А – 853 объединенный институт ядерных исследований дубна

P4 - 6345

22/1-72

Д.А.Арсеньев, В.В.Пашкевич, В.Г.Соловьев, С.И.Федотов

О ВЛИЯНИИ ИЗМЕНЕНИЯ РАВНОВЕСНЫХ ДЕФОРМАЦИЙ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ НЕЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДЕР НА ИХ ЭНЕРГИЮ И СТРУКТУРУ

1972

P4 - 6345

Д.А.Арсеньев, В.В.Пашкевич, В.Г.Соловьев, С.И.Федотов

О ВЛИЯНИИ ИЗМЕНЕНИЯ РАВНОВЕСНЫХ ДЕФОРМАЦИЙ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ НЕЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДЕР НА ИХ ЭНЕРГИЮ И СТРУКТУРУ

Направлено в Physics Letters

В работе ^{/1/} показано, что равновесные деформации β_{ℓ} тех возбужденных одноквазичастичных состояний, одночастичные энергии которых сильно меняются с ростом параметра деформации, могут отличаться от равновесной деформации β_0 ядра в основном состоянии. Расчеты, проведенные в ^{/2/}, подтвердили возможность существования возбужденных состояний с $\beta_{\ell} \neq \beta_0$. В ^{/3/} и других работах рассчитаны энергии неротационных состояний нечетных деформированных ядер с учетом взаимодействия квазичастиц с фононами. В настоящей заметке вычислим равновесные деформации возбужденных состояний нечетных ядер в области 153 $\leq A \leq 177$. Для состояний, у которых $\beta_{\ell} \neq \beta_0$, вычислим их энергию и структуру в рамках метода, учитывающего взаимодействия квазичастиц с фононами.

Расчеты равновесных деформаций основных и возбужденных состояний нечетных деформированных ядер в области 153 $\leq A \leq$ 177 проведены по методу оболочечной поправки Струтинского ^{/4/} с теми же параметрами, что и расчеты в ^{/3/}. В результате показано, что заметное изменение равновесных деформаций возбужденных состояний по сравнению с основными $\Delta \beta = \beta_{\rm f} - \beta_{\rm o}$ имеет место для следующих одночастичных

3

состояний: п 505 + , р 541, и р 404 . Изменения параметров квадрупольной $\Delta \beta_{40}$ и гексадекапольной $\Delta \beta_{20}$ деформаций этих состояний в ряде ядер приведены в таблице 1, из которой видно, что в некоторых ядрах $\Delta \beta_{20}$ принимает значения до 0,035, а $\Delta \beta_{40}$ - до 0,032. В тех случаях, когда $\Delta \beta_{20}$ и $\Delta \beta_{40}$ превышают 0,01, эффект $\beta_{\ell} \neq \beta_{0}$ следует принимать во внимание при расчетах энергий и волновых функций возбужденных состояний.

Энергии и волновые функции состояний, близких к одноквазичастичным состояниям n 505⁺, p 541[↓], p404[↓], вычислены в рамках сверхтекучей модели, учитывающей взаимодействия квазичастиц с фононами. Расчеты проведены с теми же характеристиками одночастичных состояний и фононов, что и расчеты в ^{/3/}. Энергии и волновые функции однофононных состояний вычислены при равновесных деформациях β₂₀.

Результаты вычислений приведены в таблице 2. В этой таблице также даны энергии состояний, рассчитанные в ^{/3/} при $\beta_{\ell} = \beta_0$. Экспериментальные данные взяты из обзора ^{/5/}. Из таблицы 2 видно, что во всех случаях учет эффекта $\beta_{\ell} \neq \beta_0$ привел к лучшему согласию рассчитанных энергий с экспериментом. Особенно большое улучшение получено для энергий состояний 505 [†] в нечетных N ядрах. Поведение состояний 541, в изотопах Tm и в легких изотопах Lu является необычным, и эффект $\beta_{\ell} \neq \beta_0$ не может объяснить такое аномальное поведение этих состояний. Также трудно объяснить сильное изменение энергий состояний 404, в изотопах Tm .

Сравнение структуры состояний, данных в таблице 2, со структурой, приведенной в таблицах работы $^{/3/}$, показывает, что эффект $\beta_{\ell} \neq \beta_{o}$ не оказывает существенного влияния на структуру состояний. Учет этого эффекта приводит только к небольшому возрастанию величин одноквазичастичных компонент.

4

Наши расчеты выполнены для хорошо деформированных ядер, которые имеют большие энергии деформации и являются жесткими относительно β и γ -колебаний. В этих ядрах учет эффекта β_ℓ ≠ β₀ оказал существенное влияние на энергию возбуждения ряда состояний, близких к одноквазичастичным, и привел к улучшению согласия с соответствующими экспериментальными данными.

Эффект $\beta_{\ell} \neq \beta_0$ должен оказывать более сильное влияние на энергии и структуру состояний в ядрах переходной области. В этих ядрах возрастание полной энергии вблизи $\beta = \beta_0$ с изменением параметров деформации β и γ является менее сильным по сравнению с хорошо деформированными ядрами, поэтому для большого числа состояний должно быть значительное отступление от равновесной деформации ядра в основном состоянии.

Литература

1.V.G.Soloviev. Phys.Lett., 21 (1966) 311.

- 2. Д.А. Арсеньев, Л.А. Малов, В.В. Пашкевич, В.Г. Соловьев. Изв. АН СССР, сер. физ., <u>32</u>, 866 (1968).
- Л.А. Малов, В.Г. Соловьев, С.И. Федотов. Изв. АН СССР сер. физ. 35, 747 (1971). В.Г. Соловьев, С.И. Федотов. Изв. АН СССР, сер. физ., 36, (1972).
- 4.V.M.Strutinsky. Nucl.Phys., <u>A95</u> (1967) 420; <u>A122</u> (1968) 1.
- 5. M.E.Bunker, C.W.Reich. Rev.Mod.Phys., 43 (1971) 348.

Рукопись поступила в издательский отдел 24 марта 1972 года.

Таблица I.

Ядро	5054		OGER	5411	
	Δβ20	Δ β40		1 B20	1 <i>β</i> 10
153 _{Sm} 155 _{Sm}	0,027 0,019	-0,008 -0,007	163 Tm 165 Tm	0,024 0,024	0,0I3 0,0I5
155 Gd	0,033	0,002	167 Tm	0,023	0,015
157 Gd	0,017	-0,0II	169 Tm	0,024	0,016
159 Gd	0,008	-0,017	171 Tm	0,026	0,017
161 G <i>d</i>	0,008	-0,016	169 Lu	0,027	0,003
157 _{Dy}	0,035	0	17I L u	0,030	0,003
¹⁵⁹ Dy	0,0I7	-0,012	173 Lu	0,034	0,004
رI61 کر	0,012	-0,015	175 Lu	0,035	0,005
163 _{Dy}	0,009	-0,017	177 Lu	0,033	0 ,005
יע ¹⁶⁵	0,0I3	-0,003	173 _{Ta}	0,0II	0,001
I6I Er	0,017	-0,018	175 Ta	0,019	0,004
I63 Er	0,016	-0,012	177-Ta	0,026	0,007
165 Er	0,007	-0,017		4041	
I67 _{Er}	0,008	-0,014	I63 _{Tm}	-0,007	0,01
169 _{Er}	0,007	-0,013	165 _{Tm}	-0,006	0,013
¹⁷¹ Er	0,005	-0,0II	167 _{Tm}	-0,008	0 ,032
			169 Tm	-0,008	0,014
			171 Tm	-0.009	0,014

Таблица 2.

Ядро	۲	Энергия, кэв				
		Экопе- римент	<u></u>	REGO	Струк	тура при Δβ ₂₀ ≠0, Δβ ₄₀ ≠0.
153 _{Sm}	II/2 ⁻	- 94	470	100	505497%	
155 _{Sm}	II/2	•	800	460	505+98%	
1576d	II/2 ⁻	426	830	490	505+98%	
159 Gd	11/2	- 681	1100	820	5054 99%	
161 ₆₄	II/2 ⁻		I490	1140	5054 99%	
15 9 Dy	II/2 ⁻	352	820	470	5054 99%	
161 J.	II/2	486	1100	760	5054 99%	
165 Tm	7/2	⊦ 69	630	450	4041 98%	
	I/2		I340	980	54I \ 96%,	4II+Q ₄ (30) 2%
167 _{Tm}	7/2	+ 179	600	370	404+97%,	$651+Q_{1}(22) 2\%$
	I/2 ⁻		1290	950	541196%,	4II+Q(30) 3%
171 Tm	7/2	+ 635	560	430	4041 98%,	65I4+Q(22) 1%
	I/2		1260	940	541 94%,	$4II_{i}+Q_{i}(30)$ 4%
169 _{Lu}	I/2	- 30	980	700	541+97%	
173 _{Lu}	I/2	- 128	1030	680	541+99%	
175 _{Lu}	1/2	- 358	1000	640	541 98%	
177 Ta	I/2	- 217	480	300	541 99%	·