$W(Z)/W(Z') = mZ/kZ'.$$
 (I)

На рис. I из работы Байджала и др.^{/9/} представлены результаты проверки <u>Z</u>-закона. Прямые соответствуют формуле

$$k W(z)/m W(z') = (Z/z')^{s}$$
(2)

при резличных покезетелях степени *s*, причем значение *s* =I соответствует *Z* -закону. Из приведенного рисунка очевидно, что в целом экспериментельные данные свидетельствуют против *Z* -закона. Встает вопрос о причинах его нарушения.

Процесс захвата мезонов включает в себя несколько стадий, из которых отметим главные:

<u>Торможение от скоростей $v \sim c$ до $v \sim cc$ </u>. Вплоть до скоростей $v \sim cc$ (порядок скоростей этомных электронов, $\alpha = I/I37$ - постоянная тонкой структуры) тормозная способность веществ пропорциональна Z, в время торможения составляет 10^{-9} - 10^{10} сек (в газах в 10^3 раз больше). В водороде процесс торможения определяется механизмом адиабатической ионизации^{/8/}. Согласно вычислениям Вайтмана^{/10/} в жидком водороде $\tau \sim 10^{-9}$ сек.

<u>Атомный захват мезонов.</u> Стадия захвата мезонов на высоковозбужденные уровни мезоатомов и мезомолекул менее всего изучена. Обычно, не вдаваясь в детали процесса торможения, предполагают, что в конденсированных веществах мезоны со скоростями $v \sim d c$ довольно быстро, за время 10^{-13} - 10^{-14} сек, тормозятся до тепловых скоростей $v_{\tau} \sim (3^{k}T/m)^{\frac{1}{2}}$. Дальнейшие потери энергии мезонов и их захват в связанное состояние мезоатомов должны существенным образом зависеть от свойств вещества мишени, поскольку при этом происходят передачи малых порций энергии от мезона к атому. Учесть аккуратно упомянутые особенности пока не удалось. В водороде, по-видимому, наиболее эффективен адиабатический захват^{/8}, 10/, согласно которому мезон, приближаясь к ядру атома водорода, экранирует его заряд, вследствие чего электрон покидает атом, а мезон с массой из захватывается на орбиту с номером $\mathcal{N}_o \approx 0.8 \sqrt{\mu^*}$, где $\mu^* = m(1 + m/M_p)$ - приведенная масса системы мезон-протон. Отсюда следуют значения $\mathcal{N}_o = I4$, I5 и 26 для $\mu = \pi^-$ и \mathcal{K}^- мезонов соответственно /I0/. Эти значения исходных орбит \mathcal{N}_o были приняты Айзенбергом и Кесслером/II, I2/ при их расчетах каскадов в различных мезоатомах.

<u>Процессы девозбуждения.</u> Из высоковозбужденных состояний *N* мезовтомов мезоны переходят в состояния *N* с меньшей эпергией, либо излучая *У* - квант, либо отдавая энергию электрону втомной оболочки (Оже-переходы).

Вероятности радиационных переходов ~ $(\Delta E)^3$, Оже-переходов ~ $(\Delta E)^{-\frac{1}{2}}$, поэтому χ -излучение преобладает при глубоких переходах мезонов в тяжелых атомах, в то время как Ожеэлектроны преимущественно сопровождают переходы мезона между высоковозбужденными уровнями легких мезоатомов с малой передачей энергии ΔE . Оба типа переходов подчиняются обычным правилам отбора по орбитальному моменту ℓ и его проекции m для дипольных переходов: $\Delta \ell = \pm I$, $\Delta m = 0$, $\pm I$. В изолированном мезоатоме эти правила сильно удлиняют время каскада, поскольку благодаря им мезон из состояния ($n\ell m$) может перейти не ниже, чем в состояние $n' \ge \ell - 1$ и поэтому достигает основного уровня только последовательными переходами.

<u>Ядерный захват мезонов.</u> Достигнув орбиты n' = I мезоатома $Z_{\mu}, \mu^{-} - мезон либо распадается по реакции$ $<math>\mu^{-} \rightarrow e + Y_{e} + \tilde{Y}_{\mu},$ (3)

7

либо взаимодействует с протоном ядра

$$\mu^- + \rho \to n + \widetilde{Y}_{\mu} \,. \tag{3a}$$

Скорости этих процессов сравнительно невелики и составляют 10⁶-10⁷ сек⁻¹.

Скорости ядерного захвата $\pi = u \quad K = \text{мезонов}$ из ns = co $стояний мезоатомов <math>\rho \pi$ и ρK весьма значительны, что приводит к поглодению мезонов уже с орбит $n \ge 4$.

Захват *π*⁻- мезонов ядрами *Z* вызывает развал ядер, в случае же атомов водорода происходит реакция перезарядки *π*⁻ мезонов на протонах. Абсолютная скорость этой реакции из иs- состояний *рπ* - мезоатома согласно вычислениям Фрэя/13/ Г = 1,6·10¹⁵ n⁻³ сек⁻¹ на много порядков величины превышает скорость распада свободного *π*⁻- мезона (~10⁸ сек⁻¹).

<u>Столкновения мезоатомов водорода.</u> Этот процесс предшествует ядерному захвату мезонов в водороде и в некоторых случаях может существенно изменить его скорость. Время самого быстрого радиационного перехода $2p \rightarrow Is$ в изолированном мезоатоме $p\pi$ составляет $\sim 6 \cdot 10^{-12}$ сек, однако правила отбора $\Delta l = \pm I$ удлиняют общее время каскада с уровня (n lm) на уровень $Is \in do$ величины $\sim 10^{-9}$ сек. Последнее значение значительно превышает экспериментально измеренное в жидком водороде $\mathcal{T}_{H} = (2, 3\pm 0, 6) \cdot 10^{-12}$ сек/I4 - I6/. Это означает, что в процессе девозбуждения $\rho =$ атомов радиационные переходы несущественны, в основную роль играют процессы столкновения $\rho = -$ мезоатомов с атомами водорода^X?

 х) Истинность изложенного механизма девозбуждения подтверждается измерениями времени жизни 𝒯⁻-мезонов в гелии, мезоатомы которого из-за кулоновского отталкивания не могут подходить вплотную к ядрам атомов. По этой причине 𝒯_He =(3,6[±]0,7).
 ·IO^{-IO} сек^{/2O}/ на два порядка величины превышает значение 𝒯_H. Электронейтральность р^т-втомов и их малые размеры (10⁻¹⁰-10⁻¹¹ см) позволяют им проникать внутрь электронных оболочек атомов и отдавать энергию возбуждения электронам "чужого атома" (т.н. внешний Оже-эффект/17/).

Кроме того, смешивание высоковозбужденных состояний ρ^{r} атома с различными ℓ в кулоновском поле налетающего ядра приводит к постоянному обогащению mS-состояний, из которых идет интенсивный захват мезонов ядрами. Эффективно это приводит к ядерному захвату мезонов из состояний с $\ell \neq 0$, минуя каскад (механизм Дэй-Сноу-Сачера/18, 19/). Учет обоих упомянутых механизмов девозбуждения ρ^{r} - мезоатомов приводит к удовлетворительному согласию вычисленного и измеренного времени жизни π^{-} - мезонов в водороде/17/.

Кроме упомянутых процессов при столкновении мезовтомов водорода с ядрями Z других атомов идут процессы перехвата мезонов $\rho\mu \to Z\mu$ и $\rho\pi \to Z\pi$, о которых в дальнейшем мы будем говорить подробнее.

Такая, бегло⁴очерченная схема мезоатомных процессов в веществе сложилась к началу 60-х годов после работ Ферми и Теллера /8/, Вайтмана/IO/, Эйзенберга и Кесслера/II, I2/, Леона и Бете /I7/, Герштейна/2I/. Во всех этих работах молекулярная структура веществ во внимание не принимается, а нарушения Z -закона, установленные в ряде работ^{/22-25/}, объясняются особенностями захвата мезонов атомами различных элементов^x.

 х) Например, Бобров и др. /25/ объясняли обнаруженные ими систематические отступления от Z -закона различным сродством элементов к электронам. Однеко эксперименты, нечатые в 1962-1965 годах, убедительно покезели, что одной из основных причин обнаруженных аномалий является молекулярная структура веществ.

атомный захват // -мезонов в химических соединениях

В ренних работах вероятность атомного захвата \mathcal{M}^{-} -мезонов в химических соединениях изучалась с помощью реакции (За). В последнее время такие измерения продолжены в работе $^{26/}$. Другой способ измерения вероятностей атомного захвата $\mathcal{W}(\mathcal{Z})$ и $\mathcal{W}(\mathcal{Z}')$ состоит в измерении относительных интенсивностей мезорентгеновского излучения различных элементов в химических соединениях. Существенно, что стадия каскадных переходов ближе к началу цепочки мезоатомных процессов и окончательные результаты опытов не искажены процессами перехвата.

Интегральная интенсивность К-серии

В работах Зинова и др. /27-31/ измерялась интегральная интенсивность J(Z) К-серии различных элементов в смесях веществ и в бинарных химических соединениях типа $Z'_{\kappa}Z_{m}$. Ввиду того, что перехват мюонов в таких системах отсутствует, величина J(Z) может служить мерой вероятности W(Z)атомного захвата. Отношение вероятностей захвата A(Z/Z')рассчитанное на один атом

$$A(z/z') = kW(z)/mW(z')$$
(4)

характеризует степень отклонения от Z -закона, для которого A(Z/Z') = Z/Z'. <u>Смеси инертных газов.</u> Оказалось, что в смеси инертных газов^{/31}/ Z – закон выполняется удовлетворительно (рис. 2). Небольшие отклонения от него объясняются, по-видимому, различием ионизационных потенциалов, от которых логарифмически зависят тормозные способности элементов.

В то же время в смеси $Az + CO_2 Z$ - закон резко нарушается; измеренная величина $W(CO_2)$ превышает расчетную примерно в два раза (рис. 2)^{x)}.

Сплавы и соли галогенов. При измерении величины A(z/z')в соединениях металлов между собой и с галогенами/27/ была установлена некоторая закономерность, которая представлена на рис. 3. Все экспериментальные точки группируются вокруг прямой

$$A(z/z') = 0,66 z/z'$$
⁽⁵⁾

Этот результат можно считать подтверждением справедливости Z – закона для смесей элементов, поскольку ионные соединения (каковыми являются соли галогенов) в некотором смысле также можно рассматривать как "механическую смесь ионов".

<u>Окислы.</u> На рис. 4 представлены результаты измерения величины $A(\mathbb{Z}/\mathbb{Z}')$ для нормальных окислов $\mathbb{Z}_{\kappa}O_m$, то есть для окислов, в которых валентность металлов совпадает с номером их группы в таблице Менделеева. Прежде всего, из рисунка видно, что величина $A(\mathbb{Z}/8) < \mathbb{Z}/8$, то есть независимо от вида элемента, образующего окисел, вероятность атомного захвата мюона $W(\mathbb{Z})$ на элемент \mathbb{Z} по отношению к вероятности W(o) за-хвата на кислород всегда меньше, чем это следует по \mathbb{Z} -закон $\mathbb{Z}^2/8$

х) Этот факт, в частности, доказывает, что в некоторых случаях сечение атомного захвата определяется последними стадиями торможения, при скоростях мезонов v く d C, когда формула для тормозных потерь неприменима.

13

Na 7 P&C2

Z/z'

Рис. 4. Пермодическая зависимость относительной вероятности А (Z/8) захвата мюонов атомами металлов в окислах (Зинов и др./27/). Кроме того, величина $A(\mathbb{Z}/8)$ обнаруживает периодическую зависимость от значения \mathbb{Z} , причем ее минимумы приходятся на начало периодов, т.е. на щедочные металлы. Этот факт свидетельствует о влиянии типа химической связи на вероятность атомного захвата мюонов.

Наиболее отчетливо это влияние установлено параллельными измерениями величины $A(\mathbb{Z}/8)$ в различных окислах одного и того же металла, например:

$$A(Mgo) = 0.83 \pm 0.07$$
 $A(MgO_2) = 0.53 \pm 0.03$
 $Z/8 = 1.5$
 $A(BaO) = 2.27 \pm 0.22$ $A(BaO_2) = 3.28 \pm 0.30$

$$Z/8 = 7.0$$

Наибольшее различие (в два раза) найдено для пары окислов/27/

$$A(S\ell_2O_3) = 3,48\pm0,35$$
 $A(S\ell_2O_5) = 1,73\pm0,09$
 $Z/8 = 6,4$ (6)

Структура К- и L -серий

Более полную информецию о процессе этомного захвата мюонов двет изучение структуры К-и L-серий, т.е. измерения интенсивностей J_{α} , J_{β} , J_{γ} отдельных компонент К-серии: K_{α} (переход 2p \rightarrow 1s), K_{β} (3p \rightarrow 1s), K_{γ} ($np \rightarrow$ 1s) и L - серии: L_{α} (3d \rightarrow 2p), L_{β} (4d \rightarrow 2p) и L_{γ} (nd \rightarrow 2p).

- 14

Расчеты Айзенберг и Кесслер/II, I2/ предсказывают монотонное падение интенсивности высоких переходов К-серии с ростом атомного номера Z элементов. Однако экспериментальные результаты не подтверждают этой зависимости: после Ca, где результаты опытов/32, 33/ и расчеты/II, I2/ совпедают, интенсивность Т резко возрастает с увеличением Z (Рис. 5).

В первоначальных опытах Зинова и др.²⁸ было обнаружено, что структура К-серии чистых металлов отличается от структуры К-серии тех же металлов, входящих в состав окислов. С помощью спектрометра $N_a J$ были изучены спектры пар T_i и $T_i O_2$, V и $V_2 O_5$, C_7 и $C_7 O_3$. Во всех трех случаях вклад K_y – переходов в общую интенсивность К-серии для чистых металлов оказался заметно выше, чем для тех же металлов в составе окислов (Рис. 6а).

С помощью Ge(Li) спектрометров Кесслеру и др.^{/34/} удалось разрешить отдельные компоненты K_{ν} - и L_{ν} - серий. Измеренные ими отношения интенсивностей

 $R = \left(J_{i} / J_{d} \right)_{T_{i} O_{2}} / \left(J_{i} / J_{d} \right)_{T_{i}}$ (7)

отдельных K_i и L_i линий титана представлены на рис. 56. Из него непосредственно видно, что при переходе от металла к его окислу уменьшается не только общая интенсивность K_y -серии, но также интенсивность каждой из компонент этой серии, причем тем сильнее, чем выше измеряемый переход $n_P \rightarrow 1s$. Кроме того, было установлено, что суммариая интенсивность всех K_r -переходов с уровней $n \ge 6$ превышает вдвое предсказанную теоретически, в отношение L_{α}/K_{α} в T_c на I2% меньше, чем в $T_c O_2$.

Рис. 5. Относительный вклад К, -серии в общую интенсивность К-серии как функция атомного номера Z элемента по работе Квитмена и др./33/.

Эксперименты такого типа были продолжены затем в работах Даниаля и др. $^{/35/}$ и Тошера и др. $^{/36/}$ на пучке \mathcal{M}^- -мезонов и в работе Грина и Кансельмана $^{/37/}$ на пучке \mathcal{M}^- -мезонов.

В первой из упомянутых работ/35/ отношение того же вида, что и (7) измерялось для пар: Na Cl/Narer.,

Во всех случаях установлено, что интенсивность K_r – линий металлов в окислах меньше, чем в чистых металлах.

В следующей работе^{/36/} авторы обнаружили зависимость отношения интенсивностей переходов $\mathscr{A}(\Xi) = (5f - 3\mathfrak{a})/(4f - 3\mathfrak{a})$ не только от химического состояния селена, но также от его физического состояния. Измеренное отношение оказалось равным:

$$R = d\left(Se_{ahopp.}\right) / d\left(Se_{her.}\right) = 0,74^{\pm}0,06 \tag{8}$$

Авторы отмечают также отличие результатов, полученных с м и П – мезонами: как правило "химические эффекты" больше в случае м – мезонов.

В реботе^{/36/} исследовены отношения интенсивностей пионных рентгеновских переходов типе $\mathcal{A}(\mathbb{Z}_{1}\mathbb{Z}_{2}) = (4f^{-3}d)_{\mathbb{Z}_{1}}/(3d^{-2}p)_{\mathbb{Z}_{2}}$ в соединениях $\mathbb{Z}_{1}\mathbb{Z}_{2}$ и в эквивелентных им мехенических смесях $\mathbb{Z}_{1} + \mathbb{Z}_{2}$. В честности, были исследовены перы $\mathbb{Z}_{n}S/(\mathbb{Z}_{n}+S), \mathbb{Z}_{n}Se/(\mathbb{Z}_{n}+Se), FeS/(Fe+S), FeS_{2}/(Fe+2S)$ Неибольшие резличия неблюдены для перы $\mathbb{Z}_{n}Se/(\mathbb{Z}_{n}+Se)$ для которой отношение

$$R(Z_n, S_e) = d(Z_n S_e)/d(Z_n + S_e) = 5.50^{\pm}0.35$$
 (9)

Текого типе отношения зависят от характера химической связи. Например, отношение интенсивностей переходов R(Fe, S)для пар FeS/(Fe+S) и $FeS_2/(Fe+2S)$ различно и равно соответственно $R = 2,25\pm0.10$ и $R = 1,55\pm0.10$.

Аналогом исследованных пар $Z_{i}Z_{z}/(Z_{i}+Z_{z})$ является пара $K C \ell/K C \ell_{(pactbop)}$, поскольку в растворе хлористый кальций полностью диссоциирован и эквивалентен смеси ионов K^{+} и $C \ell^{-}$. Измеренное отношение $R = d(K C \ell)/d(K C \ell_{pact})$ величин $d = (3d \rightarrow 2p)_{K}/(3d \rightarrow 2p)_{C \ell}$ для пары $K C \ell/K C \ell_{pactb}$. равно $R = 1.40^{\pm}0.10$.

Предверительное обсуждение

Приведенные факты убедительно демонстрируют влияние химической структуры веществ на процессы этомного захвата и последующего девозбуждения образующихся мезоатомов и мезомолекул. Их не удается согласовать с теоретическими представлениями о каскадных переходах мезонов в, изолированном мезоатоме.

В работе Ау-Янга И Козна^{/33/} сделана попытка учесть влияние химической связи на этомный захват мезонов. Согласно их расчетам наблюдаемые особенности этомного захвата мезонов в окислах^{/28/} можно объяснить смещением электронного облака к кислороду, которое количественно описывается эффективным зарядом Z_f (численно он равен степени ионности связи, умноженной на число валентных электронов^{/39/}). Учитывая таким образом изменение эффективных зарядов этомов, образующих молекулу, в остальном они полагали поле центрально-симметричным и в этих предположениях качественно объяснили периодическую зависимость этомного захвата мезонов в окислах.

Однако с этой точки зрения нельзя понять сильную зависимость K_v -серии элементов от вида химических соединений, поскольку при сохранении центрально-симметричного характера поля атома в молекуле каскадные переходы мезона не должны отличаться от каскадных переходов в изолированном мезоатоме.

Попытка/34/ согласовать наблюдаемые "химические эффекты" в K, -сериях с расчетами/II, I2/ каскадов мезона в изолированном мезоатоме показала, что для этого необходимо допустить существенно различные начальные распределения мезонов по уровням мезоатома с различными орбитальными моментами ℓ даже для элементов с близкими атомными номерами (например, Tr и Mn) Такое предположение выглядит неестественным.

Вся совокупность приведенных экспериментальных фэктов по изучению этомного захвата отрицательно заряженных мезонов в химических соединениях вынуждает признать, что структура валентных оболочек элементов существенно влияет на процессы этомного захвата мезонов. Особенно ярко это влияние проявляется при изучении поглоцения **7**⁻-мезонов в водородосодержащих веществах/40-45/.

ЯДЕРНЫЙ ЗАХВАТ **П**-мезонов протонами химически Связанного водорода и модель больших мезомолекул

Реакция перезарядки 🗡 - мезонов на протонах идет по двум каналам

#-	+ P	 n	+	T 28	(10)	, *.
π-	+ P	 n	+	γ	(IOa)	•

с вероятностями 0.6 и 0.4 соответственно/46/ и обладает рядом

особенностей. В жидком водороде ее вероятность близка к единице, т.е. каждый π^- -мезон, остановившийся в мишени, приводит к реакции (IO) или (IOa). Реакция (IO) обладает, кроме того, характерным "почерком" (при распаде покоядегося π° -мезона пара γ -квантов летит в противоположных направлениях), что позволяет надежно выделить ее на фоне других реакций. При захвате π^- -мезонов ядрами других элементов вместо реакции (IO) происходит развал ядра или же вылет нуклона^{/47/}. Даже в дейтерии реакция (IO) подавлена до уровня $\sim 10^{-3}$ по сравнению с водородом^{/47/х}. Таким образом, факт наблюдения реакции (IO) означает, что π^- мезон поглотился именно ядром водорода и в соответствии с этим в чистом водороде ее вероятность можно нормировать на единицу: $W(H_2) = 1$.

Обнаружение зффекта

Если водород входит в химическое соединение типа $Z_m H_n$, то следует ожидать подавления реакции (IO), поскольку часть мезонов уже на стадии атомного захвата попадает на уровни Z_{π} атомов и вклада в реакцию (IO) не дает. В этом случае Z - закон предсказывает для вероятности $W(Z_m H_n)$ следующее выражение

$$W(Z_m H_n) \approx n/m Z$$
. (II)

Однако попытка Панофского и др. /40/ обнаружить эту реакцию в

х) Исключение составляет Не³, в котором реакция IO идет с вероятностью 0,155/48/. На ядрах тяжелых элементов происходит перезарядка пионов "на лету", т.е. минуя стадию образования мезоатома. Однако вероятность такой реакции весьма мала и составляет IO⁻⁵-IO⁻⁴. В *L:D* вероятность реакции перезарядки IO равна ~ 3'IO⁻⁵ /47/. и полиэтилене $(CH_2)_n$ оказалась безуспешной. Причина этого выяснилась после работ Дунайцева и др./41, 43/, Петрухина и Прокошкина/42/, Чарба и др./44/, Бартлетта и др./45/. Оказалось, что вероятность $W(\mathcal{Z}_m H_n)$ подавлена значительно сильнее, а именно по закону

$$W(Z_m H_n) \approx a n Z^{-3}/m$$
, (12)

где *Q* - некоторый коэффициент порядка единицы. Из рис. 7, где представлена величина

$$P = m W (Z_m H_n) / n = a \cdot Z^{-3}$$
(13)

видно, что значения *P* для водородосодержащих соединений элементов второго периода таблицы Менделеева хорошо описываются второй частью формулы (I3) с коэффициентом *α*≈ I.3.

Такое сильное подавление (например, $W(L:H) \approx 3,5\cdot 10^{-2}$, $W(H_20) \approx 3,5\cdot 10^{-3}$) нельзя объяснить процессами перехвата π^- -мезонов по реакции

$$P\pi + Z \rightarrow Z\pi + P, \qquad (I4)$$

как это предлагалось в работах⁴⁰, 41/, поскольку в этом случае вероятность (12), должна зависеть от числа столкновений $\rho\pi$ атомов с ядрами \mathbb{Z} , т.е. от числа ядер в единице объема. Опыт противоречит такому заключению^{50/}: вероятность реакции (10) в этане C₂H₆ остается неизменной при варьировании плотности этана в 110 раз (от газа до жидкости).

Предпринятые в дальнейшем специальные опыты по изучению реакции (IO) в смеси водорода с другими газами $H_2 + Z$ /51, 52/ показали, что реакция (I4) слабо зависит от зарядов Z

25

BoHn

Z(BH4) + CH2

•H2

10

10-2

Рис. 8. Перехват $p\bar{r} + Z \rightarrow Z\bar{r} + \rho$ в газовых смесях $H_z + Z$ по работам Петрухина и др./51, 52/.

атомов тяжелых газов и поэтому не может служить причиной зависимости (I2).

На рис. 8 представлена зависимость $W(c) = W(H_2 + Z)W(H_2)$ как функция относительной концентрации $C = N_Z / N_H$ атомов Z в смеси газов $H_2 + Z$ (N_H и N_Z соответственно – числа атомов водорода и примеси Z в см³). Из рисунка видно, что даже при концентрациях $C \sim 1$, т.е. сравнимых с концентрациями тяжелых атомов в водородосодержащих веществах типа $Z_m H_{n_3}$ W(C) = 0,2+0,I и слабо зависят от зарядов Z тяжелого газа в смеси. Этот результат не связан со спецификой газовых смесей, поскольку форма кривых на рис. 8 не зависит от суммарного давления в смеси $H_2 + Z$, т.е. от абсолютных концентраций N_H и N_Z , а только от величины $C^{(5I/x)}$.

Приведенные факты с очевидностью свидетельствуют, что механизм подавления реакции (IO) в химических соединениях отличается от перехвата по реакции (I4). Дальнейшие измерения^{/46/} вероятности реакции перезарядки (IO) в гидразине $N_2 H_4$ и в эквивалентной ему механической смеси $N_2 + 2 H_2$ показали^{/53/}, что отношение вероятностей

₩(N₂⁴H₄)/₩(N₂ + 2H₂) ≈ 1/30,
 то есть при одном и том же значении относительной концентрации
 C=0,5 ядра химически связанного водорода вступают в реакцию (IO)
 в 30 раз реже, чем ядра свободного водорода.

Все это вместе взятое означает, что причину наблюдаемых эффектов следует искать в особенностях взаимодействия мезонов с валентными электронами молекул.

Хривые не рис. 8 описываются формулой W(c) = (1+Λ c)⁻¹, где Λ = f(Z,c) - слабо меняющеяся функция в пределах Λ = 5-IO для всех Z ≤ 36 и c ≤ I /52/. В смеси водороде с дейтерием / 50/ перехват значительно слабее: при с~1, w(c)≈ ≈ 0,8. Эта картина перехвата существенно отличается от перехвата // -мезонов, для которых наблюдается практически полный переход р/ → Z/ уже при концентрациях с ~ I0⁻⁵. Указанное различие объясняется большим временем жизни // мезонов на К-орбите и сильным поглодением F - мезонов протонами уже из высоких из -состояний ρ π - атома.

Модель больших мезомолекул

Модель больших мезомолекул^{/54}, ⁵⁶, ^I/ была предложена вначале для объяснения особенностей реакции перезарядки π^- -мезонов на ядрах химически связанного водорода. Основное утверждение модели состоит в том, что на стадии атомного захвата мезонов часть их захватывается на высоковозбужденные орбиты, лежащие в области валентных электронов молекулы. Такое утверждение эквивалентно предположению, что в природе могут судествовать сравнительно устойчивые комплексы типа $Z_m \pi^- H_n$, размеры которых "с точки зрения мезона" чрезвычайно велики (500 м.а.е. длины).

Допущение о существовании больших мезомолекул на первый взгляд выглядит неправдоподобным, однако, как показывает простой анализ, не содержит в себе внутренних логических противоречий. Легко видеть, что одна эта гипотеза качественно объясняет многие из упомянутых эффектов (независимость вероятности реакции (IO) от плотности и агрегатного состояния веществ, от примесей тяжелых элементов и т.д.). Однако для количественных предсказаний необходимы более конкретные предположения.

<u>Предварительное рассмотрение.</u> Для простоты рассмотрим бинарную молекулу ZH (например, L:H), схема которой изображена на рис. 9. В такой двойной потенциальной яме возможны три типа уровней: уровни и изолированного мезоатома водорода, энергия E_n которых смещена полем ядра Z, расположенного на расстоянии $R \gg 1$ от протона

28

$$E_n \approx -\frac{1}{2n^2} - \frac{Z}{R},$$

Рис. 9. Схема уровней "большой мезомолекулы" рт Z. Nмезомолекулярные уровни, расположенные в области валентных электронов молекулы ZH ; n и n'уровни изолированных мезоатомов рт и ZT.

29

(15)

уровни n' изолированного Zm - атома

$$E_{n'} \approx -\frac{1}{2} \left(\frac{2}{n'}\right)^2 - \frac{1}{R}$$
 (I5a)

и, наконец, уровни N, принедлежащие всей большой мезомолекуле $\mathbb{Z}\pi^-\mathcal{H}$ в целом. Граничное значение $n = n_o$, которое отделяет уровни изолированного мезоатома P^{π} от молекулярных уровней N определяется из условия $\mathcal{E}_{n_o} \leq \mathcal{U}_{max}$, где \mathcal{U}_{max} - высота потенциального барьера, разделяющего обе ямы, равная максимуму потенциальной энергии мезона в поле двух неподвижных ядер ρ и \mathbb{Z} , удаленных на расстояние R

$$\mathcal{U} = -\frac{1}{2} - \frac{Z}{2}$$
(16)

(Z_1 и Z_2 - расстояния мезона соответственно до протона и ядра Z). Величина U_{max} достигается на оси молекулы в точке $Z_1 = R/(1 + \sqrt{Z})$ и $Z_2 = R - Z_1$ и равна/54/

$$U_{max} = -(1+\sqrt{z})^2/R$$
 (17)

Отсюда получаем оценку для максимального значения $n = n_o$, при котором уровень E_n можно считать принадлежащим мезоатому водорода, если он расположен на расстоянии R от ядра Z в молекуле^x)

$$n_{o} = \left[\frac{R}{2} \left(1 + 2\sqrt{z} \right) \right]^{\frac{1}{2}}$$
(18)

х) Эта простая оценка подтверждена впоследствии точными расчетами /57/. Поскольку И. слабо зависит от Z, то учет экранировки ядра в сложных атомах практически не сказывается на приведенной оценке. при I $\leq Z \leq$ IO и $R = 400\pm600$, $n_o = 5-7$. Для молекулы водорода (Z = I, R = 37I) $n_o = 8$, что существенно меньше оценки Вайтмана ($N_o = I5$), которая получена в пренебрежении влиянием второго ядра в молекуле водорода.

Принимая во внимание эти соображения, а также анализ, проведенный в предыдущих разделах, можно сформулировать основные предположения, лежащие в основе модели больших мезомолекул.

э) При переходе π^- мезонов из состояния свободного движения в связанное состояние некоторая их часть с вероятностью W_1 захватывается на мезомолекулярные орбитали N большой мезомолекулы $Z_m \pi^- H_n$, лежащие в области валентных электронов исходной молекулы $Z_m H_n$. Оставшаяся их часть захватывается на уровни n' изолированного мезоатома $Z\pi$. На уровни n мезоатома $p\pi$ на стадии атомного захвата мезоны не попадают.

в) В дельнейшем с вероятностями ω_{Nn} и ω_{Nn} , иду́т редиеционные и Оже-переходы мезонов с общих уровней N не резделенные уровни n и n' мезоетомов $p\pi$ и $Z\pi$ соответственно. При этом основной причиной подавления реекции (IO) в водородосодержещих веществех является мелея вероятность $W_2 = \omega_{Nn} / (\omega_{Nn} + \omega_{Nn})$ перехода мезонов с общих уровней Nна уровни n изолировенного мезоетома $p\pi$.

с) Достигая одного из нижних уровней $p\pi$ - атома, π - мезон может перехватываться на уровни \mathbb{Z}_{π} -мезоатома по реакции (I4) и в этом случае будет захвачен протоном лишь с вероятностью W_3 .

В соответствии с этими предположениями результирующую вероятность реакции (IO) можно представить в виде произведения вероятностей упоминутых трех стадий а), в) и с)

$$W = \alpha W_1 W_2 W_3 , \qquad (19)$$

причем коэффициент *с* феноменологически учитывает особенности химической связи водорода в молекулах.

Рассмотрим подробнее каждую из упомянутых стадий процесса.

Захват на уровни мезомолекул. В настоящее время отсутствуют расчеты, которые бы позволили аккуратно вычислить вероятность W_1 захвата мезонов на общие уровни N большой мезомолекулы. Существующие вычисления^{/38}, ^{58-64/} носят характер оценок и применимы только к изолированному атому. Из них следует, что мезоны малых энергий наиболее эффективно захватываются на высокие мезоатомные уровни с квантовыми числами $N \ge 16$, причем основным механизмом захвата является Оже-эффект на электронах атомной оболочки. В ряде работ отмечается, что распределение захваченных мезонов по уровням с различными значениям орбитального момента ℓ может существенно отличаться от статистического (2 ℓ +I) - распрделения^{/59}, 60, 62, 63/. В частности, ℓ -распределение может иметь максимум в области значений $\ell \sim N/3$ ^{/52/} или $\ell \sim (m_{\rm F}/m_2)^{4/3}$ /63/.

В водороде при малых энергиях столкновения наиболее эффективен адиабатический захват мезонов, при котором мезон "замещает" электрон и захватывается на один из мезоатомных уровней с энергией, примерно равной знергии связи выбитого электрона. Это, в свою очередь, означает, что их орбиты геометрически подобны, т.е. орбита захваченного мезона находится в окрестности бывшей орбиты электрона.

Все вышесказанное остается справедливым и для водородосодержащих веществ с той, однако, разницей, что в этом случае в непрерывный спектр адиабатически уходит валентный электрон молекулы $Z_m H_n$. Ясно также, что в этом случае π^- -мезон на стадии атомного захвата не может попасть на уровни изолированного $\rho\pi$ атома, поскольку в химическом соединении единственный электрон атома водорода отдан на образование химической связи и при его адиабатическом замещении мезон попадает на общие уровни \mathcal{N} системы ZH, а не на разделенные уровни \mathcal{N} атома $\rho\pi$.

Если справедлива гипотеза о геометрическом подобии мезонных и электронных орбит при адиабатическом захвате мезонов, то они преимущественно должны захватываться на высоколежащие уровни с орбитальным моментом $\ell \approx 0$, поскольку электроны внешних оболочек атомов Z, образующих соединения с водородом, как правило, находятся в S - состоянии.

Чтобы оценить долю мезонов, захваченных на общие уровни, предположим, что все электроны молекулы $Z_{m}H_{n}$ эквивалентны. Такое предположение является заведомо грубым и равносильно утверждению о справедливости Z -закона Ферми-Теллера на стадии первоначального захвата мезонов. В этом случае вероятность W_{1} захвата мезонов на уровни N пропорциональна числу велентных электронов N и равна:

$$W_1 = n / (n + mZ)$$
 (20)

Экспериментальные аргументы в пользу последней формулы, а тэкже другие возможности мы рассмотрим несколько позднее.

<u>Каскадные переходы.</u> Мезоны, захваченные на разделенные уровни n' мезоатома Zm , претерпевают обычный каскад в изолированном мезоатоме. Дальнейшая судьба мезонов, попавших на общие уровни N, имеет некоторые особенности.

Прежде всего, эти мезоны движутся в поле, которое существенно отличается от центрально-симметричного. В таком поле ослаблены правила отбора по орбитальному моменту $\Delta f = {}^{\pm}I$ для радиационных переходов, которые в изолированном мезоатоме сильно удлиняют время каскада. Поэтому вероятности переходов ω_{Nn} и $\omega_{Nn'}$ с общих уровней N на разделенные n и n' в данном случае должны существенно возрасти.

Кроме того, при описании движения мезона на высоких орбитах необходимо принимать во внимание экранировку ядер электронами внутренних оболочек. Оценки величины W₂ с учетом обоих этих обстоятельств приводят к результату^{/55/} х)

$$\omega_{Nn'} \approx 10^{10} \not\equiv 2 \operatorname{cen}^{-1} . \tag{21}$$

Для переходов $N \rightarrow n'$ не уровни $n' \ge Z$ Оже-переходы преобладают над радиационными/II, I2/, поэтому процесс девозбуждения, по-видимому, происходит в две стадии: Оже-переход $N \rightarrow n''$ на уровни $n'' \sim Z$ и затем обычные радиационные переходы $n'' \rightarrow n'$ в изолированном этоме Zr с той, однако, разницей, что заселенность уровней n''' в данном случае может существенно

х) Как известно, без учета экранировки $\omega_{NM'} \sim Z'$. Полученная зависимость $\omega_{NM'} \sim Z^2$ опирается на соотношение $|\Psi_N(o)|^2 \sim Z$ для волновой функции внешних электронов атома в Ns - состоянии, движущихся в экранированном поле ядра Z /65/. Это соотношение является частным случаем формулы ферми-Сегре /66/, которая недавно была вновь выведена в квазиклассическом приближении /67/. отличаться от статистического $(2\ell + I)$ – распределения. В частности, из N_S – состояний наиболее вероятны переходы в n'pсостояния, причем зависимость $\omega_{N_R'} \sim Z^2$ при таких ступенчатых переходах должна сохраниться^{X)}.

Из общего выражения для вероятности Оже-переходов следует, что наиболее вероятно выбивание электрона, волновая функция которого максимально перекрывается с волновой функцией мезона/7/, то есть в случае геометрического подобия их орбит. Отсюда следует, что при каскадных переходах "валентных мезонов" наиболее вероятно выбивание электронов валентной оболочки. (Это следствие может быть проверено экспериментально с помощью Оже-электронной спектроскопии/68/).

Таким образом, вероятность $\omega_{\kappa\kappa'}$ перехода мезона с общего уровня N на разделенные уровни n мезоатома p^{π} равна

$$W_{2} = \omega_{Nn} / (\omega_{Nn} + \omega_{Nn'}) \approx Z^{-2} .$$
 (22)

х) Вероятность Оже-переходов $\omega_{Nn''}^{A} = \omega_{Nn''} k$, причем для дипольных переходов козффициент конверсии $k = (mc^2/\Delta E)^{\frac{3}{2}}$ слябо зависит от Z, поскольку энергин перехода мезона ΔE между молекулярными уровнями $N \gg Z$ и атомными уровнями $n'' \sim Z$ практически одинакова для всех атомов. Очевидно также, что в случае двухступенчатого процесса $\stackrel{Ome}{\longrightarrow} n' \stackrel{Pag}{\longrightarrow} n'$ в K_{v} -серии будут отсутствовать высокие переходы $n''p \rightarrow 1s$ с уровней n'' > Z. Выполненные недавно эксперименты (Джураев, Евсеев и др., Зинов и др.) свидетельствуют, что приведенное рассуждение не лишено смысла.

34

Очевидно, только эти мезоны могут вызвать в дальнейшем реакцию перезарядки (IO), поскольку все остальные мезоны, попавшие на уровни n' мезоатома $Z_{T'}$, вклада в реакцию не дают.

В принципе, не исключена возможность прямого ядерного захвата \mathcal{T}^- -мезонов протонами непосредственно из мезомолекулярных \mathcal{N}_{S} - состояний, минуя стадию каскадных переходов^X). Энергия $\mathcal{E}_{\mathcal{N}}$ - мезонов, движущихся в области валентных электронов молекулы, соответствует уровням энергии мезоатома $\mathcal{P}^{\mathcal{T}}$ с квантовыми числами $n \sim \sqrt{m_{\mathcal{T}}}$. Скорость ядерного захвата из этих состояний Γ_{capt} . \approx I,6·IO^{I5} ($m_{\mathcal{T}}$)^{-3/2} \approx 4·IO^{II} сек^{-I} все еще намного превышает скорость распада свободного \mathcal{T}^- -мезона и даже скорости радиационных переходов $\mathcal{N} \rightarrow n$.

Перехват мезонов от $\rho\pi$ -етомов к ядрем Z. Образовавшийся $\rho\pi$ -атом движется в среде и сталкивается с ядреми других атомов. Скорость перехвата $\rho\pi \to Z\pi$ пропорциональна числу ядер n_Z в единице объема: $\Gamma_{tz.} = c n_Z$. С этим процессом конкурируют процессы девозбуждения в мезоатоме $\rho\pi$ и ядерный захват π^- -мезонов протонами из высоких n_S - состояний $\rho\pi$ -атома. Многочисленные факты свидетельствуют/I4-I6, /I7-I9/ (см. Введение), что скорость этих процессов пропорциональна числу ядер водорода n_H , то есть $\Gamma_{deex.} = \beta n_H$. Отсюда вероятность W_3 остаться π^- -мезону у протона при столкновениях с ядрами Z вещества равна:

 $W_{3} = \beta n_{H} / (\beta n_{H} + \alpha n_{Z}) = (1 + \lambda C)^{-1}, \quad (23)$

х) На такую возможность обратил внимание автора С.С.Герштейн.

где $C = N_Z / N_H$. Характерно, что W_3 зависит только от относительной концентрации ядер атомов N_Z и N_H (см. также сноску на стр. 27).

Как показывают недавние опыты^{65/}, константа перехвата λ для ρ^{π} -атомов, образовавшихся при захвате мезонов в химических соединениях, по крайней мере, в два раза меньше, чем соответствующая константа Λ для ρ^{π} -атомов, образовавшихся при торможении мезонов в смеси $H_2 + Z$. Поэтому в дальнейшем рассмотрении мы будем полагать $\lambda \approx 0$, что на фоне остальных неопределенностей задачи не внесет существенной погрешности. Очевидно, в случае прямого ядерного захвата π^{-} -мезонов протонами из мезомолекулярных Ns -состояний стадия перехвата отсутствует ($\lambda = 0$).

Вероятность реакции перезарядки. С учетом соотношений (19), (20), (22) формула для вероятности реакции перезарядки *т*-мезона на протоне в химических соединениях $Z_m H_n$ примет вид

$$W(z_m H_n) = a n Z^{-2}/(n+mZ).$$
 (24)

Легко видеть, что полученная формула удовлетворительно описывает эмпирическую зависимость (I2).

В случае сложных соединений типа $Z'_{\kappa}Z_{m}H_{n}$ она преобразуется к виду

 $W(Z'_{k}Z_{m}H_{n}) = (av Z^{-2} + a'v'(Z')^{-2})/(n+mZ+kZ')(248)$

Здесь V и V'- число валентных связей водорода с атомами Z и Z' соответственно^{X)}. <u>Учет особенностей хишической связи.</u> В согласии с духом развиваемых представлений мезон в высоковозбужденном состоянии *N* системы $Z_m \pi^- H_n$ играет роль "тяжелого электрона", причем его орбита подобна орбите замещенного валентного электрона, а его волновая функция отражает специфику химической связи, которую осуществлял выбитый электрон. В соответствии с этим коэффициент *Q* в формуле (24) учитывает изменение плотности электронного облака вблизи протона в зависимости от типа химической связи. Очевидно, в ионных соединениях он должен быть меньше, чем в ковалентных, если электроотрицательность водорода X_H меньше электроотрицательности X_Z этома Z. Можно попытаться связать величину коэффициента **a** со степенью ионности связи **б**. Одно из таких выражений было приведено в работе/66/.

 $a = 26 + I_{3}(I-6)$

(25)

в котором первое слагаемое должно быть опущено, если $X_H < X_Z$ (например, в воде или кислотах).

х) Эта формула, как и соотношение (20), основана на предположении о справедливости Z -закона Ферми-Теллера на стадии атомного захвата мезонов. Ее обобщения в случае, когда известны действительные вероятности атомного захвата на атомы Z . Z, очевидны, однако требуют введения по крайней мере еще двух параметров, которые должны определяться из независимых экспериментов. Не следует, однако, придавать решающего значения такого рода выражениям, поскольку неопределенности в определении вероятностей \mathcal{W}_{c} довольно велики и часть этих неопределенностей, связанных с первоначальным атомным захватом мезонов и последующим перехватом $p^{\pi} \rightarrow \mathbb{Z}r$ неизбежно включается в коэффициент \mathcal{Q} . Поэтому в дальнейшем будем рассматривать его как некоторый феноменологический параметр, в терминах которого удобно проводить внализ экспериментальных данных, и который, несмотря на всю свою неопределенность, все-таки правильно ухватывает основные черты явления.

Следствия и проверка положений модели

Кроме объяснения эмпирической зависимости $W \approx n Z^{-3}/m$, изложенная схема процессов приводит к ряду проверяемых следствий.

<u>Независимость от плотности веществ.</u> Поскольку основной механизм подавления реакции перезарядки (10) действует внутри молекулы, то ее вероятность не должна зависеть от столкновений молекулы с другими атомами, а, следовательно, от плотности и эгрегатного состояния вещества. Опыты с этаном^{/50/}, в которых плотность C₂H₆ менялась от 0,0035 г/см³ (газ) до 0,390 г/см³ (жидкость) подтверждают это заключение (см. рис. I0).

<u>Независимость от примесей тяжелых элементов.</u> Резкэя Z – зависимость вероятности реакции определяется зарядом Z ядра атома, химически связанного с водородом. Поэтому небольшие механические добавки элементов даже с очень большими зарядами ядер Z' не должны существенно изменять величину вероятности. Дейст-

. 39

вительно, добавление солей иода в метиловый спирт в пропорции 9CH₃OH₊ N_{α} J не изменяет вероятности W (CH₃OH) в чистом спирте^{/50/}. Опыты в смесях газов CH₄+ Z' приводят к тому же заключению^{/70/}.

<u>Химические отличия.</u> В рамках излагаемой модели следует ожидать отличия вероятности реакции (IO) в веществах, которые построены из одних и тех же атомов, но отличаются между собой по типу химической связи. Сравнение величин $P(\mathbf{Z}_m \mathcal{H}_n) =$ = $m W(\mathbf{Z}_m \mathcal{H}_n)/n$, то есть вероятностей реакции (IO) в расчете на одну связь $\mathbf{Z} - \mathcal{H}$, для различных наборов органических веществ подтверждают это заключение (см. таблицу 2).

В частности, отношения приведенных вероятностей

$$P(CH_4)/P(C_2H_4) = I_3 = I_3 = 0, I$$

$$P(C_6H_{12})/P(C_6H_6) = I_96^{\pm}0_92$$

в органических соединениях с разным типом гибридизации связей заметно отличаются от единицы.

В то же время величины Р для веществ с различным стехиометрическим составом, но одинаковым типом химической связи не должны отличаться между собой. Это заключение действительно выполняется для наборов органических веществ, приведенных в таблице 2: CH₄ (метан), (CH₂)_n (полиэтилен) и C₆H₁₂ (циклогексан) - $s p^3$ - гибридизация молекулярных орбиталей; C₂H₄ (этилен), (CH)_n (полистирол) и C₆H₆ (бензол), $s p^2$ - гибридизация.

Измерения вероятности реакции в пропиловом и изопропиловом эфире $(C_3H_7)_2O$ также не отличаются между собой/71/, что свиде-

42

тельствует об отсутствии влияния изомерии на ход реакции перезарядки.

Делее, с увеличением ионности связи, когда плотность валентного электронного облака вблизи протона уменьшается, вероятность реакции (IO) должна быть подавлена еще больше, чем это следует из формулы (24). Измерения в сильных кислотех ($H_2 S O_4$, $H N O_3$ и т.д., см. ниже) подтверждают этот вывод^{/72/}.

Первоначальный захват мезонов. Для соединений типа $Z'_{\kappa} Z_{m} H_{n}$, в которых атом Z' слабо связан с водородом, например, в ионных соединениях $NH_{4} Z'$, где Z' = F, $C\ell$, B_{2} , J, вкладом второго члена в формуле (24а) можно пренебречь, после чего получим соотношение

$$4Z^{-2}/W = A + BZ',$$
 (26)

в котором для \mathcal{NH}_4 следует ожидать $A \approx 10$, $B \approx 1$. Обработка экспериментальных данных (рис. II) дает значения $A = 6,6^{\pm}3,7$, $B = 1,2^{\pm}0,2$ (при $\chi^2 = 0,3$). Это означает, что в химическом соединении вероятности этомного захвата мезонов на уровни различных мезоатомов приблизительно пропорциональны зарядам ядер атомов. Этот факт может служить некоторым основанием для первого предположения модели о виде W_1 . Разумеется, такое заключение справедливо только в предположении, что $W_3 \approx 1$. В противном случае зависимость (26) является следствием совокупного действия двух механизмов: этомного захвата и перехвата $p^{\pi} \rightarrow \mathbb{Z}\pi$. Измерения вероятности ядерного захвата мюонов в соединениях $\mathcal{NH}_4 \mathbb{Z}'$ /26/ показывают, что последнее предположение имеет смысл рассмотреть подробнее. Однако точности измерений пока недостаточны для однозначного выбора гипотезы.

<u>Зависимость</u> $W_2 \approx Z^{-2}$. Z – зависимость второй стадии процесса ядерного поглощения π^- -мезонов можно оценить, сравнивая вероятность $W(CH_Y + Az)$ в смеси газов $CH_Y + Az$ /70/ и вероятность $W(MH_4 C\ell)$ /69/. Можно ожидать, что в этих почти изоэлектронных системах условия атомного захвата (W_4) и перехвата (W_3) одинаковы, поскольку строение электронной оболочки $C\ell^-$ весьма близко к структуре оболочки благородного газа Az. В этом случае из формулы (24) следует соотношение^x)

$$W(CH_{Y} + A_{z})/W(NH_{Y}C\ell) \approx W_{2}(CH_{Y})/W_{2}(NH_{Y}^{+}) \approx$$

$$\approx (Z_{N}/Z_{c})^{2} = 1,36. \qquad (27)$$

Измеренное отношение вероятностей

$$W(CH_{y}+Az)/W(NH_{y}C\ell) =$$
 (278)

$$= (4,5^{\pm}0,4) \cdot 10^{-3} / (3,2^{\pm}0,6) \cdot 10^{-3} = 1,4^{\pm}0,3$$

К сожалению, для однозначных выводов точность измерений недостаточна^{х)}.

х) В последнем равенстве мы положили также $a_{N} = a_{c}$, поскольку тип химической связи ($s \rho^{3}$ -гибридизация) в СН₄ и $N H_{L}^{+}$ одинаков/39/. <u>Интенсивность K_{ν} -серий.</u> С точки зрения излагаемой модели рост интенсивности K_{ν} -серии элементов по мере увеличения их валентности в химических соединениях (см. рис. 5) объясняется увеличением числа валентных электронов и соответствующим ему увеличением доли мезонов, захваченных на высоковозбужденные мезомолекулярные уровни \mathcal{N} .

Отмеченная корреляция действительно наблюдается. Например, в металлическом хроме $J_{y} \approx 0,22$, в окисле хрома $J_{y} \approx 0,15$, а в ионных соединениях ($KC\ell$) $J_{y} \approx 0,07$ и примерно совпадает с интенсивностью K_{y} -серии в благородных газах.

Будяшов и др.²⁹ поставили эксперимент, который, как нам кажется, хорошо моделирует механизм перехода мезонов с высоких молекулярных уровней N на разделенные уровни n' мезоатома Z_{μ} . В этом опыте сравнивалась структура K_{γ} -серии аргона в чистом A^{2} и в смеси 99,5% H_{2} +0,5% A^{2} . Во вто-

х) Другой способ проверки зависимости W₂ ~ Z⁻² состоит в измерениях вероятности реакции (IO) в дейтерированных соединениях. В последнее время такие измерения были выполнены в наборе веществ CH₃OH, CD₃OH, CH₃OD (Гольданский, Петрухин и др.). В этом случае условия захвата (W₁) и перехвата (W₃) практически идентичны и Z -зависимость W₂ может быть исследована наиболее непосредственно. Особая важность таких исследований состоит в том, что они позволяют изучать различные функциональные группы в молекулах независимо от остальных.

ром случае практически все μ^{-} -мезоны вначале захватываются на уровни мезоатомов ρ^{μ} и лишь после перехвата по реакции $\rho^{\mu} + Az \rightarrow Az_{\mu} + \rho$ могут дать K -серию Az. Из рис. 12 видно, что структура K -серии в обоих случаях сильно различается: в чистом Az вклад K_{ν} -серии составляет $J_{\nu} \approx 0,07$, в то время как в смеси $Az + H_2$ $J_{\nu} \approx 0,5$.

Естественное объяснение этого явления состоит в том, что в процессе столкновения рм - этома с ядром Аг возникает высоковозбужденная квазимолекула p-u-Az . В КОТОрой каскадные переходы существенно отличаются от каскада в изолированном мезоатоме Аги . Энергия основного состояния ри -этома (и = I) равна знергии уровня и' = I8 мезоатома Агл поэтому в квазимолекуле р-и- Az переход с уровня n = I втома рм соответствует довольно высокому переходу (и' = 18) → (и' = I) в Аги. Из=зе нарушения центрельной симметрии поля в квазимолекуле р-м-Аг заселенность уровней и'< 18 мезовтомв Аг, и , возниквющая при каскадных переходах мезона, будет отличаться от заселенностей в изолированном мезовтоме Аг, вследствие чего изменяется наблюдаемые интенсивности линий Ку -серии мезовтомв Аги.

Другая возможная причина сильной зависимости интенсивности K_y -серий элементов от вида химических соединений состоит в избирательном захвате мезонов на мезоатомные орбиты с выделенными значениями орбитального момента ℓ . В частности, при адиабатическом захвате мезонов в водородосодержащих веществах предполагаемое обычно начальное статистическое (2 ℓ +I) - распределение мезонов может нарушаться за счет вклада $N\ell$ -остояний с малыми значениями ℓ , что должно сильно повлиять на конечный результат каскада в мезоатоме $\not \equiv M$. В частности, при этом сильно сократится число ступеней каскада и благодаря этому информация о структуре химической связи, накопленная волновой функцией мезона на стадии атомного захвата, может быть детектирована даже на последних ступенях каскада^{II}.

Систематические исследования

Расчет процесса торможения и захвата мезонов с учетом химической структуры вещества – весьма трудоемкая задача, которая, по-видимому, в полном объеме не сможет быть решена в ближайшее время. В этих условиях, отвлекаясь от существующих неопределенностей в выводе формулы (24) и определении параметра *Q*, можно чисто феноменологически использовать его для внализа экспериментов по измерению вероятности реакции (IO) в различных веществах. В настоящее времы выполнено около ста измерений такого типа /41-53, 69-73, 75, 79/

<u>Кислоты.</u> В таблице 3 представлены результаты опытов в кислотах (7.2), из которых видно, что существует определенная корреляция между величиной коэффициента α и силой кислоты, определенной химическими методами. В согласии со смыслом коэффициента α он аномально мал в сильных кислотах, в которых имеет место практически полная диссоциация молекул на ионы H⁺ и анионы кислот. В то же время для нормальных кислот и кислот, близких к основаниям, он достигает значения $\alpha = 0.3-0.5$.

Используя соотношение (25), можно попытаться связать степень диссоциации $p K_{\star}$ кислоты со степенью иоиности σ химической связи в молекуле/72/. Особый интерес представляет щавелевая кислота $H_2^{C_2O_4}$, в которой общая корреляция между величина-

х) Например, в случае заполнения Ns и Nd - орбиталей наиболее вероятен двухступенчатый переход Ns Auger np Kad. 1s для Np - орбиталей трехступенчатый и т.д. В случае (2l+1)распределения число переходов существенно больше и особенности первоначального захвата быстро усредняются в процессе каскада (64).

Таблица І. Гидриды второго периода таблицы Менделеева^{х)}

Вещества	Z	W, 10 ⁻³	a
LiH	3	35±4	I,26±0, 14
^B IO ^H I4	5	12,6 ± 1,4	I,44 ± 0,16
CH4	6	26,7±0,5	2,40±0,05
<i>N</i> ₂ н ₄	7	5,9±0,7	I,30±0,15
H ₂ 0	8	3,5 <u>±</u> 0,6	′ 1,12±0,1 9

x) Таблица составлена по данным работ/I, 69, 70/

зские соединения с различным типом химической связи ^{х)}		
W, 10 ⁻³	P, 10 ⁻³	
26,7±0,5	6,7±0,I	
I3,7±0,7	6,8 <u>+</u> 0,3	
I4,3 ± 0,6	7,I±0,3	
10,0 ± 0,6	5,0±0,3	
5,I±0,6	5,I±0,6	
4,5±0,2	4,5±0,2	
	симической связи ^х)	

x) Таблица составлена по данным работ/50, 70, 71/

Таблица	3.	Кислоты ^{х)}
---------	----	-----------------------

	TO-4	0	<u>р</u> К,
Кислоты	γν, 10	<u> </u>	
H ₂ S 0 ₄	< 0,4	< 0,06	-3,0
HN0z	< 0,6	< 0,12	-I,4
H ₂ C ₂ O ₄	< 0,1	< 0,0I	Ι,3
H_2 Se O_z	0,9±0,5	0,17±0,08	2,6
H ₃ PO ₄	I,6 [±] 0,4	0,17±0,04	2 , I '
H ₃ BO ₃	4,2 ± I,0	0,29 <u>+</u> 0,05	8,7
Al (OH)3	5,6 ± I,0	0,48 [±] 0,09	9,2

x) Таблица составлена по данным работ/72, 79/

Таблица 4. Предельные органические соединениях)

Вещестьо	W, 10 ⁻²	a	X
CH4	2;67±0,05	2,40 [±] 0,05	0,96±0,02
C ₂ H ₆	2,06±0,09	2,22±0,09	0,99 1 0,04
C ₅ H _{I2}	1,59 ± 0,06	I,99 [±] 0,08	0,95 ± 0,04
с ₆ н _{т4}	I,66±0,05	2,14±0,06	I,03±0,03
C ₁₂ H ₂₆	I,42±0,06	I,92±0,08	0,94±0,04
C _{T7} H ₃₆	I,40±0,05	I,92±0,06	0,95±0,03
(CH ₂)	I,37±0,07	I,96±0,10	0,99 ± 0,05
C6H12	I,43±0,06	2,04±0,08	I,03±0,04
циклогексан)		
>		/T 50	20 27/

х) Таблица составлена по данным работ/I, 50, 70, 71/

ми рК₁ и С нарушена. Авторы работы^{/72/} объясняют этот факт существованием ассоциаций молекул H₂C₂O₄.

<u>Шелочи.</u> Систематические измерения вероятности W реакции перезарядки (IO) в щелочах $Z'(OH)_{q}$ показали /7I, 73/, что измеренное значение вероятности в q раз меньше, чем рассчитанное по формуле (24). Отмеченный фект может быть связан с эномально большой вероятностью этомного захвата мезонов на кислород. Основанием для такого предположения могут служить работы Зинова и др.^{27/}по измерению величины A(Z/Z')в окислах (см. формулу 4 и рис. 4), а также недавние измерения Джураева и др.^{26/} величины $A(OH/Ca) \approx 4$ в $Ca(OH)_2$, которая почти на порядок превышает предсказания Z-закона. Другое объяснение предлагается в работе Гольданского и Берсукера /74/.

Индуктивный эффект. При изучении реакции (10) в ряду веществ СН₃Х, где $X = CH_3 S$, J, CN, NO_2 , COCL, $CH_3 CO$ и т.д. авторы работы^{/75/} наблюдали корреляцию между величиной коэффициента α , вычисленного по формуле (24), и индукционными константами G_r ^{/76/}, характеризующими реакционную способность радикала СН₃ под влиянием различных заместителей X (см. рис. 13). Независимо от смысла, вкладываемого в определение α , существование такой корреляции может оказаться полеаным для оценок величин G_r для некоторых соединений, поскольку химические способы определения G_r весьма трудоемки и не всегда осуществимы.

<u>Исследования стадии перехвата.</u> В работах/70, 80/ исследована реакция перезарядки (10) в смесях $CH_{Y} + Z', C_{2}H_{Y} + Z', C_{6}H_{6} + Z'$ при концентрациях примеси $C = n_{Z'}/n_{H} \sim 1$

первом (Будяшов и др

случае вклад

втором

99,5% H₂.

0,5%

серии много больше,

52

атомов Z'. Во всех случаях на фоне сильного "химического" подавления реакции (IO) в веществах $Z_m H_n$ было зафиксировано слабое дополнительное подавление реакции. Авторы работ⁷⁰, ^{80/} объясняют это явление перехватом $\rho \pi \rightarrow Z' \pi$, который описывается функцией $W_3 = (4 + \lambda C)^{-1}$. Для смеси $C H_4 + A z$ константа перехвата $\lambda = 3,9^{\pm}0,3$ примерно в 2 раза меньше, чем соответствующая константа перехвата $\Lambda = 8,8^{\pm}0,9$ в смеси $H_2 + A z$ при одинаковом значении $C \approx 0,5^{/52/}$.

Следует, однако отметить, что приведенные значения λ и Λ вычислены в предположении, что вероятности атомного захвата мезонов на компоненты смеси пропорциональны тормозным способностям этих веществ при энергии мезонов \sim 2 Мэв. Такое предположение выглядит естественным, однако требует проверки, поскольку известны случаи, когда оно несправедливо, например, в смеси $A_7 + CO_2$ /31/.

Трудности модели

Модель больших мезомолекул объединяет и с единой точки зрения объясняет довольно широкий круг явлений мезоатомной и мезомолекулярной физики. Формулы (24) и (248) полуколичественно описывают измеренные вероятности реакции перезарядки (IO) в различных водородосодержащих веществах. Отметим, однако, факты, которые не находят объяснения в рамках модели.

<u>Ядерное поглощение К-мезонов и антипротонов.</u> В настоящее время измерена вероятность поглощения К-мезонов/77/ в фотографических змульсиях и антипротонов/78/ в пропане ядрами химически

связанного водорода. При обработке результатов этих измерений по формуле (24) оказалось, что соответствующие коэффициенты равны:

 $a(\mathbf{r}) \approx 2$, $a(K) \approx 5$, $a(\bar{p}) \approx 11$. (28)

Авторы работы^{/78/} объясняют его различием процесса перехвата », К и Р от мезоатомов р», рК и РР к ядрам других атомов.

Другое объяснение основано на гипотезе о предпочтительном заполнении высоковозбужденных *Ns* -состояний при адиабатическом захвате мезонов в водородосодержащих веществах. Вероятности радиационных переходов из этих состояний меньше, чем скорость прямого ядерного захвата π^- -мезонов протонами. Для мезона с массой m, движущегося в области валентных электронов /1/

$$\int_{capt.}^{n} = \chi (m/N)^{3} \approx \chi m^{3/2}$$

Текии обрезом, если прямой ядерный захват \mathcal{T}^- -мезонов протонами происходит с заметной вероятностью (но все еще мал по сравнению с вероятностью каскадных переходов в $\mathbb{Z}\pi$ -атоме), то при переходе от \mathcal{T}^- -мезонов к \mathcal{K}^- -мезонам и антипротонам козффициенты \mathcal{Q} в формуле 24 должны возрастать.

<u>Гидриды металлов.</u> Для всех гидридов второго периода таблицы Менделеева коэффициент *Q* в формуле (24) меняется весьма слабо и по абсолютной величине не превосходит значения *Q* ≈ *2* (см. таблицу I). Однако формальное использование формулы (24) при обработке результатов измерений вероятности реакции (IO) в гидридах элементов других периодов приводит к значениям коэффициента α , которые нельзя считать разумными (в некоторых случаях $\alpha \sim \frac{2}{2}$ /I/). Возможная причина этого явления состоит в том, что на стадии атомного захвата мезонов роль валентных электронов атомов более существенна, чем электронов замкнутых оболочек атомов (см. ниже).

Перезарядка π^- -мезонов в органических соединениях. По своему смыслу козффициент а в формуле (24) отражает особенности химической связи атома водорода в молекуле и потому должен быть одинаковым для соединений с идентичным строением валентных оболочек, например, в гомологическом ряду предельных углеводородов $C_m H_n$, для которых n = 2m + 2. Обработка экспериментальных данных (80) по формуле 24 показывает, что это требование не выполняется (см. таблицу 4).

Авторы работы^{/80/} объясняют наблюдвемое уменьшение коэффициента α перехватом π^- -мезонов по реакции $\rho\pi \rightarrow C\pi$, который становится обобенно существенным при значениях $\chi = m/n \ge 1$, например, в циклических (бензол) и полициклических соединениях (антрацен и т.д.). При значениях $\alpha = 3,52^{\pm}0,17$ и $\lambda = 1,56^{\pm}0,14$ в формулах (19) и (23) удается удовлетворительно описать все результаты экспериментов в органических соединениях.

Следует, однако, отметить, что при анализе этих экспериментов использована определенная гипотеза о виде W_4 , а именно выражение (20). В принципе, могут реализоваться другие возможности, которые имеет смысл также обсудить.

В формуле (24) особенности этомного захвата мезонов в химических соединениях отражены в произведении множителей $a W_{I}$, причем выражение (20) для W_{I} основано на представлении об эквивалентности всех электронов молекулы на стадии атомного захвата – как валентных, так и электронов остова. Очевидно, что это допущение нельзя признать безоговорочно и имеет смысл обсудить его более детально, особенно в случае органических соединений, где представления о направленных валентностях/39/ делают гипотезу об эквивалентности всех электронов углерода весьма неправдоподобной. Богатый набор органических соединений позволяет исследовать эту гипотезу более детально.

На рис. 14 представлена величина $Z^{-2}/W = 1/\alpha W_{4}W_{3}$ для предельных соединений $C_m H_n$ как функция относительной концентрации углерода x = m/m. Принимая во внимание формулы (19) и (23) для вероятностей W_4 и W_3 , следует ожидать квадратичной зависимости вида $Z^{-2}/W = A + Bx + Dx^2$, где $A \approx 1$, $B \approx 6 + \lambda$, $D \approx 6 \lambda$. В действительности, обработка экспериментальных данных приводит к результату $A = 0.04 \pm 0.06$, $B = 4.00 \pm 0.16$, $D \approx 0.15$.

Одна из возможных интёрпретаций полученного результата состоит в том, что при поглощении *T*-мезонов в предельных органических соединениях электроны атомов водорода не участвуют в атомном захвате пионов (А ≈ 0), а перехватом $\rho T \rightarrow C T$ при существующей точности эксперимента можно пренебречь

 $(\lambda \approx 0)^{x}$. При такой интерпретации происходит ядерное поглощение \mathcal{P}^- -мезонов протоном непосредственно с валентных орбиталей атомов углерода, осуществляющих химическую связь с атомами водорода, минуя промежуточную стадию каскадных переходов. В соответствии с этим следует положить $W_3 \approx 1$, $\alpha W_x = \alpha n/\gamma m$, где $\mathcal{Y} = 4$ и равно числу валентных электронов углерода. В этих предположениях вероятность реакции (IO) в предельных углеводородах выражается весьма простой формулой

$$W(C_mH_n) = \alpha n Z^{-2} / \nu m. \qquad (29)$$

в которой х≈І для всего гомологического ряда (см. таблицу 4).

Модификация модели

Многочисленные факты, большая часть которых изложена в настоящей работе, вынуждают критически пересмотреть гипотезы, лежащие в основе модели больших мезомолекул, и, в частности, предположение (20) о виде функции W_I . Как показывает предыдущий анализ в случае предельных органических соединений более предпоч-

х) В пользу этого предположения говорят тэкже равенства

$$P(CH_2) \approx P(CH_4)$$
 II $P(CH) \approx P(C_2H_2)$

(таблица 2), которые выполняются с хорошей точностью, хотя условия перехвата для этих пар существенно различаются. Отсутствие стадии перехвата в химических соединениях естественно объясняется, если определяющую роль играет прямой ядерный захват π^- -мезонов протонами из высоких Ns -состояний. тительным оказывается соотношение

$$W_{1} = n/m\nu \tag{30}$$

где \mathcal{V} равно числу валентных электронов атома \mathbb{Z} . Это означает, что вероятность атомного захвата мезонов, сопровождающегося вылетом Оже-электронов из замкнутой Is² оболочки атома углерода, пренебрежимо мала.

Обобщение этого результата на случай элементов других периодов приводит к заключению:

влиянием замкнутых электронных оболочек этомов Z на процесс этомного захвата мезонов можно пренебречь; вероятность W_1 выражается формулой (30), где V равно числу электронов в незаполненной оболочке атома Z; вероятность $W(Z_m H_n)$ реакции перезарядки (10) вычисляется по формуле(29).

Подробный количественный внализ всех следствий этой гипотезы еще не проведен и мы остановимся только на некоторых ее очевидных качественных следствиях.

в) Все результаты по измерению вероятности реакции(IO) в веществах $Z_m H_n$ с элементами Z из второго периода таблицы Менделеева останутся практически без изменения, поскольку в этом случае $\gamma = Z - 2$ и переход от формулы(24) к формуле(29) при существующей точности измерений эквивалентен некоторому переопределению коэффициента Q.

- б) Для гидридов других периодов вместо Z -зависимости $W \sim Z^{-3}$ следует ожидать зависимости $W \sim Z^{-2}$. Предварительные измерения вероятности $W(Z_mH_n)$ в гидридах с большими Z не противоречат такому заключению (I).

в) Формула (29) более естественно, чем (24) объясняет соотношения $P(CH_2)_n \approx P(CH_4) \approx P(C_6H_{42})_N P(CH)_n \approx P(C_2H_4) \approx P(C_4H_6)_n$

заключение

следующие из таблицы 2.

г) Резкие отступления от Z -закона [9,26] с этой точки зрения вполне естественны. В частности, периоди-

ческая зависимость величины $A(\mathbb{Z}/8)$ в окислах $\mathbb{Z}_{\kappa} O_m$ (см. рис. 4) является естественным следствием периодического изменения числа внешних электронов \vee элемента \mathbb{Z} . С этой точки зрения следует ожидать также периодического изменения интенсивности K_{ν} -серии элементов, и растущие кривые на рис. 5. являются по-видимому фрагментом кривой типа представленной на рис. 4.

д) Изконец, предположение о преимущественном захвате мезонов на уровни \mathcal{N} , лежащие в области валентных электронов молекулы, просто объясняет резкие различия вероятностей атомного захвата в разных окислах одного и того же элемента, например, в $S\ell_2 O_3$ и $S\ell_2 O_5$.

Дополнительное предположение о преимущественном заполнении высоковозбужденных *NL* -состояний с малыми значениями *L* в процессе адиабатического захвата мезонов позволяет понять также влияние химической связи на структуру *K* и *L* -серий элементов (см. сноску II).

Оценивая ситуацию в целом, следует признать, что для однозначного установления аналитического выражения для вероятности $W(Z_m H_n)$ существующие точности измерений недостаточны, а теоретические представления требуют дальнейшей разработки. В настоящее время можно считать твердо установленным, что молекулярная структура веществ существенно влияет на процессы атомного и ядерного захвата мезонов. В принципе это позволяет использовать мезоны для изучения электронной оболочки молекул и в задачах качественного и количественного анализа веществ /53,75,76/

Вторая из упомянутых задач существенно проще и в настоящее время уже существуют конкретные предложения и попытки практической реализации возникающих возможностей. Используя зависимость интенсивности и структуры мюонной рентгеновской К-серии элементов от их химического и физического состояния, предложены методы анализа количественного и качественного состава образцов/81, 82/. По сравнению с обычным рентгеноструктурным анализом предлагаемые методы обладают рядом преимуществ. В частности, используя локализованность мюонного пучка и меняя его энергию, можно менять точку остановки мюонов в образце и исследовать состав элементов только в окрестности этой точки, независимо от остальных. Проект такой установки для составления подробной "химической карты" человека обсуждается в LAMPF.

Кроме того, поскольку проникающая способность мюонных рентгеновских лучей много больше, чем обычных, это позволяет анализировать массивные образцы, что недоступно пока ни одному из существующих методов.

Уникальная избирательность реакции перезарядки протонах и ее сильная зависимость от химического состояния водорода уже сейчас позволяет надежно отличить химически связанный водород от свободного/53/. В дальнейшем такой метод

в принципе может быть использован для изучения кинетики и катализа химических реакций с участием водорода, для исследования особенностей химической связи водорода в органических соединениях и в гидридах переходных металлов, а также при изучении структуры водородосодержащих веществ в критических режимах: сверхнизкие температуры, сверхвысокие давления и т.д.

Однако для того чтобы обнаруженные эффекты стали основой нового метода анализа структуры вещества, необходимы систематические исследования и сравнение их результатов с данными других методов: ядерного магнитного резонанса, злектронного парамагнитного резонанса, инфракрасной спектроскопии и других.

Первэя зэдача - изучение структуры электронного облака молекул - существенно сложнее и для своего разрешения требует комплексных экспериментальных исследований и теоретических расчетов. Прежде всего необходимо надежно отделить "физические" эффекты от "химических", т.е. процессы перехвата и атомного захвата на внутренние оболочки атомов от эффектов взаимодействия мезонов с валентными электронами молекул. В этой связи целесообразно изучить одновременно все характеристики рентгеновских спектров: энергию переходов, их интенсивность и остаточную поляризацию каскадных моонов. Весьма перспективным представляется также использование для этой цели Оже-злектронной спектроскопии, которая позволяет определять энергию связи Ожеэлектронов с точностью до 0,1эв /68/.

В случае водородосодержащих соединений необходимы комплексные исследования с одновременным использованием π - и μ мезонов, которые во многом дают дополнительную информацию, поскольку реакцию перезарядки (IO) можно наблюдать только на ядрах водорода, а рентгеновское излучение мюонов – только на ядрах Z > I. Необходимым условием успеха этих исследований, которые можно объединить под общим названием "мезонная химия", является повышение точности экспериментов, которая в среднем в настоящее время не превышает 10%. Кроме того, для этой цели необходимы теоретические расчеты процесса этомного захвата отрицательных мезонов на современном уровне строгости.

Автор искренне признателен С.С.Герштейну за постоянный интерес к работе и многочисленные обсуждения затронутых эдесь проблем, В.Г.Зинову, В.И.Петрухину, В.Н.Покровскому и Ю.А.Ютландову за полезные дискуссии. Особо мне хотелось бы поблагодарить В.М.Суворова за многостороннюю научную и техническую помощь в процессе подготовки рукописи к печати.

Литература

- С.С.Герштейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.Прокошкин. Успехи физических наук <u>97</u>, 3 (1969).
- Y.N.Kim. Mesic atoms and nuclear structure. North-Holland, Amsterdam, London (1971).
- 3. S.S.Gershtein, L.I.Ponomarev. In Muon Physics, ed. V.W.Hughes and C.S.Wu, Academic, New York (1973).
- 4. E.H.S.Burhop, High Energy Physics. 3, 109 (1969).
- 5. C.S.Wu, L.Wilets. Ann. Rev. Nucl. Sci., 19, 527 (1969).
- S.Devons, I.Duerdoth. In Advances in Nuclear Physics, ed. M. Baranger et al., Plenum Press, New York, 1969.
- 7. G.Backenstoss, Ann. Rev. Nucl. Sci., 20, 467 (1970).
- 8. E.Fermi, E.Teller. Phys. Rev. <u>72</u>, 399 (1947).
- J.S.Baijal, J.A.Diaz, S.N.Kaplan, R.V.Pyle, Nuovo Cimento, <u>30</u>, 711 (1963).
- 10. A.S.Wightman. Phys. Rev., 77, 521 (1950).
- 11. Y.Eisenberg, D.Kessler. Nuovo Cimento, <u>19</u>, 1195 (1961).
- 12. Y.Eisenberg, D.Kessler. Phys. Rev., <u>130</u>, 2352 (1963).
- 13. G.Fray. Phys. Rev. 113, 688 (1959).
- 14. T.H.Fields, G.B.Yodh, M.Derrick, J.G.Fetkovich Phys.Rev.Lett. <u>5</u>, 69 (1960).
- E.Bierman, S.Taylor, E.L.Koller, P.Stamer, T.Huetter. Phys. Lett. 4, 351 (1963).
- K.Derrick, M.Derrick, J.G.Ferkovich, T.H.Fields, E.G.Pewitt, G.B.Yodh. Phys. Rev. <u>151</u>, 82 (1966).
- 17. H.L.Leon, H.Bethe. Phys.Rev. 127, 636 (1962).
- 18. T.B.Day, G.A.Snow, J.Sucher. Phys. Rev. Lett. 3, 61 (1959).
- 19. T.B.Day, G.A.Snow, J.Sucher. Phys. Rev. 118, 864 (1960).
- 20. M.M.Block, et. al. Phys. Rev. Lett. 11, 301 (1963).
- 21. С.С.Герштейн. ЖЭТФ 43, 706 (1962).

- 22. J.C.Sens, R.A.Swanson, V.L.Telegdi, D.D.Yovanovitch. Nuovo Cimento, <u>7</u>, 536 (1958).
- J.F.Lathrop, R.A.Lundy, R.A.Swanson, V.L.Telegdi,
 D.D.Yovanovitch. Nuovo Cimento <u>15</u>, 831 (1960).
- 24. M.Eckhause, T.A.Filippas, R.B.Sutton, R.E.Welsh, T.A.Romanowski. Nuovo Cimento <u>24</u>, 666 (1962).
- 25. В.Д.Бобров и др. ЖЭТФ <u>48</u>, II97 (1965)
- 26. В.И.Гольданский и др. ДАН <u>211</u>, 60 (1973).
- 27. В.Г.Зинов, А.Д.Конин, А.И.Мухин, ЯФ 2, 859 (1965).
- В.Г.Зинов, А.Д.Конин, А.И.Мухин, ЯФ <u>5</u>, 591 (1968).
 Препринт Р-2039, Дубна, 1965.
- 29. Ю.Г.Будншов, П.Ф.Ермолов, В.Г.Зинов, А.Д.Конин, А.И.Мухин. ЯФ, <u>5</u>, 830 (1967).
- Ю.Г.Будяшов, П.Ф.Ермолов, В.Г.Зинов, А.Д.Конин, А.И.Мухин ЯФ, <u>5</u>, 599 (1967).
- 31. В.Г.Зинов, А.Д.Конин, А.И.Мухин, ЖЭТФ <u>46</u>, 1919 (1964).
- 32. C.S.Johnson, E.P.Hincks, H.L.Anderson. Phys. Rev. <u>125</u>, 2102 (1962).
- 33. D.Quitmann, R.Engfer, V.Hegel, P.Brix et. al. Nucl. Phys. <u>51</u>, 609 (1964).
- 34. D.Kessler, H.L.Anderson, M.S.Dixit, H.J.Evans et al. Phys. Rev. Lett. <u>18</u>, 1179 (1967).
- 35. H.Daniel et al. Phys. Lett. 26B, 281 (1967).
- 36. L.Tauscher, G.Backenstoss et al. Phys. Lett. 27A, 581 (1968).
- 37. G.A.Grin, R.Kunselman. Phys.Lett. 31B, 116 (1968).
- 38. M.Y.Au-Yang, M.L.Cohen. Phys. Rev. 174, 468 (1968).
- 39. L.C.Pauling. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. Cornell University Press, Ithaca, N.Y. 3rd ed. 1960.

- 40. W.K.Panofsky, R.L.Asmodt, J.Hadley. Phys. Rev., 81, 565 (1951)
- А.Ф.Дунайцев, В.И.Петрухин, Ю.Д.Прокошкин, В.И.Рыкалин.
 ЖЭТФ <u>42</u>, 1680 (1962).
- 42. V.I.Petrukhin, Yu.D.Prokoshkin. Nuovo Cimento, 28, 99 (1963).
- A.F.Dunsitsev, V.I.Petrukhin, Yu.D.Prokoshkin. Nuovo Cimento. <u>34</u>, 521 (1964).
- M.Chabre, P.Depommier, J.Heintze, V.Soergel. Phys. Lett.
 <u>5</u>, 67 (1963).
- 45. D.Bartlett, S.Devons, S.L.Meyer, J.L.Rosen. Phys. Rev. <u>136B</u>, 1452 (1964).
- 46. J.Ashkin. Nuovo Cimento, 16, 490 (1960).
- 47. V.I.Petrukhin, Yu.D.Prokoshkin. Nucl. Phys. 54, 414 (1964).
- 48. 0.А.Займидорога и др. ЕЭТФ <u>48</u>, I267 (I965).
- R.E.Marshak. Meson Physics. Mc. Graw-Hill Book Company, Inc., New York, 1952.
- 50. В.И.Петрухин, Ю.Д.Прокошкин, ДАН 160, 71 (1965).
- 51. В.И.Петрухин, Ю.Д.Прокошкин, В.М.Суворов.
 ЖЭТФ <u>55</u>, 2173 (1969).
- 52. В.И.Петрухин, В.М.Суворов. Препринт ОИЯИ, Дубна, 1973 г.
- Б.И.Петрухин, Л.И.Пономерев, Ю.Д.Прокошкин.
 Химия высоких энергий, <u>I</u>, 283 (1967).
- 54. Л.И.Пономарев, ЯФ,<u>2</u>, 223 (1965).
- 55. Л.И.Пономарев, ЯФ, <u>6</u>, 389 (1967).
- 56. L.I.Ponomarev, Yu.D.Prokoshkin. Comments on Nuclear and Particle Phys. 2, 176, (1968).
- 57. Л.И.Пономарев, Т.П.Пузынина, ЖЭТФ <u>52</u>, 1273 (1967).
- 58. R.L.Rosenberg. Phyl. Mag. 40, 759 (1949).
- 59. G.A.Baker. Phys. Rev. 117, 1130 (1960).

- 60. A.D.Martin. Nuovo Cimento 27, 1359 (1963).
- 61. G.T.Condo. Phys. Lett. 9, 65 (1964).
- 62. G.T.Condo, R.D.Hill, A.D.Martin. Phys. Rev. <u>133A</u>, 1280 (1964).
- 63. С.С.Герштейн, ЖЭТФ <u>39</u>, II70 (1960).
- 64. J.R.Rook. Nucl. Phys. B20, 14 (1970).
- 65. Л.Д.Ландау, Е.М.Лифшиц, "Квантовая механика", Физматгиз, 1963.
- 66. E.Fermi, E.Segre. Z.Phys. 82, 729 (1933).
- 67. N.Fröman, P.O.Fröman. Phys. Rev. 6A, 2064 (1972).
- J.M.Hollander, D.A.Shirley. Ann.Rev. Nucl. Sci.
 <u>20</u>, 435 (1970).
- 69. З.В.Крумштейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.¹¹рокошкин, ЖЭТФ <u>54</u>, 1990 (1968).
- В.И.Петрухин, В.Е.Рисин, И.Ф.Саменкова, В.М.Суворов. Препринт ОИЯИ, Дубна, 1973 г.
- Э.В.Крумштейн, В.И.Петрухин, В.Е.Рисин, Л.М.Смирнова,
 В.М.Суворов, И.А.Фллендов, Препринт ОИЯИ РІ-6853, Дубна, 1972.
- З.В.Крумштейн, В.И.Петрухин, Л.М.Смирнова, В.М.Суворов,
 И.А.Ютландов, Препринт ОИЯИ РІ2-5224, Дубна, 1970.
- З.В.Крумштейн, В.И.Петрухин, Л.И.Пономарев, Ю.Д.Прокошкин.
 ДЭТФ <u>55</u>, 1640 (1969).
- 74. В.И.Гольданский, И.Б.Берсукер, ДАН 203, 1332 (1972).
- 75. Л.Вильгельмова, П.Зимрот, В.И.Петрухин и др. Препринт ОИНИ РІ-6854, Дубна, 1972.
- 76. L.P.Hammett. Physical organic chemistry. McGrow, N.Y., 1970.
- 77. W.H.Barkas, J.N.Dyer, P.C.Giles, et al. Phys. Rev., <u>112</u>, 622 (1958).

- 78. W.T.Pawlevicz, C.T.Muzphy, J.G.Fetkovich et al. Phys.Rev. 2D, 2539 (1970).
- 79. В.И.Петрухин, Доклад на IУ Международной конференции по физике высоких энергий и структуре ядра, 7-II сентября 1971 г. стр. 431-443, Дубна, 1972 г.
- 80. В.И.Петрухин, В.Е.Рисин, В.М.Суворов. Препринт ОИЯИ, Дубна, 1973 г.
- 81. J.D.Knight, M.E.Schillaci, R.A.Naumann, Report on IV. International Conference on High Energy Physics and Nuclear Structure, 7-11 Sept., 1971, Dubna.
- 82. В.Г.Зинов, А.Д.Конин, А.Н.Мухин, Препринт ОИЯИ РІ4-6407, Дубна, 1972.
- 83. Muons in Solids, Meeting 1-3 September, 1971, Bürgenstock, Suisse.

Рукопись поступила в издательский отдел 25 июня 1973 года.