

MMMMM

AABODATOPHIG TEOPETHUE(K)

ЭКЗ. ЧИТ. ЗАЛА

P4-6149

Б.Н.Калинкин, В.П.Пермяков

ПРЯМОЕ ДЕЛЕНИЕ ТЯЖЕЛЫХ ЯДЕР ИОНАМИ

1971

P4-6149

Б.Н.Калинкин, В.П.Пермяков

ПРЯМОЕ ДЕЛЕНИЕ ТЯЖЕЛЫХ ЯДЕР ИОНАМИ

Направлено в Acta Physica Polonica

Научно-техническая библиотека ОИЯИ Калинкин Б.Н., Пермяков В.П.

P4-6149

Прямое деление тяжелых ядер ионами

Сформулирована модель процесса деления ядер в реакциях с тяжелыми ионами, включающая как канал деления компаунд-ядра в согласии со статистической теорией, так и новый канал – канал прямого деления, происходящего без стадии образования компаунд-ядра.

Препринт Объединенного института адерных исследований. Дубна, 1971

Kalinkin B.N., Permyakov V.P.

P4-6149

Direct Fission of Heavy Nuclei by IOns

The model is formulated for the process of nucleus fission in the heavy ion reactions. This model includes the fission channel of a compound nucleus, in accordance with the statistical theory, as well as new channel of a direct fission occuring without the stage of the compound nucleus production.

Preprint. Joint Institute for Nuclear Research. Dubna, 1971

<u>Введение</u>

Исследование процессов, происходящих при столкновении сложных ядер, ставит перед теорией ряд проблем, требующих решения. К их числу относятся результаты экспериментального изучения особенностей одного из самых интенсивных процессов, проходящих в реакциях с тяжелыми ионами на тяжелых ядрах – процесса деления.

Недавние эксперименты по делению, проведенные в ОИЯИ ^{/1,2/}, свидетельствуют достаточно определенно, что статистическая теория ядерных реакций не в состоянии объяснить такие важные характеристики процесса, как зависимость полуширины распределения осколков по массам от энергии возбуждения в конкретной реакции и при фиксированной энергии возбуждения- от массы налетающего на ядро-мишень тяжелого иона. Авторы работы ^{/2/} пришли к выводу, что, ... никакое изменение параметров теории в разумных пределах не может привести к согласованию теории и эксперимента...".

При создавшемся положении возможны два пути преодоления трудностей. Первый путь – коренной пересмотр положений статистической теории (к нему склоняются авторы работы ^{/2/}). Второй путь – выяснение причин, приводящих к наблюдаемым резким отклонениям от предсказаний статистической теории, поиск конкурирующих механизмов, обуславливающих эти отклонения.

Нам представляется, что в настоящее время второй путь является более продуктивным.

В данной статье мы строим модель процесса деления ядер в реакциях с тяжелыми ионами, включающую как канал деления компаундядра в согласии со статистической теорией, так и новый канал- канал прямого деления, происходящего без стадии образования компаунд-ядра.

Эта модель является непосредственным обобщением идей, выдвинутых в работах одного из авторов ^{/3,4/} и подтвержденных позднее в ряде экспериментальных работ ^{/5,6,7/} на тот случай, когда тяжелое ядро-мишень является делящимся.

> §2. <u>Процессы прямого деления ядер в реакциях с</u> <u>тяжелыми ионами. 1. Влияние центробежных</u>

сил

Рассмотрим столкновение тяжелого иона с делящимся ядром. Для определенности будем считать, что ядро-мишень относится к урановой группе. Известно, что такие ядра являются деформированными. Имеюшиеся на этот счет данные не противоречат предположению, что форма ядра может быть описана эллипсоидом вращения, уравнение поверхности которого задается в виде:

 $R(\theta) \approx R_0 [1 + \beta_0 Y_{20}(\theta)], \tag{1}$

 R_{o} - средний радиус ядра ($R_{o} = 1, 2A^{1/3} \phi$), $\beta_{o} = 0, 25$.

Величина барьера деления V_f для таких ядер равна приближенно 5-6 Мэв. Качественно энергия ядра-мишени $W(\beta)$ в зависимости от параметра квадрупольной деформации β может быть представлена кривой "1" на рис. 1. Значение параметра деформации $\beta = \beta_f$, при котором $W(\beta_f) = W(\beta_0) + V_f$, строго говоря, не известно. Однако на основе теоретических оценок ^{/8/}, можно- сделать вывод, что β_f 0,5-0,6.

Сталкиваясь с ядром-мишенью, тяжелый ион вовлекает его во вращательное движение. Маловероятно, что даже на первой стадии такого столкновения ядро-мишень останется в основном состоянии по внутренним степеням свободы. Поэтому для его вращательной энергии следует принять:

$$T_{rot}(\beta,\ell) = \frac{h^2 \ell (\ell+1)}{2J(\beta)} = \frac{h^2 \ell^2}{2J(\beta)}, \qquad (\ell \gg 1)$$
(2)

где *J(β)* - момент инерции в твердотельном приближении:

$$I(\beta) \approx \frac{2}{5} Am_N R_0^2 (1+0.31\beta).$$
(3)

Зависимость вращательной энергии T_{rot} от β при фиксированном достаточно большом значении углового момента ℓ представлена на рис. 1 кривой "2".

Очевидно, что эффективная энергия $W^*(\beta)$ деформации вращающего ядра в зависимости от параметра β должна быть суммой $T_{rot}(\beta, \ell)$ и $W(\beta)$:

$$W^*(\beta, \ell) = T_{--}(\beta, \ell) + W(\beta)$$
⁽⁴⁾

и что при некотором значении углового момента $\ell = \ell$ минимум функции $W^*(\beta, \ell_{\text{крит.}})$ исчезает. Такая ситуация качественно изображена на рис. 1 кривой "3".

W (p.l ĸpum)

W(p)

Рис. 1. Кривая "1" - качественная зависимость энергии ядра-мишени от параметра квадрупольной деформации; кривая "2" - зависимость врашательной энергии T_{rot} от β при фиксированном достаточно большом значении углового момента; кривая "3" - эффективная энергия деформации $W*(\beta, \ell)$ в зависимости от параметра β при значении $\ell = \ell$ (минимум функции $W*(\beta, \ell)_{\ell=\ell}$ крит. С физической точки зрения это означает, что такая крайне нестабильная система, какой является делящееся ядро, при ℓ≥ℓ под действием больших цетробежных сил должна претерпевать быстрый развал.

Теперь нетрудно сформулировать приближенно условие отсутствия минимума у функции W*(β, ℓ) , т.е. написать уравнение для ℓ= ℓ крит.:

$$\mathbb{W}^{*}(\beta_{0}, \ell_{\text{Крит.}}) - \mathbb{W}^{*}(\beta_{f}, \ell_{\text{Крит.}}) = T_{rot}(\beta_{0}\ell_{\text{Крит.}}) + \mathbb{W}(\beta_{0}) - T_{rot}(\beta_{f}, \ell_{p}) - \mathbb{W}(\beta_{f}) = 0(5)$$

Используя малость второго члена в (3), получаем:

$$\frac{5\hbar^2 \ell_{\rm Kput.}^2}{4m_N A R_0^2} \ 0.31(\beta_f - \beta_0) \approx V_f \ . \tag{6}$$

Полагая $\beta_0 = 0,25$ и $\beta_f = 0,6$ (в дальнейшем мы обсудим выбор значения β_f более подробно), получаем окончательно

крит.
$$\tilde{R}_{o} \left[\frac{A V_{f}}{16 (\beta_{f} - \beta_{o})} \right]^{\frac{1}{2}}$$
.

Итак, картина процесса может выглядеть следующим образом. В случае столкновения тяжелого иона, сопровождаюшегося передачей ядрумишени углового момента $\ell < \ell$ _{крит.}, образуется компаунд-ядро, распад которого происходит по законам статистической теории. Напротив, при столкновении с передачей углового момента $\ell > \ell$ крит. ядро-мишень переводится сразу в канал быстрого развала. При этом тяжелый ион, вызвавший этот процесс, сливается с осколком, порожденным той частью ядра мишени, которая испытала удар иона. В этом случае термодинамическое равновесие не успевает установиться. Такой процесс будем называть прямым делением.

Рассмотрим влияние реализации критического значения углового момента на ход процесса деления более детально. В случае взаимодействия тяжелого иона с деформированным ядром-мишенью полное сечение деления можно представить в виде /4,9/:

$$\sigma_{f} \quad (E) = \frac{\pi}{2} ab \left[\sqrt{1 - \epsilon^{2}} + \frac{1}{\epsilon} \arcsin \epsilon \right] \kappa (E), \quad (E > V_{B}), \quad (8)$$

где $\kappa(E) = 1 - \frac{V_B}{E}$ — множитель, учитывающий искажение формы траектории иона кулоновским полем ядра-мишени, *a* и *b* -большая и малая полуоси от области взаимодействия, *с* – ее эксцентриситет. В формуле (8) проведено усреднение по всем ориентациям оси симметрии ядра-мишени.

Определим *a* , *b* , *є* . Радиус деформированного ядра-мишени, обладающего аксиальной симметрией, имеет вид:

$$R(\theta) = R_0 [1 + \beta \sqrt{\frac{5}{4\pi}} P_2(\cos\theta)], \ R_0 = r_0 A^{1/3}, \ r_{\bar{\theta}} = 1.2 \ \phi \ . \tag{9}$$

С другой стороны, чтобы удовлетворить данным по полным сечениям деления сферических ядер, необходимо использовать эффективный радиус взаимодействия:

$$\begin{array}{cccc} & & & & & & \\ & & & & & \\ R_{f} & = r_{0} & (A_{1} & +A_{2}), & r_{0} & \cong 1.4 \ \varphi \, . \end{array}$$

Отличие r_0 от r_0 вполне понятно, так как ион имеет конечные размеры. Будем использовать наиболее простое и естественное предположение, что разность полуосей "тени" от области взаимодействия равна разности полуосей ядра-мишени, $a_0 = R(\theta = 0), b_0 = R(\theta = \frac{\pi}{2})$, т.е.

эфф

$$a - R_{f} = a_{0} - R_{0} = R(\theta = 0) - R_{0} = \delta$$
,
 $g \phi \phi$
 $R_{f} - b = R_{0} - b_{0} = R_{0} - R(\theta = \frac{\pi}{2}) = \delta/2$. (10)
 $g \phi \phi$ эфф
Тогда $a = R_{f} + \delta$, $b = R_{f} - \delta/2$, а эксцентриситет равен $\epsilon = (1 - b^{2}/a^{2})^{\frac{1}{2}}$

(например, если ядро-мишень U^{238} , то $\delta = 1, 2 \phi$).

Таким образом, полное сечение деления σ_f (E) полностью определено. прям.

Очевидно, что сечение прямого деления σ_f (E) будет определяться той частью полного сечения (8), которая соответствует столкновениям с передачей углового момента $\ell \geq \ell$

Вычисление этого сечения можно провести таким же образом, как и в работах ^{/4,9/}. С учетом искажений траекторий налетающих ядер, вносимых кулоновским полем, получим:

$$\sigma_{f}^{\Pi p \mathfrak{I} \mathfrak{M}}(E) = \kappa(E) \frac{2 a b}{\epsilon} \int_{0}^{\xi} \sqrt{1 - y^{2}} (\arccos \frac{\Lambda}{\sqrt{1 - y^{2}}} - \Lambda \frac{\sqrt{1 - y^{2}} - \Lambda^{2}}{1 - y^{2}}) dy.$$
(11)

Безразмерная величина Λ выражается через критическое значение углового момента ℓ :

$$\Lambda = \ell_{\rm KPHT} / Ka , \quad K = \frac{1}{h} \left[2\,\mu (E - V_B) \right]^{\frac{1}{2}}$$
(12)

Кроме того, в формуле (11)

$$\xi = \begin{cases} \epsilon, & \text{если} \quad \epsilon < \sqrt{1 - \Lambda^2} \\ \sqrt{1 - \Lambda^2}, & \text{если} \quad \epsilon > \sqrt{1 - \Lambda^2} \end{cases}$$
(13)

Интеграл $I(\Lambda)$:

$$I(\Lambda) = \int_{0}^{\xi} \sqrt{1-y^{2}} \left(\arccos \frac{\Lambda}{\sqrt{1-y^{2}}} - \Lambda \frac{\sqrt{1-y^{2}-\Lambda^{2}}}{1-y^{2}}\right) dy$$

14)

при $\epsilon = 0,5$ дан на рис. 2.

Сопоставим теперь следствия, вытекающие из рассмотренного механизма, с экспериментальными данными $^{/1,2/}$. Наиболее характерными являются данные, полученные для распределения осколков деления по массам и его зависимости от энергии, а также распределения осколков деления по зарядам при фиксированном отношении A_1/A_2 . Эти распределения имеют вид симметричной функции и с хорошей точностью могут быть описаны функцией Гаусса. Для относительной вероятности $P(A_f)$ выхода осколка с заданной массой A_f имеем:

$$P(A_f) = \frac{1}{(\pi \Lambda^2)^{\frac{1}{2}}} \exp\left[-\frac{(A_f - \frac{A_c}{2})^2}{\Lambda^2}\right],$$
(15)

где $\Delta(E)$ - параметр, характеризующий полуширину распределения и зависящий от энергии, A_c - суммарная масса ядра-мишени и налетающего иона. Аналогичное распределение можно написать и для заряда осколка заданной массы. В этом случае вместо Δ^2 будет Δ_z^2 , а вместо $\frac{A_c}{2} - Z_p$ - наиболее вероятное значение заряда.

Зависимость Δ^2 от параметра делимости Z^2/A компаунд-ядра при энергии возбуждения, приближенно равной 100-110 Мэв, для различных реакций дана на рис. 3. Штриховая линия соответствует предсказаниям статистической теории. При $Z^2A > 37$ -38 наблюдается очень резкое отклонение экспериментальных данных от этих предсказаний. Область резкого отклонения зависимости $\Delta^2(Z^2/A)$ от $\Delta^2_{CTAT.}$ соответствует делению в

Рис. 2. Значения интеграла $I(\Lambda)$ при $\epsilon = 0.5$.

реакциях $C^{12} + U^{238}$ ($E \approx 80$ Мэв), $Ne^{20} + U^{238}$ ($E \approx 200$ Мэв), $Ar^{40} + U^{238}$ ($E \approx 300$ Мэв). Аналогичные данные для распределения осколков по заряду представлены на рис. 4.

Наконец, представляют интерес данные о зависимости полуширины Δ^2 от энергии. Они приведены для процесса деления в реакции $Ne^{20} + U^{238}$ на рис. 5. И эдесь статистическая теория (штриховая линия) не дает удовлетворительного объяснения. В особенности это касается скорости роста $\Delta^2(E)$: наклон $\left[\frac{d < \Delta^2(E) >}{dE}\right]_{3KCR.}$ значительно больше наклона $\left[\frac{d < \Delta^2(E) >}{dE}\right]_{CTAT.}$

Для сравнения экспериментальных данных с моделью, учитывающей канал прямого деления, описанной выше, естественно принять в качестве полн комп меры отклонения от статистической модели отношение σ_f / σ_f .

Тогда для $\langle \Delta^2 \rangle_{\text{теор.}}$ запишем: полн $\langle \Delta^2 \rangle_{\text{теор.}} \langle \Delta^2 \rangle_{\text{стат.}} \frac{\sigma_f (E)}{\sigma_f (E)} = \langle \Delta^2 \rangle_{\text{стат}} \frac{\sigma_f (E)}{\sigma_f (E) - \sigma_f^{\text{прям}}(E)}$. (16)

Из выражения (16) видно, что при $\sigma_f^{\text{полн}} = \sigma_f^{\text{комп}}$, $<\Delta^2>_{\text{теор.}} = <\Delta^2>_{\text{стат.}}$ а при $\sigma_f^{\text{полн}} = \sigma_f^{\text{прям.}}, <\Delta^2>_{\text{стат.}} = 0$, т.е. ширина массового распределения определяется полностью прямым

механизмом развала ядра. Таким образом, приближенное соотношение (16) вполне удовлетворительно для проведения сравнения модели с экспериментальными данными.

Для дальнейшего уточнения вкладов рассматриваемых каналов можно было бы привлечь детальную информацию о характере углового распределения продуктов деления. К сожалению, имеющиеся экспериментальные данные на этот счет слишком грубы. Вычисления, проведенные

Рис. 3. Зависимость ширины массового распределения $<\!\!\Delta^2 >$ от параметра Z^2/A при энергии возбуждения делящихся ядер $E^* = 100$ + 110 Мэв.

Штриховя линия соответствует предсказаниям статистической теории деления; штрих-пунктирная линия - расчет, проведенный с учетом реализации критического значения углового момента. Сплошная тонкая линия - расчет, проведенный с учетом влияния механизмов неупругого удара и критического углового момента на процесс деления ($\mu \approx 30$).

возбуждения Штриэнергии 7 V иdп деления (А параметра Z²/A симметричного $\langle \Delta_z^2 \rangle$ ot для Зависимость *= 100 + 110 Mab 4 Рис. Ē деления; тонкая линия удара ≈ 30). кривлияния неупругого теории •ффе сплошная z. статистической четом момента на процесс деления механизмов деления проведенный соответствует предсказаниям влияния на процесс учетом MOMEHTA расчет, проведенный с критического углового линия углового виниг ПУНКТ тического ховая штрих L ¤'

Рис. 5. Зависимость ширины массового распределения < Δ^2 > от энергии налетающего иона для реакции Ne²⁰ + U²³⁸. Штриховая линия соответст-

вует предсказаниям статистической теории деления; штрих-пунктирная – расчет, проведенный с учетом влияния критического углового момента на процесс деления; сплошная тонкая линия – расчет, проведенный с учетом влияния механизмов неупругого удара и критического углового момента на процесс деления ($\mu = 30$).

14

для реакции C^{12} , Ne^{20} , Ar^{40} на U^{238} по формулам (8) и (11), приводят к результатам, представленным на рис. 3,4 и 5 штрих-пунктирными кривыми.

Эти кривые указывают, что вклад прямого канала деления заметен. Однако он не настолько велик, чтобы устранить наблюдаемое противоречие. Основная причина малости вклада этого механизма заключается в том, что в исследуемых реакциях ядро-мишень имеет большие размеры и вес и, следовательно, его момент инерции весьма велик. Поэтому в данном случае в отличие от реакций на легких и средних ядрах-мишени ^{/3,6,7/} центробежные силы малы и не в состоянии "открыть" достаточно широко канал прямого деления. Очевидно, следует искать дополнительные факторы, увеличивающие эффективность этого канала.

2. Механизм неупругого удара

Рассмотрим теперь другую возможную картину включения прямого канала. Маловероятно, чтобы энергичный тяжелый ион, сталкиваясь с такой массивной и довольно рыхлой системой, какой является делящееся ядро, передал бы в момент удара свою кинетическую энергию всему ядру как целому. Тяжелый ион имеет конечные размеры. Поэтому следует ожидать, что часть ядра-мишени, которой передается эта энергия, должна иметь массу порядка той массы, которая сосредоточена в области с объемом, порядка объема налетевшей частицы (здесь можно провести аналогию с взаимодействием энергичного протона и ядра: в первый момент протон с наибольшей вероятностью передает свою энергию одному из нуклонов, но не всему ядру как целому). С другой стороны, очевидно, что значение массы μ этой части ядра, которая в первый момент испытывает удар, не может быть прямо отождествлено с величиной массы иона A_1 . Действительно, эта часть ядра-мишени находится в поле сил, создаваемых остальными нуклонами. Иными словами, μ -эффективное значение массы нуклонов, воспринявших удар. Поэтому следует ожидать, что $\mu_{3\phi\phi}$. μA_1 хотя численно и близки, но не совпадают.

Естественно считать, что налетевший ион поглощается ядром в зоне взаимодействия. Тогда первоначальная суммарная масса, вовлеченная в движение таким ударом, будет равна $\mu_{3\phi\phi}$. Нетрудно вычислить энергию T движения этого сгустка в направлении, параллельном оси симметрии ядра-мишени. Если угол между осью симметрии ядра и направлением удара равен θ , то

$$T = \frac{A_1}{\mu_{\text{sph}} + A_1} E_1 \cos^2 \theta , \qquad (17)$$

где Е, -кинетическая энергия тяжелого иона в момент удара:

$$E_I = E - V_B$$
 (18)

Предположим далее, что энергия переходит в энергию β колебаний ядра. Поскольку передача импульса произошла в направлении оси симметрии ядра и порождает движение, которое носит организованный характер, т.е. имеет все черты коллективного движения, то такое предположение представляется разумным.

Тогда вновь мы можем воспользоваться соображениями, основанными на особенностях вида потенциальной энергии деформации делящегося ядра.

16

Будем считать, что если переданная описанным выше способом энергия удовлетворяет условию:

 $T-V_{,} \ge 0, \tag{19}$

то ядро с необходимостью переводится в состояние, распадающееся по каналу деления достаточно быстро, так что стадия установления полного термодинамического равновесия является совершенно необязательной.

Используя сформулированные предположения и методы п. 1 этого раздела, нетрудно получить выражение для сечения прямого деления σ , прям. в этом случае

Здесь θ_k - максимальный угол (его "критическое" значение) между осью симметрии и направлением импульса налетающего иона, при котором прямой механизм деления все еще возможен.

В противном случае реализуется механизм деления, существенной стадией которого является образование компаунд-ядра. Соответствующее сечение равно

$$\sigma_{f}^{\text{KOMI.}}(E) = \frac{1}{2} \pi ab \left[\frac{\arcsin(\epsilon \cos \theta)}{\epsilon} + \cos \theta_{k} \sqrt{1 - \epsilon^{2} \cos^{2} \theta_{k}} \right] \kappa(E).$$
(22)

Рассмотрим теперь экспериментальные данные с позиций сформулированной нами модели. По-прежнему будем использовать соотношение (16), а в качестве сечений $\sigma_f^{\text{полн}}(E)$, $\sigma_f^{\text{прям}}(E)$, $\sigma_f^{\text{комп}}(E)$ – выражения (8), (20) и (22).

Рис. 6. Зависимость параметра $<\Delta^2 >$ в массовом распределении при различных эначениях эффективной массы; 1 – $\mu_{3\phi\phi} = 119, 2 - \mu_{3\phi\phi} = 79, 3 - \mu_{3\phi\phi} = 39, 4 - \mu_{3\phi\phi} = 29, 5 - \mu_{3\phi\phi} = 19.$ Штрих-пунктирная линия – учет влияния механизма критического углового момента на процесс деления при определенных значениях эффективной массы. На рис. 6 даны кривые, описывающие зависимость параметра $<\Delta^2>$ в массовом распределении при разных значениях эффективной массы $\mu_{3\phi\phi}$. Здесь же для ориентировки воспроизведены и экспериментальные данные. Сразу видно, что величина $<\Delta^2>$ в области $Z^2/A>37$ сильно зависит от значения эффективной массы $\mu_{3\phi\phi}$. Очевидно, можно выбрать такое значение $\mu_{3\phi\phi}$, чтобы согласие было наилучшим. При этом необходимо для случая взаимодействия Ne и Ar с ураном ($Z^2/A=40,4$ и 43,5 соответственно) вычислить поправ - ку на дополнительный эффект, обусловленный наличием $\ell_{\rm Kput.}$ (см. п. 1). Эта процедура приводит к некоторому уменьшению величины $\sigma_{\rm c}^{\rm KOMT.}$ (см. (22)).

Расчеты показывают, что наилучшим эначением эффективной массы, обеспечивающим удовлетворительное объяснение эксперимента (см. рис. 3,4 и 5 – сплошные кривые), является $\mu_{abb} \approx 30$.

Этот результат с физической точки эрения весьма интересен, так как подтверждает интуитивно предугаданное значение: эффективная масса оказывается близкой к массе налетающих ионов.

Кроме того, теперь мы можем вычислить и другую важную характеристику взаимодействия ионов с тяжелыми делящимися ядрами сечение образования компаунд-ядра в зависимости от энергии.

На рис. 7 представлены результаты вычислений для реакций Ne^{20} , Ar^{40} на уране при $E > V_B$. Сплошные кривые дают полное сечение деления $\sigma_f^{\text{полн}}(E)$, а штриховые – сечение деления $\sigma_f^{\text{комп}}(E)$, проходящего через стадию образования компаунд-ядра. В указанном интервале энергий ($E_{min} > V_B$, $\frac{E_{max}}{A_1} \approx 10$ Мэв) сечение $\sigma_f^{\text{комп}}(E)$ при E, значительно превышающих V_B , стремится к "насыщению". При этом доля $\sigma_f^{\text{комп}}(E)$ в полном сечении $\sigma_f^{\text{полн}}(E)$ с увеличением массы налетающего иона уменьшается.

3. Заключение

Рассмотрим ряд следствий и выводов, которые обусловлены механизмом неупругого удара в процессе деления тяжелых ионов.

Как отмечалось в §2, кинетическая энергия, реализуемая в виде "коллективного" движения нуклонов, приближенно равна:

$$T \approx \frac{A_1}{\mu_{\ni \phi \phi} + A_1} E_1 \cos^2 \theta.$$

Оставшаяся же часть кинетической энергии, равная:

$$E^* = E_I - T = \left(\frac{\mu_{\Im \Phi \Phi} + A_I \sin^2 \theta}{\mu_{\Im \Phi \Phi} + A_I}\right) E_I,$$

за время развития прямого процесса деления не успевает перераспределиться между нуклонами ядра и тем самым приводит к его локальному разогреву непосредственно в зоне взаимодействия. Этот факт нам кажется интересным не только потому, что впервые термину "реакция сопровождается локальным перегревом" удалось дать количественное выражение. Вопрос о величине энергии, реализующейся в виде энергии возбуждения осколка деления, весьма важен при рассмотрении реакций, сопровожаемых делением ядра на три фрагмента сравнимой массы, которые уже экспериментально изучены для ряда случаев

Итак, выдвинутая модель взаимодействия тяжелых ионов с деляшимися ядрами позволяет преодолеть, по крайней мере, следующие серьезные трудности.

Во-первых, удается показать, что наблюдаемые резкие с точки эрения статистической теории реакций аномалии можно объяснить включением интенсивного канала прямого деления. Это обстоятельство указывает на то, что нет необходимости подвергать статистическую теорию

коренной ревизии. Необходимо только корректно учесть конкурирующий канал процесса - в данном случае канал прямого деления.

Во-вторых, предложенная модель позволяет естветственным образом выделить ту часть процесса деления, которая проходит через стадию образования компаунд-ядра. Это тем более важно, что такая характеристика как сечение образования компаунд-ядра играет весьма существенную роль в оценках возможной величины выхода супертяжелых ядер, синтезируемых в реакциях с участием тяжелых ионов.

В-третьих, и, по нашему мнению, не в последнем счете, предложенная простая модель представляет реализацию (по крайней мере, в одном из возможных ее вариантов) механизма разрушения крайне неустойчивой делящейся системы энергичной тяжелой частицей.

Дальнейшее развитие и использование этой модели для анализа реакций между сложными ядрами может привести к ряду интересных следствий.

Литература

- С.А. Карамян, Ф. Нормуратов, Ю.Ц. Оганесян, Ю.Э. Пенионжкевич, Б.И. Пустыльник, Г.Н. Флеров. Препринт ОИЯИ Р7-3732, Дубна, 1968. Yu.Tz. Oganessian. Preprint E2-3942, Dubna, 1968.
- 2. С.А. Карамян, Ю.Ц. Оганесян, Ю.Э. Пенионжкевич, Б.И. Пустыльник. Препринт ОИЯИ, Р7-4024, Дубна, 1968.

3. Б.Н. Калинкин, И.Ж. Петков. Acta Phys. Pol., 25, 265 (1964).

- 4. Б.Н. Калинкин, И.Ж. Петков. Препринт ОИЯИ Р4-5019, 1970. Acta Phys. Pol., B2, 371 (1971).
- 5. R. Bimbot, M. Lefort, A. Simon, J. Phys., 29, 563 (1968).
- 6. L. Kowalski, I.C. Jodogne, I.M. Miller. Phys. Rev., 169, 894 (1968).

- 7. I.B. Natowitz. Phys. Rev., Cl, Third Series, N. 2, 623 (1970).
- 8. В.М. Струтинский. ЯФ, <u>3</u>, 614 (1966).
- 9. А.Г. Ситенко. ЖЭТФ 36, 793 (1959).

1.13

- С.А. Карамян, И.В. Кузнецов, Ю.Ц. Оганесян, Ю.Э. Пенионжкевич. Препринт ОИЯИ, Р7-3063, Дубна, 1966.
- 11. V.P. Perelygin, N.H. Shadieva, S.P. Tretiakova. Nucl.Phys., A127, 577 (1969).

Рукопись поступила в издательский отдел З декабря 1971 года.