20/x11-71 K-93 ОБЪЕДИНЕННЫЙ ¥ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. Y225/ P4 6039

А.Б. Курепин, Г.Шульц, Х.И. Вибике,

АНАЛИЗ РАССЕЯНИЯ ПРОТОНОВ С ЭНЕРГИЕЙ 12 МЭВ ЯДРАМИ^{148, 154} Sm По методу связанных каналов

1971

ААБФРАТФРИЯ ТЕФРЕТИЧЕК**КОЙ ФИ**ЗИКІ

P4 - 6039

5

А.Б. Курепин¹, Г.Шульц², Х.И. Вибике²,

АНАЛИЗ РАССЕЯНИЯ ПРОТОНОВ С ЭНЕРГИЕЙ 12 МЭВ ЯДРАМИ^{148, 154} Sm По методу связанных каналов

Направлено в Nuclear Physics

Объеденсяный	WHCTHTYT
RECOMMENT BCC.	сдований
БИБЛИЮ	TEKA

 Постоянный адрес: Институт ядерных исследований, Москва, СССР.
 Постоянный адрес: Центральный институт ядерных исследований, Россендорф, ГДР. Курепин А.Б., Шульц Г., Вибике Х.И.

P4-6039

Анализ рассеяния протонов с энергией 12 Мэв ядрами по методу связанных каналов ^{148,154} Sm

Произведен анализ упругого и неупругого рассеяния протонов ядрами

148,134 5m с помощью программы связанных каналов КАСТОР, содержащей отыскание навлучших параметров по методу наименьших квадратов. Исследована роль фермиевского распределения заряда в ядре мишени. Полученные оптические параметры и параметры деформации находятся в хорсшем согласии с данными других работ.

Препринт Объединенного инотитута адерных исследований. Дубна, 1971

Kurepin A.B., Schulz H., Wiebicke H.J.

P4-6039

Coupled Channel Analysis of 12 MeV Proton Scattering on 148, 154 Sm

By means of the coupled channel program KASTOR which contains a least square fitting procedure the elastic and inelastic scattering on i46,134 Sm is analyzed. The effect of a Fermi charge distribution for the target nucleus is investigated. The optical and deformation parameters obtained are in good agreement with those given in other works.

Preprint. Joint Institute for Nuclear Research. Dubna, 1971

Введение

Параметры деформации ядер¹⁴⁸ Sm и¹⁵⁴ Sm были определены недавно^{/1-3/} путем анализа рассеяния частиц этими ядрами по методу связанных каналов. Так, Хендри и др.^{/1/} исследовали упругое и неупругое рассеяние альфа-частиц с энергией 50 Мэв ядрами^{148,154} Sm. Браун и Столер^{/2/} провели новый анализ рассеяния 16 Мэв протонов^{/4/} этими же ядрами, использовав программу Юпитер-1^{/5/}. Наконец, Апоник и др.^{/3/} провели анализ упругого и неупругого рассеяния альфа-частиц с энергией 30 Мэв этими изотопами, а также другими ядрами редкоземельной области ядер.

ſ

Во всех расчётах принималось, что ¹⁴⁸ Sm является сферическим ядром в основном состоянии и имеет вибрационные низколежащие возбужденные состояния и что ¹⁵⁴ Sm имеет статическую деформацию и низколежащие возбужденные состояния вращательного типа,

Хорошо известно^{/5/}, что около 20% мнимой части оптического потенциала, используемого для расчёта упругого рассеяния, обусловлено связью с состоянием 2⁺ (при β_2 =0,2). Расчёты по методу связанных каналов с использованием метода χ^2 ^{/6/} показали, что и другие на-

раметры оптической модели более или менее меняются при учёте связи . каналов.

Точность определения параметров деформации из экспериментальных данных существенно возрастает при наличии данных для различных падающих частиц при различных энергиях. В этом случае в значительной степени устраняются ошибки, вызванные неточностью и неоднозначностью выбора параметров оптического потенциала.

В этой статье мы приводим результаты анализа по методу связанных каналов упругого и неупругого рассеяния протонов с энергией 12Мэв ядрами ^{148,154} Sm ^{/7/}. Поскольку энергия частиц в этом эксперименте близка к высоте кулоновского барьера, извлекаемые параметры деформации могут меняться в зависимости от выбранного вида распределения заряда ядра мишени.

Для иллюстрации были проведены расчёты с кулоновским потенциалом следующего вида ^{/8/}:

$$V_{coul} = Z Z' e^{2} \int \rho(r', \theta', \phi') / |\vec{r} - \vec{r'}| d\vec{r'} =$$

$$= 4\pi Z Z' e^{2} \sum_{\lambda \mu} \rho(r', \theta', \phi') / (2\lambda + 1)$$

$$r_{<}^{\lambda} r_{>}^{\lambda - J} Y_{\lambda \mu} (\theta, \phi) Y_{\lambda \mu}^{*} (\theta', \phi') r'^{2} dr' d\Omega',$$
(1)

где Ze и Z'e – заряды налетающей частицы и ядра мищени соответственно, а $\rho(r', \theta', \phi')$ определяет распределение заряда в ядре мищени.

В дальнейщих расчётах принимались следующие формы распределения заряда:

1. $\rho(r', \theta', \phi')$ постоянно внутри кулоновского радиуса $R_{e}(\theta', \phi')$ и равно нулю вне него:

$$\rho(\mathbf{r}',\theta\,',\phi') = \frac{3}{4\pi\,R_c^3}\,\Theta(R_c(\theta',\phi') - \mathbf{r}') , \qquad (2)$$

где

$$\Theta(r) = \begin{bmatrix} 1 & r > 0 \\ 0 & r < 0 \end{bmatrix}$$
(3)

2. Фермиевское распределение заряда:

$$\rho(r', \theta', \phi') = N[1 + exp(\frac{r' - R_c(1 + \beta_2 Y_{20}(\theta') + \beta_4 Y_{40}(\theta'))}{a_c}]^{-1},$$
(4)

где

$$N = \left[4\pi \int_{0}^{\infty} \frac{1}{1 + exp((r-R_{e})a_{e}^{-1})} r^{2} dr \right]^{-1}.$$
 (5)

После подстановки (2) в (1) и (4) в (1) был рассчитан кулоновский нотенциал V_{coul} с учётом всех порядков разложения по β_2 и β_4 . При этом разложение выражения (1) проводилось по $\sum_{\lambda} \beta_{\lambda} \frac{Y_{\lambda_0}(\theta)}{\lambda_0}$, а не но степеням $Y_{\lambda_0}(\theta)$ (см. также⁽⁵⁾).

2. Экспериментальные результаты

Измерения упругого и неупругого рассеяния протонов с энергией 12 Мэв ядрами ¹⁴⁸ Sm и ¹⁵⁴ Sm были проведены в Тандемской лаборатории института им. Н. Бора. Результаты были доложены на конференции по ядерной спектроскопии в Москве в январе 1966 и опубликованы в трудах этой конференции ⁷⁷. Было замечено, что данные по рассеянию протонов сферическим ядром ¹⁴⁸ Sm и деформированным ¹⁵⁴ Sm сушественно различны между собой, несмотря на то, что оптические параметры для этих соседних изотопов должны быть практически одинаковыми. Осцилляции в угловом распределении упругого рассеяния и неупругого рассеяния с возбуждением уровней 2⁺ значительно более ярко выражены для рассеяния на сферическом ядре. Этот эффект был затем также обнаружен при рассеянии протонов с энергией 16 Мэв^{/4/} и альфа-частии с энергией 50 Мэв^{/1/} изотопами Sm.

В условиях хорошего экспериментального разрешения и при наличии однородной самоподдерживающейся мишени было возможно провести также измерения неупругого рассеяния протонов с возбуждением других уровней вращательной полосы основного состояния ядра ¹⁵⁴ Sm (4⁺ при 0,267 Мэв, 6⁺ при 0,545 Мэв).

Экспериментальные данные были впервые проанализированы с использованием второго порядка борновского приближения ^{/9,10/}. Различие в упругом рассеянии ядрами ¹⁴⁸ Sm и ¹⁵⁴ Sm было объяснено влиянием связи каналов, было также рассчитано сечение возбуждения уровня 4^{+ 154} Sm. Однако для расчёта возбуждения других врашательных уровней и надежного определения параметров деформации и оптической модели необходимо проведение полной схемы расчёта по методу связанных каналов. Результаты такого расчёта приводятся ниже.

3. Результаты анализа и обсуждение

Расчёты проводились по программе связанных каналов КАСТОР^{/11/}. В программе было использовано адиабатическое приближение.

Нахождение наилучших параметров проводилось по методу χ^2 одновременно для всех измеренных угловых распределений с возбуждением вращательных уровней основной полосы. В потенциалах обобщенной оптической модели были учтены все порядки параметров деформации В и В. в программу не включено спин-орбитальное взаимодействие. Однако несколько расчётов было проведено по программе, основанной на методе итераций с учётом спин-орбитальных эффектов /12/. Мы обнаружили. что влияние спин-орбитального потенциала пренебрежимо мало для сечения упругого рассеяния в рассматриваемом случае. Для сечений неупругого рассеяния с возбуждением уровней 2⁺ и 4⁺ влиянием спин-орбитального взаимодействия можно пренебречь для углов меньших 160°. В угловом распределении неупругого рассеяния с возбуждением уровня 6 ядра¹⁵⁴ Sm включение спин-орбитального взаимодействия меняет лишь глубину минимума вблизи 120° примерно на 20%. Поскольку программа КАСТОР содержит разложение потенциалов по мультиполям только до четвертого порядка: расчёты неупругого рассеяния с возбуждением уровня 6⁺ были проведены по программе Др. Ж. Рейналя с учётом следующих членов разложения.

3.1. Рассеяние протонов ядрами 154 Sm

Экспериментальные данные для рассеяния 12 Мэв протонов ядрами ¹⁵⁴ Sm и теоретические кривые, дающие наилучшее согласие при выборе распределения заряда в форме (4), приведены на рис. 1. Параметры оптического потенциала представлены в табл. 1. Параметры квадрупольной и гексадекапольной деформации равны соответственно $\beta_2 = 0,284$

Рис. 1. Угловые распределения упруго рассеянных 12Мэв и неупруго протонов ядрами 154 Sm . Точки - экспериментальные данные. Сплошные кривые - расчёт с фермиевским распределением заряда, пунктирные с острым краем. 8

и β_4 =0,046. На рис. 1 показаны пунктирной кривой также результаты расчёта сечений возбуждения уровней 0⁺ 2⁺ 4⁺ с распределением заряда (2) с использованием тех же самых параметров оптического потенциала и деформации. Как видно из рисунка, наиболее значительно меняется при использовании более обоснованного фермиевского распределения заряда (4) сечение рассеяния с возбуждением уровня 2⁺. Отметим, что согласие с экспериментом при расчёте с резким обрывом распределения заряда на границе ядра (2) может быть достигнуто только при увеличении β примерно на 15%.

Рассмотрим полученные параметры оптической модели. Радиальный параметр действительной части потенциала r_o =1,204 отличается от значения 1,17, предложенного Бекчетти и Гринлессом /13/. Однако соответствующее изменение глубины действительной части потенциала V приводит к тому, что найденные нами геометрические параметры находятся в пределах, даваемых в /13/. В табл. 2 проводится сравнение геометрических параметров V и r_o для рассеяния протонов на 154 Sm , найденных при различных энергиях в нашей работе и в /2,14/, со "средними" параметрами работы /13/. При этом учитывалось упомянутая выше возможность вариации параметров, даваемых в /13/. Как видно, только при 16 Мэв расхождение велико, что можно объяснить неточностью расчёта /2/, проведенного без метода χ^2 .

Параметры деформации ядра ¹⁵⁴ Sm , полученные в настоящей работе и в ⁽¹⁻³⁾, приведены в табл. 3. При различии геометрических параметров можно сравнивать лишь величины произведений βR или β_{r_0} . Действительно, эти значения для квадрупольной деформации, которая определена более точно, согласуются между собой довольно хорошо.

3.2. Рассеяние протонов ядрами ¹⁴⁸ Sm

Для расчёта рассеяния ядрами ¹⁴⁸ Sm были взяты те же параметры, оптического потенциала, что и для ¹⁵⁴ Sm , и подбиралась только величина квадрупольной деформации. Полученное значение $\beta = 0,13$ находится в хорошем согласии с величиной, даваемой в работе ²². Экспериментальные и теоретические угловые распределения, как видно из рис.2, согласуются достаточно хорошо.

Авторы выражают признательность проф. В.Г. Соловьеву и В.К. Лукьянову за полезные обсуждения и Ж. Рейналю за предоставление возможности провести некоторые расчёты по его программе.

Литература

 D.L. Hendrie, N.K. Glendenning, B.G. Harvey, O.N. Yarvis, H.H. Duhm, J. Saudinos, J. Mahoney. Phys.Lett., <u>26B</u>, 127 (1968).

2

- 2. P.H. Brown, P. Stoler. Phys. Rev., 2C, 765 (1970).
- AA. Aponick, C.M. Chesterfield, D.A. Bromley, N.K. Glendenning. Nucl.Phys., <u>159</u>, 367 (1970).
- 4. P. Stoler, M. Slagowitz, W. Makofske, T. Kruse. Phys. Rev., <u>155</u>, 1334 (1967).
- 5. T. Tamura, Rev. Mod. Phys., <u>37</u>, 679 (1965).

6. H. Schulz, H.J. Wiebicke. Unpublished.

- A.B. Kurepin, B. Madsen, B. Elbek. Izv.Akad.Nauk. SSSR, ser. fizich., <u>31</u>, 195 (1967) (English translation Bull.Academy of Sciences USSR Physical series 31, 174 (1967)).
- 8, R.H. Bassel, R.M. Drisko, G.R. Satchler, Report ORNL-3240 (1962).

- 9. J.M. Bang, K.Y. Chan, A.B. Kurepin, Ö. Saethre. Nucl. Phys., <u>A122</u>, 34 (1968).
- 10. A.B. Kurepin, Izv.Akad.Nauk SSSR ser. fizich., <u>32</u> 1946 (1968). (English translation Bull. Academy of Sciences USSR physical series <u>32</u>, 1791 (1968).
- 11. H. Schulz, H.J. Wiebicke, R. Fülle, D. Netzband, K. Schlott. Nucl.Phys., <u>A159</u>, 324 (1970).
- 12.J. Raynal. Proc. Symp. Quebec (1969).
- 13. F.D. Becchetti, G.W. Greenless, Phys. Rev., <u>182</u>, 1190 (1969).
- 14. P.B. Woollam, R.J. Griffiths, J.F. Grace, V.E. Lewis. Nucl. Phys., <u>A154</u>, 513 (1970).

Рукопись поступила в издательский отдел 17 сентября 1971 года.

Таблица I

Параметры оптического потенциала для рассеяния I2 Мэв протонов ядрами ^{I48, I54} Sm

VAND WAND TO QUE TO QUE a que To que a que To que a que I,204 I,243 0,74I 0,629 56,69 8,62 I.204 0,74I

Геометрические параметры V и V, для рассеяни протонов ядрами Sm							
ядро	Em + 6	Vm+E	r, pm	Литература			
154 Sm	12	56,69	1,204	данная работа			
	12	57,46	1,204	[13]			
154 Şm	16	54,03	I ,2 04	[2]			
	16	56,18	I,20 4	[13]			
148,	49,5	46,55	I, I68	[I4] [7			
9 M	49, 5	46,72	I,I7				

ţ

Таблица 2

Таблица 3

	Сравнение параметров деформации ядра по жанным различных работ				a 154 Sm
β <u>1</u> 0.284	β., 0,046	r. 1,204	β. r. 0,342	β , r. 0,054	Інтература данная работа
0.250	0,050	I,204	0,301	0 ,0 60	[2]
	·		0,324	0,064	[1]
0,225	0,050	I ,49 2	0,336	0,075	[3]

Рис. 2. Угловые распределения рассеяния 12 Мэв протонов ядрами ¹⁴⁸ Sm. Точки – экспериментальные данные. Сплошные кривые – расчёт с фермиевским распределением заряда.