СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

<u>C346.38</u> T-202 4/11-73 P4 - 6991

2030/2-73 Ф.А.Гареев, Ю.А.Салганик

ИСПОЛЬЗОВАНИЕ ПОТЕНЦИАЛА ВУДСА-САКСОНА ДЛЯ ОПИСАНИЯ СВЯЗАННЫХ СОСТОЯНИЙ ПРИ ИЗУЧЕНИИ ПРОЦЕССА μ^- + (A,Z)-(A-1,Z-1)+n+У

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ ФИЗИНИ

P4 - 6991

Ф.А.Гареев, Ю.А.Салганик

ИСПОЛЬЗОВАНИЕ ПОТЕНЦИАЛА ВУДСА-САКСОНА ДЛЯ ОПИСАНИЯ СВЯЗАННЫХ СОСТОЯНИЙ ПРИ ИЗУЧЕНИИ ПРОЦЕССА μ^- + (A,Z)-(A-1,Z-1)+n+V

> Об'єдиненный енститут бдерных всследований БИБЛИЮТЕКА

В рамках прямого механизма процесса исследуется спектр и асимметрия углового распределения нейтронов в процессе ядерного μ^- -захвата на примере реакции $\mu^- + {}^{16}O \rightarrow {}^{15}N + n + \nu$. Показано, что использование потенциала Вудса-Саксона для описания связанных состояний нуклонов в ядре (в обоблочечной модели) не вносит существенных изменений в спектр и асимметрию по сравнению с аналогичным рассмотрением, использующим с указанной целью потенциал гармонического осциллятора.

and the second state of the second states

Теоретический анализ спектра и асимметрии углового распределения быстрых нейтронов от захвата поляризованных µ⁻-мезонов ядрами до настоящего времени был проведен в следующих предположениях.

А. Рассматривался однонейтронный канал реакции:

 $\mu^{-} + (A, Z) \to (A - 1, Z - 1) + n + \nu .$ (1)

Б. Принималось, что выход высокоэнергетических нейтронов обусловлен, в основном, прямым механизмом процесса. В. Использовался V-A вариант слабого взаимодействия с учетом сохранения векторного тока (и часто с учетом сохранения G-четности). Точнее говоря, как правило, брался эффективный гамильтониан мюон-ядерного взаимодействия, полученный Примаковым /1/, причем принимались во внимание так называемые релятивистские члены этого гамильтониана, на важность учета которых было указано в работах

Г. Выбиралась конкретная модель для описания связанных состояний нуклонов в ядре. Рассматривались модели Ферми-газа и оболочечная модель с потенциалом гармонического осциллятора (H.O.) в качестве среднего поля.

Д. Тем или иным образом учитывалось взаимодействие в конечном состоянии между нейтроном и ядромостатком, влияющее существенным образом на асимметрию нейтронов

Очевидно, что указанный подход лишь частично описы-1. 2. 11 医鼻腔医后侧 医骨上下骨骨上下骨骨上 вает процесс, приводящий к эмиссии высокоэнергетичес-San Bar man 1.20 ких нейтронов. Дело в том, что при высоких энергиях возбуждения важную роль играет явление ассоциирования нуклонов в ядрах. В частности, очень существенны двух-مين من المراجعين المركب المراجع المتكون أخلي المحار المحكم الحكم الحكم الحكم الحكم الحكم الحكم الحكم الحكم الح нуклонные корреляции. Однако захват мюона двухнуклонным кластером приводит в легких ядрах, главным образом, к двухнуклонной эмиссии. Таким образом, оказывается крайне полезным, для понимания механизма реакции выделение переходов в определенные состояния

конечного ядра (А-1), что в значительной мере исключает процессы, идущие на кластерах.

Эффекты, связанные с влиянием короткодействующих нуклон-нуклонных корреляций на канал (1), уже рассматривались на примере µ -захвата ядром ⁴He. С учетом корреляций выход нейтронов высоких энергий и их асимметрия несколько изменяются, хотя качественно новых эффектов в энергетической зависимости асимметрии не наблюдается ^{/9/}.

В настоящей работе мы хотим еще в одном пункте отойти от ставшего за последние годы уже традиционным метода описания процесса (1). Известно, что использование более реалистического (по сравнению с H.O.) потенциала среднего поля ядра приводит к изменению частотного спектра волновых функций нуклонов в ядре, увеличивая вес высокочастотных компонент. Добавим сюда тот общеизвестный факт, что потенциал H.O. дает неправильную асимптотику волновых функций. В связи с этим представляется интересным исследовать влияние замены потенциала H.O. для среднего поля потенциалом Вудса-Саксона (W.S.). Как показывает опыт исследования других ядерных реакций (например, *e*, *e* ' *p*), этот вопрос со временем неизбежно ставится на повестку дня.

В этой работе рассматриваем реакцию:

$$\mu^{-} + {}^{16}O \rightarrow {}^{15}N(g.s.) + n + \nu .$$
(2)

4

5

化二磷酸钠 化离子子 网络常常新闻之外的 法律法的 化生物性化 的复数形式 建氯化合物 Анализ процесса (2) проведен в тех же приближениях, что и ранее , с той лишь разницей, что вместо потенциала Н.О. для связанных состояний использовался потенциал W.S. и вообще не рассматривались эффекты, связанные с учетом "обменных" членов, возникающих при вычислении ядерных матричных элементов /6,7/. Заметим, что, как уже указывалось /7/, оптический потенциал, описывающий взаимодействие в конечном состоянии, является некоторым усредненным для области ядер взаимодействием. Учитывая в некотором смысле качественный характер расчетов, мы не проводили исследования взятого взаимодействия с точки зрения непосредственного описания конкретных экспериментальных данных (по упругому n, N -рассеянию, например).

Радиальные волновые функции связанного состояния нуклона в ядре и относительного движения нейтрона и ядра-остатка рассчитывались численно путем решения уравнения Шредингера с соответствующим потенциалом.

Параметры потенциалов были взяты следующими:

1. Среднее поле ядра

 $V_{a.f.}(r) = U_0 / \{ 1 + \exp[\frac{r - R_0}{a_0}] \},$

где U_0 = -59,65 Мэв, R_0 = 3,15 ф, a_0 = 0,65 ф.

2. Взаимодействие в конечном состоянии: $V(r) = U / \{1 + \exp[-\frac{r-R}{a}]\} + iW \exp\{-[\frac{r-R}{b}]^2\},$ где U = -59,65 Мэв, $W = -(3E^{\frac{1}{2}})$ Мэв, a = 0,65 ф, b = 0,98 ф, R = 3,15 ф. Дифференциальная вероятность процесса имеет вид⁶ $\frac{d\omega}{dE \ d\Omega} = CE^{\frac{1}{2}} \frac{f^2(E)}{1+f(E)} \{A(E)+B(E)\cos\theta\},$ (3) где E – энергия относительного движения нейтрона и ядра-остатка; C – числовой множитель, не зависящий от E; Ω – направление импульса p относительного дви-

жения нейтрона и ядра-остатка; θ – угол между вектором \vec{p} и направлением спина захватываемого μ –мезона:

$$f(E) = \left[1 + 2 \frac{\epsilon - E}{M}\right]^{\frac{1}{2}} - 1,$$

 ϵ – энергия, выделяющаяся в реакции, *M* – суммарная масса нейтрона и ядра-остатка; *A*(*E*)и *B*(*E*) – определенные билинейные комбинации ядерных матричных элементов /6,7/.

Энергетический спектр $\frac{d\omega}{dE}$ и асимметрию углового распределения a(E) определяем следующим образом:

$$\frac{d\omega}{dE} = \int d\Omega \frac{d\omega}{dE \, d\Omega}, \quad \alpha(E) = B(E) / A(E).$$

Именно эти характеристики процесса и рассчитывались в настоящей работе.

Результаты расчетов позволяют заключить следующее. Использование потенциала Вудса-Саксона для описания связанных состояний нуклонов в ядре вместо потенциала гармонического осциллятора несущественно изменяет

6

7

энергетический спектр $\frac{d\omega}{dE}$ процесса (2). Напомним тот известный факт /10/, что без учета релятивных членов эффективного мюон-ядерного взаимодействия полная скорость процесса (ω) вообще не зависит от формы среднего поля, хотя она критична к среднеквадратичному радиусу. Этот результат легко может быть получен в "closure approximation". В нашем же приближении полученный вывод далеко не очевиден.

На рис. 1 приведен результат расчета асимметрии

Рис. 1. Асимметрия углового распределения. 1 – расчет с потенциалом Вудса-Саксона для связанных состояний; 2 – расчет с потенциалом гармонического осциллятора для связанных состояний.

углового распределения a(E). Там же для сравнения дан результат расчета с потенциалом H.O. в качестве среднего поля. Видно, что различие обеих приведенных кривых непринципиально. Необходимо, на наш взгляд, подчеркнуть указанный факт. Дело в том, что асимметрия, как уже неоднократно указывалось /4,6,7/, является достаточно тонкой характеристикой процесса (1). В связи с этим представляет интерес определенная устойчивость данной характеристики процесса относительно тех или иных изменений его модели.

В заключение еще раз сформулируем полученный результат. Использование реалистического потенциала Вудса-Саксона для описания связанных состояний нуклонов в ядре (в рамках оболочечной модели) взамен потенциала гармонического осциллятора, повсеместно употреблявшегося до сих пор, не вносит существенных изменений в энергетический спектр и асимметрию углового распределения процесса (2). Можно ожидать, что указанное положение справедливо для рассмотренных характеристик процесса (1) при захвате µ-мезонов ядрами с заполненными оболочками и подоболочками. Пользуемся случаем выразить искреннюю признательность Р.А.Эрамжяну за стимулирующую дискуссию.

Литература

 A.Fujii, H.Primakoff.Nuovo.Cim., 12, 327(1959).
 R.Klein, T.Neal, L.Wolfenstein.Phys.Rev., 138, B86 (1965).

3. А. Bogan. Nucl. Phys., Bl2, 89 (1969). Ю.А.Салганик, В.Н.Фетисов, Р.А.Эрамжян. Программа и тезисы докладов XX ежегодного совещания по ядерной спектроскопии и структуре атомного ядра, часть 2, стр. 250, Ленинград, 1970.

4. R.A.Eramzhyan, V.N.Fetisov, Yu.A.Salganic. Phys.Lett., 35B, 143 (1971).

9

- 5. C.A.Piketty, I.Procureor.Nucl.Phys., B26, 390 (1971).
- 6. R.A. Eramzhyan, V.N. Fetisov, Yu.A. Salganic. JINR, E4-5983, Dubna, 1971.
- 7. Ю.А.Салганик, Р.А.Эрамжян. Сообщения ОИЯИ, Р4-5997, Дубна, 1971.
- 8. A. Boussy, N.Vinh Man. Preprint, Orsay, 1971.
- 9. Ю.А.Салганик, Р.А.Эрамжян. ЯФ, 15, 518 (1972).
- 10. В.В.Балашов, Р.А.Эрамжян. ОИЯИ, Р2-3258, Дубна, 1967.

Рукопись поступила в издательский отдел 12 марта 1973 года.