20/x11-71 X-709 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 6102 P4 42:38 71 2 HMMKH Г. Хок PETSUECK ПАРЦИАЛЬНЫЕ ПЕРЕХОДЫ ПРИ ЗАХВАТЕ МЮ-МЕЗОНОВ ЯДРОМ ¹⁹ F AABODATOPH9 TE 1971

Направлено в Изв. АН СССР

Г. Хок

Парциальные переходы при захвате μ -мезонов легкими ядрами представляют наибольший интерес с точки зрения получения. дополнительной информации о константах мюон-нуклонного взаимодействия. Однако, как показывает анализ^{/1/}, во многих случаях характеристики парциальных переходов зависят от деталей ядерной структуры намного сильнее, чем от констант взаимодействия. В таком случае, конечно, трудно извлечь надежную информацию о величине последних. Наиболее чувствительны к деталям структуры ядра характеристики, зависящие от абсолютного значения ядерных матричных элементов, в частности, скорость Λ парциального перехода. Менее чувствительны характеристики, зависящие от отношения ядерных матричных элементов, как например, отношение Λ_- / Λ_+ вероятностей парциальных переходов из состояний $F_- = J_i - 1/2$ и $F_+ = J_i + 1/2$ сверхтонкого дублета мезоатома. Здесь J_i – спин начального ядра.

Среди большого числа парциальных переходов привлекают внимание переходы в ядре ¹⁹F, в которых представляется возможным измерение как абсолютного значения скоростей, так и их отношения. Поэтому важно провести анализ переходов в этом ядре и исследовать их чувствительность от ядерных матричных элементов.

В работе рассчитаны скорости разрешенных парциальных переходов

$\mu^{-} + {}^{19}F \rightarrow {}^{19}O^{*} + \nu$

на уровни $3/2^+$, $E^* = 0,097$ Мэв; $1/2^+$, $E^* = 1,47$ Мэв. В эксперименте $^{/2/}$ было установлено, что в ядре $^{19}0$, кроме упомянутых уровней, имеется еще три связанных состояния со спинами $1/2^+$ и $3/2^+$: $3/2^+$, $E^* = 2,37$ Мэв; $1/2^+$, $E^* = 3,24$ Мэв и $3/2^+$, $E^* = 4,12$ Мэв (см. рисунок). Экспериментальные данные $^{/2-4/}$ об этой области возбуждения не полные. Поэтому мы используем теоретическую схему уровней для изучения переходов в эту область возбуждения (см. рисунок).

Расчёты проведены в рамках модели оболочек методом смешивания конфигураций типа $\sum_{x} (1d)^{n-x} (2s)^{x}$. В расчётах использовались те же параметры, что и в работе Эллиотта и Флоуэрса 75/

Полученные характеристики переходов в зависимости от отношения g_P/g_A и параметра V_0 модели (V_0 – амплитуда остаточного взаимодействия между нуклонами в ядре) приведены в табл. 1 и 2. $\Lambda_{\rm стат.}$ – вероятность перехода при статистическом заселении уровней мезоатома. Из этих таблиц видно, что характеристики переходов довольно сильно зависят от параметра модели V_0 и гораздо менее чувствительны к константам мюон-нуклонного взаимодействия. В настоящее время параметр V_0 не удается зафиксировать достаточно надежно, опираясь только на схему уровней. На основании полученных результатов можно сделать следующий вывод: парциальные переходы в ¹⁹F неблагоприятны для изучения их с целью извлечения информации о константах мюон-нуклонного взаимодействия.

Литература

- 1. А.П. Бухвостов и др. Тезисы IV Международной конференции по физике высоких энергий и структуре ядра, 7-11 сентября 1971 года, Дубна, D1-5988, 1971.
- 2. P. Fintz et al. Nucl. Phys., <u>A150</u>, 491 (1970).
- 3. C. Broude et al. Nucl. Phys., <u>A161</u>, 241 (1971).
- 4. F. Hibou et al. Nucl. Phys., A171, 603 (1971).
- 5. J.P. Elliott and B.H. Flowers. Proc.Roy.Soc., A229, 536 (1955).

Рукопись поступила в издательский отдел 26 октября 1971 года. Таблица I

Ĵ.	٦,	
Ľ		
٠,	4	
0	D	
	2	
		1.1
્રાષ્ટ	٩.	
	-	
	•	
÷.		
*	•	
ेट	2	
9		
	T -	
		٠.
. L	L	
ŝ	1	
_	Ľ	
÷.,	Γ.	
1		
्	2	. 1
F	9	
: S	2	
- 5	2	
1	2	
	В.	
2	Š.,	÷.
6	D	
÷ E	Ē,	
1.7	٠.	
Þ	4.	£1.
- 5		
	g .	. 2
. 2	5	÷.
:	-	÷.,
	ž.	1
	3	
- 2	Ξ,	
. 6	ש	
	з.	
	÷.,	2
1		
1		
12	ς.	
1	1	
1		
		1
Č	5	
ſ	Ξ,	٦.
•	D,	
P	4	

		Vo = -30	Кав	~ °=	HO Nas		=°\	-50 Mar	
JAN S	۰ ۲	+V/-V	A crat	۲ +	+ν/- _ν	Λ стат	۸+	+V/-V	Acra
				(3/2+)		em 760.0 =			
	2141	0.332	I784	1698	0.555	I509	I360	0.834	I304
~	I560	0.I74	I238	II87	0.373	IOOI	913	0.659	835
2	1271	0,067	975	937	0.213	752	696	0.464	603
				(1/2+)		I.468 War			
	42	8.477	122	8	8.938	246	II8	8.997	353
	31	8.833	16	69	8.206	I92	I03	7.872	281
2	8	7.243	22	73	6.2II	I68	II3	5,819	249
				(3/2)		2.370 Mar			
-	334	3,350	530	I43	6.809	351	68	I2.82	270
•	I60	4.433	298	Ł	I2.42	509	ព	33.69	174 174
2	. 63	5.137	I 89	25	I9.95	I42	6.6	74.85	I28
				(I/2 ⁺)	H MA	3.237 NBB			
	172	5.70I	375	107	4.326	96I	22	2.445	86
	239	2,887	351	164	I.82I	198	121	0.796	115
2	318	I.6I0	366	227	0.898	22I	I70	0,317	I4I
			•	(3/2+)	• E ^X E •	4.II8 Mas			
	320	9.227	626	I63	I8.60	88 I	32	33.74	843
-	247	9 • 095	246	I26	I8.83	687	54	33.03	670
ŝ	254	170-7	640	I50	I3.0I	599	107	I9.I3	592

ŝ Таблица

> ^{Λ-/Λ+} от ^{ЗР/3_Α и параметра модели V_с} Зависимость отновения

2.445 I.3I5 0.796 0.669 33.74 37**.**37 33**.**03 30.44 0.317 [9.I3 4.II8 Mag $(1/2^{+})$, $\mathbf{R}^{\mathbf{E}} = 3.237$ Mam I.82I I.589 0.898 4.326 I8.60 2.697 20.07 I8.83 I7.93 I3.0I 78 H **т**ы 2.887 2.581 I.6I0 9.527 9.095 8.806 5.70I 3.964 9.227 7.071 N BB (3/2) 7.522 5.048 4.694 5.408 6.I44 0.023 0.003 100.0 0.004 0.037 OR >° NB AB 2 • 2 ò 0.659 33.69 0.834 0.746 0.624 8.997 8.670 7.872 7.514 5,819 20.71 0.464 I2.82 CS Rey $E^{2} = 2.370 \text{ Mab}$ E² = I.468 Man E[#] = 0.097 0.5555 0.458 0.342 8.938 8.206 6.809 9.303 0.373 0.213 8.853 I2.42 7.881 6.2II 9**g** 8,985 8.833 3.912 0.332 0.244 0.I74 0.151 0.067 8.477 8.646 7,243 3.350 4.433 (I/2⁺), Neg (3/2+). (3/2⁺), I58.0 93**.**22 74**.**69 0.104 0.047 0.0I6 0.008 010.0 0.I83 0.239 140.7 0.004 170.0 0.623 OR 2

40.64

I3.79

4.6I4 5.137

74.85

I9.95

3I.62

ដ ω

Схема уровней ядра ¹⁹0