Sop, 1972, 5.16, form. 6, C. 1209-1212 12/1- 72 A-139 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 2365

P4 - 6443

С.К.Абдулвагабова, С.П.Иванова, Н.И.Пятов

ВОЗБУЖДЕНИЕ 0 -СОСТОЯНИЙ В РЕАКЦИЯХ ПЕРЕДАЧИ ДВУХ НУКЛОНОВ

1972

AABODATOPHS TEOPETHUE(K

P4 - 6443

С.К.Абдулвагабова*, С.П.Иванова, Н.И.Пятов

ВОЗБУЖДЕНИЕ 0⁺-СОСТОЯНИЙ В РЕАКЦИЯХ ПЕРЕДАЧИ ДВУХ НУКЛОНОВ

Направлено в ЯФ

Объеннымый институт ясрных всследованый **BHE** MMOTEKA

Азербайджанский государственный университет

Введение

Реакции передачи двух нуклонов стали важным инструментом исследования структуры 0⁺ – состояний в четно-четных атомных ядрах. В частности, с помощью реакций (t, p) и (p, t) обнаружено много новых 0⁺-возбуждений в деформированных ядрах (см., например, $^{1-5/}$). Сечения возбуждения этих состояний проявляют ряд характерных особенностей. В ядрах Nd, Sm и Gd переходной области низколежащие 0⁺-уровни возбуждаются так же сильно, как и основное состояние $^{1,2/}$. Относительные сечения возбуждения 0⁺-уровней в ядрах $^{154-158}$ Gd и ядрах актинидной области меньше, однако имеют регулярный характер (\approx 15% сечения возбуждения основного состояния) $^{/4,5/}$. Исследования ряда изотопов Yb, W и Pt не обнаружили аналогичной регулярности $^{/3,4/}$.

Теоретические исследования связи структуры 0⁺-состояний с вероятностью возбуждения их в реакциях двухнуклонных передач проводились в ряде работ. Было показано, что в простой модели с парными корреляциями сечение возбуждений 0⁺ -состояний (парных вибраций) сильно зависит от поведения плотности одночастичных уровней вблизи

поверхности Ферми ^{76,77} и, следовательно, не может быть регулярным для целых областей ядер. Кроме того, теория предсказывает появление парных вибраций при энергиях ω ≥ 2Δ (где 2Δ – энергетическая щель), а 0⁺- возбуждения в изотопах Nd , Sm , Gd и в актинидах, очевидно, лежат значительно ниже щели.

Недавно в работе ^{/8/} была предложена модификация парного взаимодействия, которая приводит к существенному изменению свойств парных вибраций. Численные расчеты ^{/9/} показали возможность объяснить в рамках этой модели поведение сечений (p , t) – реакций в области актинидов, однако, ценой использования ряда дополнительных параметров. В рамках этой модели трудно понять коллективный характер низколежащих возбуждений в изотопах Nd , Sm , Gd,

Th

Качественное исследование ядерного матричного элемента (спектроскопического фактора) для реакций двухнуклонных передач проводилось в модели с парными и квадрупольными силами Беляевым и Румянцевым /10/ и в недавней работе авторов /11/. В частности, показана сильная зависимость спектроскопического фактора для низколежащих 0⁺-возбуждений ($\omega \ll 2\Delta$) от характера распределения одночастичных квадрупольных моментов вблизи поверхности Ферми. Оказалось, что если в окрестности поверхности Ферми одночастичные квадрупольные моменты одного знака, то можно ожидать значительного увеличения спектроскопических факторов. В отличие от парных вибраций такая "выстроенность" квадрупольных моментов усиливает спектроскопические факторы в целой области ядер.

Цель настоящей работы – исследовать возможность описания свойств О⁺-состояний ядер актинидов в рамках существующей модели с парными, квадрупольными и спин-квадрупольными силами.

<u>Формализм модели</u>

Модельный гамильтониан ядра с учетом парных, квадрупольных и спин-квадрупольных взаимодействий имеет вид /12/

- $H = H_{sp} + H_{pair} + H_{q} + H_{t} , \qquad (1a)$ $H_{sp} = \sum_{\nu} (\epsilon_{\nu} \lambda) (a_{\nu}^{+}a_{\nu} + a_{\overline{\nu}}^{+}a_{\overline{\nu}})$ (1a)
- $H_{pair} = -G \Gamma^{+} \Gamma, \quad \Gamma = \sum_{\nu > 0} a_{\nu} a_{\vec{\nu}}, \quad (16)$

$$H_{q} = -\frac{\kappa_{q}}{2} T_{q}^{+} T_{q}$$
(1b)

$$T_{q} = \sum_{\nu\nu'} < \nu | r^{2} Y_{20} | \nu' > a_{\nu}^{+} a_{\nu'}$$
(1r)

$$H_{t} = -\frac{\kappa_{t}}{2} T_{t}^{+} T_{t} ,$$
(1r)

$$T_{t} = \sum_{\nu\nu'} < \nu | r^{2} P_{20} | \nu' > a_{\nu}^{+} a_{\nu'} .$$

Здесь ϵ_{ν} – одночастичные энергии, λ –химпотенциал системы, a_{ν}^{+} и a_{ν}^{-} -операторы рождения и уничтожения частицы в состоянии $|\nu\rangle$ соответственно ($|\tilde{\nu}\rangle$ сопряженное по времени состояние). Константы связи квадрупольного, спин-квадрупольного и парного взаимодействий обозначены через κ_{q} , κ_{t} и G, соответственно. Тензорный оператор $P_{2\mu}$ определен в $^{/12/}$.

Кратко изложим схему решения задачи, следуя методу Маршалека и Венезера ^{/13/}, который позволяет в явном виде выделить "духовое" 0⁺-состояние, появление которого вызвано неточным сохранением числа частиц в системе. Приведем в квазибозонном приближении гамильтониан (1) к форме

$$H = const + \frac{1}{2} \sum_{\mu} \{\mathcal{P}_{\mu}^{2} + \omega_{\mu}^{2} \mathcal{L}_{\mu}^{2}\}, \qquad (2)$$

в которой эрмитовы операторы \mathscr{P}_{μ} и \mathscr{L}_{μ} удовлетворяют коммутационным соотношениям

$$[\hat{\mathfrak{L}}_{\mu}, \mathcal{P}_{\lambda}] = i \delta_{\lambda \mu} , \quad [\mathcal{P}_{\mu}, \mathcal{P}_{\lambda}] = [\hat{\mathfrak{L}}_{\mu}, \hat{\mathfrak{L}}_{\lambda}] = 0.$$
(3)

Частоты коллективных 0⁺-возбуждений _ш находятся из следующих уравнений движения

$$[H, \mathcal{P}_{\mu}] = i\omega_{\mu}^{2} \mathfrak{L}_{\mu}, \qquad (4)$$
$$[H, \mathfrak{L}_{\mu}] = -i \mathcal{P}_{\mu}.$$

В нашем случае операторы \mathcal{P}_{μ} и \mathfrak{L}_{μ} могут быть выражены через квазибозонные двухквазичастичные операторы.

$$\begin{aligned} \mathcal{P}_{\mu} &= \frac{1}{2} \sum_{\nu\nu'} \psi_{\nu\nu'}^{\mu} (A_{\nu\nu'}^{+} + A_{\nu\nu'}), \end{aligned} \tag{5} \\ \mathcal{Q}_{\mu} &= -\frac{i}{2} \sum_{\nu\nu'} \phi_{\nu\nu'}^{\mu} (A_{\nu\nu'}^{+} - A_{\nu\nu'}), \end{aligned} \\ A_{\mu\nu'} &\equiv \frac{1}{\sqrt{2}} (a_{\nu} a_{\bar{\nu}} - a_{\bar{\nu}} a_{\nu'}), \end{aligned}$$

где _{а v} – операторы квазичастиц, введенные с помощью *(u,v) –* преобразования Боголюбова, а Ψ и φ –амплитуды смешивания. Имея в виду (5), получим из (4) секулярное уравнение для ω_k

$$\omega_{k}^{2} \{ [1-\kappa_{q}F(\omega_{k})] [1-\kappa_{t}S(\omega_{k})] - \kappa_{q}\kappa_{t}X^{2}(\omega_{k}) \} = 0, \qquad (6)$$

в котором явно выделено "духовое" решение с $\omega_k \equiv \omega_0 = 0$. Функции $F(\omega)$, $S(\omega)$ и $X(\omega)$ определены следующим образом:

$$F(\omega) = 2 \sum_{\nu \neq \nu'} \frac{E_{\nu\nu'} q_{\nu\nu'}^2 U_{\nu\nu'}^2}{E_{\nu\nu'}^2 - \omega^2} + 4\Delta^2 \sum_{\nu \neq \nu'} \frac{q_{\nu\nu}}{E_{\nu}(4E_{\nu-\omega}^2)^2} [q_{\nu\nu} - \frac{\Gamma_{\nu}(\omega)}{q_{\nu\nu'}}]$$

$$\Gamma(\omega) = \frac{a(\omega)}{b(\omega)} \gamma(\omega) - \frac{4\eta(\omega)}{b(\omega)} [(\epsilon_{\nu} - \lambda)b(\omega) - d(\omega)], \qquad (7a)$$

$$\eta(\omega) = 4[(c(\omega)b(\omega) - a(\omega)d(\omega)], \qquad (76)$$

$$\gamma(\omega) = 4(4\Delta^2 - \omega^2) b^2(\omega) + 16 d^2(\omega),$$
 (7_B)

$$a(\omega) \equiv \sum_{\nu} \frac{q_{\nu\nu}}{2E_{\nu}(4E_{\nu}^{2} - \omega^{2})}; \quad b(\omega) \equiv \sum_{\nu} \frac{1}{2E_{\nu}(4E_{\nu}^{2} - \omega^{2})}, \quad \nu = \sum_{\nu} \frac{1}{2E_{\nu}(4E_{\nu}^{2} - \omega^{2})}, \quad (7r)$$

$$c(\omega) = \sum_{\nu} \frac{q_{\nu\nu} (\epsilon_{\nu} - \lambda)}{2E_{\nu} (4E_{\nu}^{2} - \omega^{2})}; \quad d(\omega) = \sum_{\nu} \frac{\epsilon_{\nu} - \lambda}{2E_{\nu} (4E_{\nu}^{2} - \omega^{2})},$$

$$S(\omega) = 2 \sum_{\nu\nu'} \frac{E_{\nu\nu'} L^{2}_{\nu\nu'} t^{2}_{\nu\nu'}}{E_{\nu\nu'}^{2} - \omega^{2}}, \qquad (8)$$

$$X(\omega) = 2 \sum_{\nu\nu'} \frac{\omega L_{\nu\nu'} U_{\nu\nu'} t_{\nu\nu'} q_{\nu\nu'}}{E_{\nu\nu'}^2 - \omega^2}.$$
 (9)

Здесь $q_{\nu\nu}$, и $t_{\nu\nu}$, – одночастичные матричные элементы операторов r^2Y_{20} и r^2P_{20} , соответственно, $E_{\nu} \equiv \sqrt{\Delta^2 + (\epsilon_{\nu} - \lambda)^2}$ одноквазичастичные энергии, $E_{\nu\nu}$, = E_{ν} + E_{ν} , а величины $U_{\nu\nu}$, и $L_{\nu\nu}$, связаны с параметрами (u , v) – преобразования Боголюбова

(10)

$$U_{\nu\nu} \equiv u v + u v,$$

 $L_{\nu\nu} = u_{\nu} v_{\nu} - u_{\nu} v_{\nu}$

$$\omega^2 \gamma(\omega) = 0. \tag{11}$$

(10)

(13)

При к_q = 0 и к_t ≠ 0 получаем дополнительное уравнение для спинквадрупольных возбуждений

$$1 - \kappa_{\star} S(\omega_{\star}) = 0. \tag{12}$$

Ввиду громоздкости мы не приводим здесь выражений для амплитуд ψ и φ. Однофононные волновые функции 0⁺-состояний можно записать в виде

$$Q_{k}^{+}|0\rangle = \frac{1}{\sqrt{2}} \left\{ \frac{1}{\sqrt{\omega_{k}}} \mathcal{P}_{k} + i\sqrt{\omega_{k}} \mathcal{L}_{k} \right\} |0\rangle$$

$$Q_{k} \mid 0 \rangle = 0 \qquad (\omega_{k} \neq 0)$$

$$\mathcal{P}_0 \mid 0 > = 0 \qquad (\omega_0 = 0).$$

Спектроскопические факторы

Для качественных оценок оператор передачи двух нуклонов в реакции (р , t) или (t , р) можно выбрать в виде /14/

$$\Gamma(\mathbf{p},t) = \sum_{\nu>0} a_{\nu} a_{\widetilde{\nu}}, \qquad \Gamma(t,\mathbf{p}) = \Gamma^{+}(\mathbf{p},t). \qquad (14)$$

Запишем Г (р , t)через операторы 9, и 2,

$$\Gamma(p,t) = \sum_{\nu} u_{\nu} v_{\nu} - \frac{i}{\sqrt{2}} \sum_{k} \mathcal{L}_{k} \left(\sum_{\nu} \psi_{\nu\nu}^{k} \right) + \frac{1}{\sqrt{2}} \sum_{k} \mathcal{P}_{k} \left[\sum_{\nu} (u_{\nu}^{2} - v_{\nu}^{2}) \phi_{\nu\nu}^{k} \right].$$
(15)

Спектроскопический фактор для передачи в основное состояние дочернего ядра теперь приближенно равен (с точностью до различия основных состояний материнского и дочернего ядер) /14/

$$S_0 = |\langle 0|\Gamma|0\rangle|^2 = \left(\frac{\Delta}{G}\right)^2.$$
(16)

Спектроскопический фактор для передачи в возбужденное 0⁺ - состояние

$$S = |\langle 0 | [Q_{\mu}, \Gamma] | 0 \rangle|^{2}$$

(17)

После ряда несложных вычислений получим для отношения S/S

$$S/S_{0} = \frac{1}{\omega^{3} Z(\omega)} \left[\frac{2}{b(\omega)\gamma(\omega)} \eta(\omega)(\omega \cdot b(\omega) \pm 2d(\omega)) \pm \frac{a(\omega)}{b(\omega)} \right]^{2}, \quad (18)$$

где знаки (+) и (-) относятся к реакциям (p , t) и (t , p) соответственно, а величина Z(ω) определена следующим образом

$$Z(\omega) = \sum_{\nu \neq \nu'} \frac{E_{\nu\nu'} q_{\nu\nu'}^2 U_{\nu\nu'}^2}{(E_{\nu\nu'}^2 - \omega^2)^2} + 2\Delta^2 \sum_{\nu} \frac{(q_{\nu\nu} - \Gamma_{\nu}(\omega)/\gamma(\omega))^2}{E_{\nu}(4E_{\nu}^2 - \omega^2)^2} + \frac{1}{4\omega} \frac{\partial}{\partial\omega} \left\{ \frac{\kappa_t X^2(\omega)}{1 - \kappa_t S(\omega)} \right\}.$$
(19)

В уравнение (18) входят функции γ , η , a, b и d, полученные суммированием только по нейтронным состояниям, а в функции $Z(\omega)$ суммирование проводится по нейтронным и протонным состояниям. Очевидно, что спин-квадрупольные взаимодействия влияют на спектроскопические факторы только через нормировочную функцию $Z(\omega)$, которая резко возрастает вблизи решений уравнения (12), т.е. вблизи спин-квадрупольных состояний. В рассматриваемой модели чистые спин-квадрупольные возбуждения (в случае $\kappa_q = 0$) не возбуждаются в реакции передачи двух нуклонов. Однако их примесь в β вибрациях может сильно влиять на *S*-факторы.

Рассмотрим (18) для нескольких предельных случаев.

1. $0 < \omega \ll 2\Delta$, $\kappa = 0$.

Этот случай соответствует почти чистым β – вибрациям, когда ослаблена роль парных вибраций. Пренебрегая некогерентными суммами $\eta(\omega)$ и $d(\omega)$, а также считая малой недиагональную сумму в $Z(\omega)$, получим простую оценку /11/

$$S/S_{0} \approx \frac{1}{\omega^{3}} \frac{1}{Z_{0}} \left| \frac{a(\omega=0)}{b(\omega=0)} \right|^{2}, \qquad (20)$$

$$Z_{0} \approx \sum_{\nu(n,p)} \frac{\Delta^{2} q_{\nu}^{2}}{8 E_{\nu}^{5}}. \qquad (20a)$$

Отношение |a/b| в (20) имеет смысл среднего одночастичного квадрупольного момента, взвешенного по небольшому энергетическому интервалу вблизи поверхности Ферми. Эта величина существенно возрастает в области, где все одночастичные квадрупольные моменты в окрестности поверхности Ферми одного знака (в области "выстроенности"). В работе /11/ уже отмечалось, что специфические области "выстроенности" квадрупольных моментов хорошо прослеживаются в ядрах с $A \approx 155$ и в актинидной области.

Оценка, аналогичная (20), была получена ранее в работе Беляева и Румянцева /10/. Отметим, что она справедлива для ядер, находящихся в

середине области "выстроенности". На краях области большую роль играют интерференционные эффекты (см. (18)), обусловленные конкуренцией взаимодействий в частично-частичном и частично-дырочном каналах. В частности, при этом могут сильно различаться спектроскопические факторы для (p , t) и (t , p) – реакций.

2. $\omega \approx 2\Delta$, $\kappa = 0$

Этот случай соответствует практически чистым парным вибрациям, определенным уравнением (11). Простая оценка дает выражение /7/

$$S/S_0 \approx \left[\sum_{\nu} \frac{\Delta^3}{E_{\nu} (\epsilon_{\nu} - \lambda)^2}\right]^{-1}.$$
 (21)

Здесь очевидна сильная зависимость от плотности уровней вблизи поверхности Ферми. S – фактор возрастает в случае, когда химпотенциал попадает в щель в одночастичном спектре ($|\epsilon_{\nu} - \lambda| \approx \Delta$). Такая ситуация является чисто локальной (например, в ядре ${}^{174}Yb$ /3/) в отличие от предыдущего случая.

Расчеты и обсуждение результатов

Численные расчеты были проведены для ядер актинидной области. Использовался деформированный потенциал типа Саксона-Вудса с параметрами $\beta_{20} = 0,22$ и $\beta_{40} = 0,08$ ^{x/}, описанный в работах ^{/15/}. Силовые параметры κ_{q} и κ_{t} подбирались из условия наилучшего описания известных экспериментальных данных о 0⁺-возбуждениях в этой области ядер (см., например, обзоры ^{/17/}). Полученные при этом

х/ Такой выбор параметров деформации согласуется с результатами недавних измерений /16/.

значения параметров показаны на рис. 1. Поведение параметра не может быть описано никакими известными степенными зависимостями от массового числа x'. Нерегулярный ход κ_q частично может быть связан с изменением деформации от ядра к ядру, возможно также влияние частотной зависимости, предложенной в $^{/19/}$. Заметна некоторая изотопическая зависимость κ_q .

Рис. 1. Силовые параметры взаимодействий, использованные в расчетах.

 x^{\prime} См. также обсуждение поведения κ_{q} в работе $^{\prime 18^{\prime}}$.

Значения параметра к, отлично описываются простой формулой

$$\kappa_t = 1.65 \cdot 10^8 A^{-4} [M_{BB}],$$
 (22)

что, по-видимому, связано с тензорным характером спин-квадрупольных взаимодействий, не очень чувствительных к деталям вблизи поверхности Ферми. Возможно, однако, что сильная степенная зависимость (22) является только локальной,

Кроме энергий и *S* -факторов вычислялись также вероятности ЕО-и Е2-распада 0⁺-возбуждений (величины $\rho^2(E0)$ и *B(E2)* соответственно), а также известный безразмерный параметр Расмуссена

$$X = \frac{\rho^2(E0) e^{-2} R_0^4}{B(E2, 0_k^+ \to 2_{gr.st.}^+)}$$
 (23)

Ввиду того, что в расчетах учитывалось большое число одночастичных состояний (~ 60) величина эффективного заряда для нейтронов принималась равной нулю для обоих ЕО-и Е2-переходов. Результаты расчетов для нейтронных парных вибраций представлены в табл. 1. Для всех них характерны малые значения S/S_0 ц, следовательно, 0⁺-состояния, обнаруженные в работе ^{/4/}, не могут быть чистыми парными вибрациями.

Характеристики нижайшего 0⁺-возбуждения в модели с парными и квадрупольными силами приведены в табл. 2 вместе с большинством известных экспериментальных данных. Во всех ядрах вычисленные энергии больше экспериментальных, тем не менее отношения спектроскопических факторов S/S_0 намного превышают экспериментальные отношения сечений σ/σ_0 для (p , t) -реакций x/. Если же пара-

х/ О соответствии этих величин можно говорить, если кинематические факторы в сечениях одинаковы в основном и возбужденных 0 состояниях. Кроме того, необходимо предположение об одноступенчатом характере процесса передачи двух нуклонов.

x/

Таблица І.

newrp	Омиме периме	вкорация	в пдраж	GAIRAAU	1 p^) 4	- • •
N	24 [m36]	w [m#J	Х	S/So (P,t)	S/So (t,P)	
		1,29	I,3	0,04	0,02	
		I,35	2,2	0,01	0,02	
138	1,282	I,48	0,1	0,02	~10 ⁻³	
		I,70	0,3	0,02	~10-4	
<u>بەرتەر مىلىرىم</u>		I,I9	I,7	0,02	0,01	
		I,43	I,6	0,10	0,01	
140	1,170	I,56 I,79	~10 ² 0,1	0,0I 0,04	0,27 ~10 ⁻³	
	· · · · · · · · · · · · · · · · · · ·	I,30	~I0 ³	0,12	0,11	
142	I,294	I,58	~10 ³	~10-3	0,01	
		1,62	I,I6	0,03	~10 ⁻³	
		I,34	~102	~10-3	~10-3	
I44	I,328	I,42	~10_2	~10-3	0,01	
		I,65	~102	0,20	0,01	
-		I,34	~10-2	0,0Į	0,0 <u>I</u>	
I46	I.334	I,4I	~102	~10~2	~10~5	
		I,59	0,1	0,01	0,14	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		I,3I	0,1	0,09	0,08	
T48	T 304	I,55	~10~	~10-7	0,03	
140	1,007	1,58	~10 -	0,02	~10 -	

Tatimua 2.

X SHAVOUNEX 0 || | | Характеристики индайных O^t-уровией, рычисленные при показанных на рис. I.

g	ha	228 Th	220 Th	4T ⁴⁶²	N 262	Mree	m.e.	Nee	238 Pu	ndone
	E 8*M3 (17	4 6 ° 0	£.0	0,95	I,02	I,2I	II,II	1,07	I,I3	4 6 ° 0
•	β ² (E0)	0,06	0,13	0,26	0,05	0,11	0,07	00	0,05	0,05
	B (E2)spu.	I,47	2,95	6,00	I,56	3,43	2,29	I,29	1.m	16 ° 1
Tec	×	0,30	0,30	0,30	0,22	0,22	0,22	0,22	0,I8	0,17
рия	S/So (P,t)	0,31	0,55	0,74	0,38	0,32	0,17	0,03	0,I4	0,II
	S/So (2,P)	0,08	0,47	I,IO	0,3I	0,71	0,70	0,57	0,62	0,97
'9 x	[gew] try	0,83	0,64	0,73	0,69	0,81	0,92	0,93	4 6 ° 0	0,86
сп е 4,І	B(E2)spu	1		3,0	1	1	•	0,13	I , .	I
рим 5,20	×	(0,83)	0,22(I0) 0,34(8)	0,17(4)	0,50(8)	•	I.	0,63(2	20) 0 , 05(1
DY I	6/6° (p.t)	0,I8	0,18	∎î)	0,I4	0,13	0,13	1		0,15

ROLLING.

<u>Тарантеристики трех вихайних 0⁴-состояний, вичисленные с параметрами</u>

TORABANENNE IN PAC. I

Pu Du 0,86 0,15 0,15 0,12 0,12 Jugers Mort Mer MART Mart "H Lece The The W EM EN ED P²(E0) R (E2)₅W X X S/So (L,P) P²(E0) B (E2)₅W X C (P,t) S/So (P,t) S/So (P,t)

метр к_q подобрать так, чтобы вычисленные энергии совпадали с экспериментальными, то, как правило, отношение $S/S_0 \ge 1$. Одновременно в два-три раза возрастают значения $B(E_2)/11/$.

При включении спин-квадрупольных взаимодействий (табл. 3) происходят следующие качественные изменения характеристики 0⁺-возбуждений.

а) Появляется второе низколежащее 0⁺-состояние ($\omega \leq 2\Delta$), отбирающее на себя значительную часть коллективных свойств β - вибраций.

6) Вычисленные энергии ω_1 практически совпадают с экспериментальными, что было обусловлено выбором κ_q , но одновременно удается значительно уменьшить спектроскопические факторы для них и значения *B* (E2), приведя их в соответствие с экспериментальными отношениями σ/σ_2 и немногими данными о *B* (E2) (см. табл. 1).

Все вышележащие 0⁺-состояния являются практически парными вибрациями, характеристики которых слабо возмущаются спин-квадрупольными силами. Однако квадрупольные силы приводят к существенному росту спектроскопических факторов для этих состояний в ряде ядер тория и урана (сравни табл. 1 и 3).

Отметим, что в ядре ²⁴⁰ Pu теория практически воспроизводит все три известные 0⁺-состояния ^{/4,21/}. Для объяснения распадных свойств ^{/21/} 0⁺-возбуждения с энергией 1,41 Мэв достаточно предположить, что оно содержит небольшую примесь двух октупольных ($K^{\pi} = 0^{-}$) фононов.

Заключение

Таким образом, модель с парными и квадрупольными силами позволяет качественно объяснить причину регулярного хода относительных сечений σ/σ_0 в реакции (р , t) в ядрах актинидной области. Количественные предсказания теории заметно отличаются от эмпирических данных. В частности, модель предсказывает слишком большие отношения спектроскопических факторов S/S_0 . В этом пункте, однако, необходима определенная осторожность при сравнении S/S_0 с экспериментальными отношениями сечений σ/σ_0 , поскольку оно базируется на слишком упрощенном представлении о механизме реакций. В частности, пока неясно, насколько справедливо представление о реакции передачи двух нуклонов как об одноступенчатом процессе.

Количественные предсказания модели с парными и квадрупольными силами заметно исправляются введением спин-квадрупольных сил (в канале частица-дырка), которые распределяют коллективные характеристики β -вибраций по нескольким 0⁺-состояниям и, в частности, сильно меняют спектроскопические факторы. Роль спин-квадрупольных сил оказывается существенной и при описании α -и β -распада на возбужденные 0⁺-состояния /22/. Недавние исследования /23/ показали, что эти силы помогают заметно улучшить количественное описание моментов инерции ядер.

Отметим также ряд неясных пока вопросов в рассмотренной модели. Так, теория предсказывает большие значения S/S_0 для ряда вышележащих 0⁺-возбуждений. Если (р , t) -реакция является одноступенчатой, то такие состояния были бы обнаружены. Экспериментально пока найдены ^{/4/} вторые 0⁺-состояния лишь в ²³⁰ Th и ²⁴⁰ Pu (из рассмотренных нами ядер).

Кроме того, теория предсказывает довольно близкие отношения S/S_0 для реакций (p , t) и (t , p) в большинстве рассмотренных ядер. Недавно было проведено исследование /24/ ряда ядер актинидов в реакции (t , p), для которых σ/σ_0 оказались $\leq 2-4\%$. Если (t , p) – реакция является одноступенчатым процессом, то необхо-

димо исправить модель, усилив конкуренцию частично-частичного и частично-дырочного каналов остаточных взаимодействий. В частности, в /24/ предложено ввести квадрупольные парные корреляции. В связи с этим отметим, что впервые квадрупольные парные корреляции были введены и рассмотрены Беляевым и Румянцевым /10,19/. Такое исправление модели позволит сохранить коллективный характер низколежащих 0⁺-возбуждений, необходимость которого вытекает из рассмотрения *а* -распада, результатов кулоновского возбуждения ядер и т.д. Предположение о двухчастичном характере 0⁺-возбуждений /9/ приводит к естественному различию спектроскопических характеристик в (p , t) и (t , p) – реакциях, но по-видимому, плохо согласуется с известными другими эмпирическими данными.

Однако нам хотелось бы еще раз подчеркнуть, что прежде чем модифицировать ядерную модель, необходимо исследовать надежность спектроскопических факторов, извлекаемых из относительных сечений возбуждений в реакциях двухнуклонных передач, т.е. исследовать механизм реакции.

В заключение авторы выражают благодарность А.Л. Комову и С.И. Федотову за помощь в численных расчетах. Один из авторов (Н.П.) выражает признательность докторам Дж. Шифферу, К. Бемису и Дж. Гаррету за предоставление ряда экспериментальных данных до опубликования.

Литература

 J.H.Bjerregaard, O.Hansen, O.Nathan and Hinds. Nucl.Phys. <u>86</u>, 145 (1966).
 J.R.Maxwell, G.M.Reynolds, N.M.Hintz. Phys.Rev. <u>151</u>, 1000 (1966).

 R. Chapman, W.McLatchie and J.E.Kitching, Phys.Lett. 31B, 292 (1970).

- M.Oothoudt, P.Vedelsby and N.M.Hintz, Phys.Lett. 32B, 270 (1970).
- J.V.Maher, J.R.Erskine et al. Phys.Rev.Lett. <u>25</u>, 302 (1970) and preprint (to be published).
- 5. D.G.Fleming, C.Günther et al. Phys.Rev.Lett. 27, 1235 (1971).
- 6. D.R.Bes and R.A.Broglia. Nucl.Phys. <u>80</u>, 289 (1966).
- 7. С.К. Абдулвагабова, Н.И. Пятов. Препринт ОИЯИ, Р4-5576, Дубна, 1971.
- R.E.Griffin, A.D.Jaskson and A.B.Volkov. Phys.Lett. 36B, 281 (1971).
- 9. W.I.van Rij and S.H.Kahana. Phys.Rev.Lett. <u>28</u>,50 (1972).
- С.Т. Беляев, Б.А. Румянцев. Препринт ИЯФ 1-70, Новосибирск, 1970.
- S.K.Abdulvagabova, S.P.Ivanova et al.Phys.Lett., <u>38B</u>, 215 (1972).
- N.I.Pyatov. Art.Fys. 36, 667 (1967).
 М.И. Черней, Н.И. Пятов, К.М. Железнова. Изв. АН СССР, сер. физ., <u>31</u>, 550 (1967).
- 13. E.R.Marshalek and J.Weneser. Ann.Phys. 53, 569 (1969).
- 14. S.Yoshida. Nucl. Phys. 33, 685 (1962).
- 15. F.A.Gareev, S.P.Ivanova, L.A.Malov, V.G.Soloviev. Nucl.Phys. A171, 134 (1971).

Ф.А. Гареев, С.П. Иванова, В.В. Пашкевич. ЯФ, 11, 1200 (1970).

- 16. J.L.C.Ford, P.H.Stelson, C.E.Bemis et al. Phys.Rev.Lett. <u>27</u>, 1232 (1971), F.K.Mc Gowan, C.E.Bemis et al. Phys.Rev.Lett. (to be published).
- S.Bjornholm, Thesis, Munksgoard, Copenhagen, 1965.
 Н.И. Пятов, ОИЯИ Р4-5422, Дубна, 1970.
 Сб. "Проблемы современной ядерной физики" (Наука, М., 1971), стр. 141.

- 18. А.Л. Комов, Л.А. Малов, В.Г. Соловьев. Изв. АН СССР, сер. физ., <u>35</u>, 1550 (1971).
- 19. С.Т. Беляев. ЯФ, 4, 936 (1966).

S.T.Belyaev and B.A.Rumyantsev. Proc.Int.Conf.Nucl. Str. Tokyo, 1967, p.125.

- 20. F.K. McGowan, W.T.Milner et al. Bull.Am.Phys.Soc. <u>16</u>, 493 (1971).
- 21. M.R.Schmorak, C.E.Bemis et al. Phys.Rev.Lett. <u>24</u>, 1507 (1970).
- 22. A.A.Kuliev, N.I.Pyatov.Nucl.Phys. <u>A106</u>, 689 (1968). M.I.Cristu, O.Dumitrescu et al.Nucl.Phys. <u>A130</u>, 31 (1969).
- 23. Т.Kammuri, S.Kusuno. Phys.Lett. <u>38B</u>, 5 (1972). Н.И. Пятов, М.И. Черней. ОИЯИ Р4-6367, Дубна, 1972.
- 24. D.R.Bes, R.F.Casten, E.R.Flynn, J.D.Garrett et al. Phys.Lett., (to be published).

Рукопись поступила в издательский отдел 5 мая 1972 года.