ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P4 - 7223

Р.В.Джолос, Ф.Дэнау, В.Г.Картавенко, Д.Янсен

13 18 15

......

3578 2-73

СТРУКТУРА ПЕРЕХОДНЫХ ЯДЕР В ОБЛАСТИ Sm И Gd

ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

P4 - 7223

Р.В.Джолос, Ф.Дэнау, В.Г.Картавенко, Д.Янсен

СТРУКТУРА ПЕРЕХОДНЫХ ЯДЕР В ОБЛАСТИ Sm И Gd

Направлено в Physics Letters

В микроскопической модели ядра одно только предположение о слабой связи динамических переменных, описывающих коллективное квадрупольное движение, с другими степенями свободы ядра накладывает жесткие ограничения на коллективный гамильтоннан и оператор квадрупольного момента, которые в первом приближении имеют следующий вид/1/:

$$H = W + \sum_{\mu} b_{\mu}^{+} b_{\mu} + F\sqrt{5}([b^{+}b^{+}b^{-}]_{00} \sqrt{1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu} + h.c.}) - G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu}))(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu})} + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu})) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})})(1 - \frac{1}{n}\sum_{\mu} b_{\mu}^{+} b_{\mu})) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}) + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([b^{+}b^{+}]_{00} \sqrt{1 - \frac{1}{n}(1 + \sum_{\mu} b_{\mu}^{+} b_{\mu})}] + G\sqrt{5}([$$

+ h. a.) ,

4

$$\begin{aligned} Q_{2\mu} &= Q_0 \mid b_{\mu}^+ \sqrt{1 - \frac{I}{n} \sum_{\mu} b_{\mu}^+ b_{\mu}} + \sqrt{1 - \frac{I}{n} \sum_{\mu} b_{\mu}^+ b_{\mu}} (-I)^{\mu} b_{-\mu} + \\ &+ \gamma [b^+ b]_{2\mu} \mid, \end{aligned}$$

где b⁺(b) - операторы рождения /уничтожения/ квадрупольных фононов.

Коэффициенты W, Q, , F, G, у, n определяются схемой одночастичных уровней н остаточным взаимодействием. Но поскольку мы имеем далеко не полную информацию об остаточных силах, а коэффициентов заметно меньше, чем имеющихся экспериментальных данных, можно, добиваясь лучшего описания части экспериментальных даиных, фиксировать значения этих коэф-

фициентов. Найденные коэффициенты могут быть использованы для расчета других характеристик ядра и для получения информации об остаточных силах. Ниже приводятся результаты такого расчета для переходных изотопов Sm и Gd. Мы полагали n = 7. Величина W определялась энергией 2_1^+ -состояния. Коэффициент Q_0 не входил в рассмотрение, так как рассчитывались только отношения матричных элементов $Q_{2\mu}$, которые от Q_0 не зависят. Коэффициенты F, G и у определялись так, чтобы лучшим образом описывать экспериментальные данныс.

Изотопы ¹⁵⁰Sm и ¹⁵²Gd не принадлежат ии к сферическим, ни к деформированным ядрам. Это следует как из спектров коллсктивных возбуждений: отношения $(E(4_1^+)/E(2_1^+)$ и $E(0_2^+)/E(2_1^+)$ близки к 2, как в модели гармонического осциллятора, тогда как $E(2_2^+)/E(2_1^+)=2,7$ противоречит этой модели, так и из резко данных по вероятностям Е2 - переходов. На рис. 1 рсзультаты расчета энергий коллективных состояний сравниваются с экспериментальными данными /2/. Получено хорошее согласие для большинства уровней, в том числе объяснены опускание О₂ состояния ниже предсказания вибрационной модели и большая величина отношения $E(2^+_{+})/E(2^+_{+})$. Сдиако положения уровней квазиротацион-ных полос, построенных на O_3^+ -состояниях, завышены на ~ 350 ков. Что касается результатов расчета вероятностей Е2 - переходов / таблица 1/, то они согласуются с имеющимися экспериментальными данными. Следует отметить объяснение близких к предсказаниям ротацион-

ной модели больших величия $\frac{B(E2; 2_2^+ \rightarrow 4_1^+)}{B(E2; 2_2^+ \rightarrow 2_1^+)}$ н $\frac{B(E2; 2_2^+ \rightarrow 0_2^+)}{B(E2; 2_2^+ \rightarrow 2_1^+)}$ которые должны равняться нулю согласно вибрацнонной

которые должны равняться нулю согласно вибрационной модели. В то же время объяснено сильное отклонение от предсказания ротационной модели величины $B(E_2; 2_2^+ + 2_1^+) / B(E_2; 2_2^+ + 0_1^+)$.

Отметим, что расчет в первом порядке теории смешивания ротационных полос $^{/3/}$ приводит к результатам, резко протнворечащим эксперименту. Значения параметра этой теории Z_0 , необходимые для согласования

Рис. 1. Спектр коллективных состояний 150 Sm и 152 Gd.

с экспериментом двух отношений приведенных вероятиостей E2 - переходов в 152 Gd. различаются на порядок /таблица 1/.

Источником наблюдающихс аномалий в поведении энергий и вероятностей E2 - переходов в 50 Sm и 152 Gd является структура коллективных состояний в этих ядрах. На рис. 2 показана фононная структура 0⁺- и 0⁺-состоя-ний в¹⁵²Gd /результаты для⁵⁰Sm аналогичны/. Интересно. что если в волновой функции основного состояния (0;) преобладает бесфонониая компонента, то структура 02 - состояния значительно более сложная. Структура 2_{1}^{+} – и 4_{1}^{+} -состояний также значительно сложиее, чем структура 0_{1}^{+} -состояния. Этим и объяснается близость отношений вероятностей Е2 -переходов между 2⁺, 2⁺₂, 0⁺₂-н 4⁺₄ состояниями к предсказаниям ротационной модели, тогда как экспериментальное значение $B(E2; 2^+_{1} \rightarrow 2^+_{1})/B(E2; 2^+_{2} \rightarrow 0^+_{1})$ типично для сферических ядер. Этим объясняется и малая величина отношения $E(0^{+}_{2})/E(2^{+}_{1}).$

Причниой появления таких особенностей в структуре коллективных состояний является большая величина кои эффициента F в гамильтоннане, что эквивалентно сильной асимметрии потенциальной энергии деформации относительно изменения знака В.

Изотолы¹⁵² Sm ¹⁵⁴ Gd близки по своим свойствам^{/4/} к деформированным ядрам, хотя ряд свойств этих ядер не описывается даже в первом порядке теорни смешива-ния ротационных полос ⁷³⁷. В таблице 1 приведены результаты нашего расчета отношений вероятностей Е2 переходов для ¹⁵⁴Gd. Согласие с экспериментом удовлетворительное.

Литература

- 1. Р.В.Джолос, Ф.Дэнау, Д.Янсен. Препринт ОИЯИ,
- Р4-7144, Дубна, 1973. 2. И.Адам, П.Галан, К.Я.Громов и др. Изв. АН СССР, cep. øus., 34, 813 /1970/.

i

3. B.R.Mottelson. J.Phys.Soc.Jap.Suppl., 24, 87 (1968).

4. L.L.Riedinger et al. Phys.Rev., 179, 1214 (1969).

5. K.Kumar. Phys.Rev.Lett., 26, 269 (1971).

Рукопись поступила в издательский отдел 4 июня 1973 года.

Рис. 2. Вклады (W) N-фононных компонент в вые функции O_1^+ -и O_2^+ -состояний ²⁵² Gd.

Таблица І.

Сравнение теоретических и экспериментальных значений вероятностей Е2-переходов в ¹⁵⁰Sm , ¹⁵²Gd

	152 Gd			150 Sm		184 Gd			Ротацион.		Вибрацион.
	теор.	arc.	Z,	теор.	ərc.	теор.	əRC.	z.	Z210	дель	модель
$\frac{B(E2;2_{2}^{+} + q_{1}^{+})}{B(E2;2_{2}^{+} + 2_{1}^{+})}$	2,2	2,4	0,011	3,2		5,9	3,5	0,028		1,8	0
$\frac{B(52; Z_{4}^{+} + Z_{7}^{+})}{B(12; Z_{4}^{+} + O_{7}^{+})}$	47	48	0,14	42	>12	9,5	8,3	0,098		1,43	~
$\frac{B(E2; 2_{1}^{+} \rightarrow 0_{2}^{+})}{B(E2; 2_{1}^{+} \rightarrow 2_{1}^{+})}$	3	3,I		4,7							o
B(E2;4=+4;) B(E2;4=+2;)	21			28		7,2	6,4		0,023	2,94	
<u>B(E2;23+2+)</u> B(E2;23+0;)	2,8	<6		3	<46	2,25	2,3		0,035	I,43	
B(E2;2)+2] B(E2;2)+4	}					7,I	7,3		0,046	20	
B(E2;41+23) B(E2;21+01)	2,1			2,0						1,43	,
<71 Q127> <71 Q107>	1,5			-I.5	-I,4					-1,2	