

Дубна

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Martine .

СКЗ. ЧИТ ЗАЛА

P4-5982

Р.В. Джолос

ААБФРАТФРИЯ ТЕФРЕТИЧЕСКОЙ ФИЗИКИ

О ФЕНОМЕНОЛОГИЧЕСКОМ ПОДХОДЕ К ОПИСАНИЮ ВРАЩАТЕЛЬНЫХ ВОЗБУЖДЕНИЙ ЯДЕР

P4-5982

Р.В. Джолос

О ФЕНОМЕНОЛОГИЧЕСКОМ ПОДХОДЕ К ОПИСАНИЮ

ВРАЩАТЕЛЬНЫХ ВОЗБУЖДЕНИЙ ЯДЕР

Джолос Р.В.

P4-5982

О феноменологическом подходе к описанию вращательных возбуждений ядер

Показано, что различные феноменологические формулы, описывающие энергии врашательных уровней, могут быть получены в рамках одной и той же модели. С помощью этой модели установлена связь между $\frac{E(O_2)}{E(2_1)}$ и $\frac{E(4_1)}{E(2_1)}$. На основе этой связи проведен анализ экспериментальных данных.

Сообщения Объединенного института ядерных исследований Дубна, 1971

Задача описания свойств врашательных возбуждений ядер неизменно привлекает внимание теоретиков. Интерес к этой задаче особенно возрос в последние годы, когда в реакциях (*HI*, *xn*) удалось возбудить ротационные уровни с большими спинами (до *I* =20). Такой устойчивый интерес связан в основном с надеждой на то, что учет небольшого числа степеней свободы ядра окажется достаточным для решения задачи.

Для описания спектра энергий вращательных уровней было предложено большое число различных моделей. В последние два года особенно популярна модель переменного момента инерции /1/. В этой модели энергия вращательных уровней записывается в виде функции одной динамической переменной – момента инерции:

 $E_{1}(\mathcal{G}) = \frac{I(I+1)}{2\mathcal{G}} + \frac{1}{2}C(\mathcal{G} - \mathcal{G}_{0})^{2},$

где С и \int_0^{-} параметры модели. Из условия $\frac{\partial E_1(g)}{\partial g} = 0$ находится функция g(I). Если произвести замену переменной $g=3B\beta^2$, то E_1 запишется следующим образом:

 $E_{1}(\beta) = \frac{I(I+1)}{6B\beta^{2}} + \frac{9}{2}CB^{2}(\beta^{2}-\beta^{2}_{0})^{2}$

что совпадает, по крайней мере формально, с суммой энергии вращения (B – массовый коэффициент) аксиально-симметричного ротатора и потенциальной энергии β -колебаний. Роль потенциальной энергии играет функция $V(\beta) = \frac{9}{2} - CB^2(\beta^2 - \beta_0^2)^2$ (рис. 1). Так как с колебаниями β относительно равновесного значения β_0 связано появление 0^+ вибрационных состояний, а мы знаем, что структура таких состояний определяется

как колебаниями квадрупольного момента ядра, так и колебаниями энергетической щели /2/, а возможно, и другими причинами /3/, то можно сказать, что введенная нами переменная β отражает и флюктуации квадрупольного момента, и флюктуации спаривания. Во всяком случае ее нельзя связывать только с изменением формы ядра.

Теперь можно обобщить модель на случай произвольной потенциальной энергии, записав **Ε**₁(β) в виде

$$\Xi_{I}(\beta) = \frac{I(I+1)}{6B\beta^{2}} + V(\beta)$$

где в находится из условия минимума

$$\frac{\partial E_{I}(\beta)}{\partial \beta} = 0$$

Конкретный вид зависимости **E** от **I** будет определяться выбором потенциальной энергии.

В такой формулировке модель переменного момента инерции отличается от того, что было сделано ранее в работах А.С. Давыдова с сотрудниками ^{/4/} лишь выбором потенциальной энергии β -колебаний (вместо функции ($\beta^2 - \beta_0^2$)² бралась функция ($\beta - \beta_0$)²) и возможной интерпретацией переменной β . Можно показать, что и другие иным путем введенные эмпирические формулы, описывающие вращательный спектр, также могут быть получены в рамках сформулированной выше модели, но при ином, чем в модели переменного момента инерции, выборе потенциальной энергии. Покажем это на примере двух эмпирических формул:

$$E_{1} = \frac{1}{4} \omega^{2} \mathcal{G}_{0} \left(\sqrt{1 + 4} - \frac{l(l+1)}{\omega^{2} \mathcal{G}^{2}} - 1 \right),$$
(1)

$$E_{1} = al + bl^{2}$$
. (2)

В этих формулах ω , g₀ , α , b - параметры моделей.

1) Так как при $I \neq 0$, благодаря отличной от нуля энергии вращения, вероятность найти систему при $\beta = 0$ мала, то мы можем ввести вместо потенциала модели переменного момента инерции более удобный потенциал (рис. 2)

$$V(\beta) = \frac{3}{8} B \omega^2 \beta^2 + \frac{g_0^2 \omega^2}{24B \beta^2}.$$
 (3)

Правда, этот потенциал имеет нефизическую особенность при $\beta = 0$. Но из-за малой вероятности нахождения системы вблизи $\beta = 0$ это не существенно. Тогда

$$E_{I}(\beta) = \frac{I(I+1)}{6B\beta^{2}} + \frac{3}{8}B\omega^{2}\beta^{2} + \frac{g_{0}^{2}\omega^{2}}{24B\beta^{2}}$$

$$H3 \text{ условия } \frac{\partial E_{I}(\beta)}{\partial\beta} = 0 \quad \text{получаем}$$

$$\beta^{2}(I) = \frac{g_{0}}{3B}\sqrt{1+4}\frac{I(I+1)}{\omega^{2}g_{0}^{2}}$$

$$E_{1} - E_{0} = \frac{1}{4} \omega^{2} \mathcal{G}_{0} (\sqrt{1} + 4 \frac{1(1+1)}{\omega^{2} \mathcal{G}_{0}^{2}} - 1)$$

2) В сформулированной выше модели можно получить энергию **Е** лишь как функцию переменной l(l+1). Поэтому вместо выражения (2) мы получим близкое к нему численно выражение $E_l = f \sqrt{l(l+1)} + g l(l+1)$. Возъмем потенциальную энергию в виде (рис. 3):

$$V(\beta) = \frac{f^2}{4g(1-6 B g \beta^2)}.$$
 (4)

Из условия $\frac{\partial E_1'(\beta)}{\partial \beta} = 0$ находим:

β²

и

и

$$(1) = \frac{1}{3Bf} \cdot \frac{\sqrt{I(I+1)}}{1 + \frac{2g}{f}} \sqrt{I(I+1)}$$

$$E_{I} - E_{0} = f \sqrt{I(I+1)} + g I(I+1)$$

Надо отметить, что выражение для потенциальной энергии (4) неудовлетворительно с физической точки зрения. Во-первых, минимум расположен при $\beta = 0$, что противоречит нашим знаниям о деформированных ядрах. Во-вторых, равновесные значения $\beta(1)$ ограничены величиной $\frac{1}{6Bg}$, что также трудно интерпретировать. Поэтому на формулу (5) следует смотреть как на подгоночную.

Выше было показано, что различные формулы, предложенные для описания вращательного спектра, могут быть получены с единой точки эрения. Все эти формулы - двухпараметрические. Все они дают достаточно хорошее описание экспериментальных данных. Различаются они лишь по тем предположениям о виде потенциальной энергии В-колебаний, которые делаются при их выводе. Модель переменного момента инерции применялась к описанию энергий последовательности состояний со спинами / = 2.4.6... как в деформированных и переходных, так в сферических и околомагических ядрах. И всюду достигалось вполне удовлетворительное согласие с экспериментальными данными. Возникает вопрос: означает ли это, что при описании квазиротационных полос достаточно учесть только одну динамическую переменную β , или это говорит лишь о том, что спектры энергий таких состояний просты и двух параметров достаточно, чтобы их описать? К сожалению, опубликованные к настоящему времени работы по обоснованию модели переменного момента инерции /8/ не дают ответа на этот вопрос. Они лишь показывают, что можно построить такие разложения для энергии ядра по степеням флюктуации динамических переменных, в которых среди прочих членов есть и те, что рассматриваются в модели переменного момента инерции. Почему не важны другие члены, остается не ясным.

В то же время в модели содержится информация еще об одной физической величине ^{/9/}. Это информация об энергии первых O⁺ возбужденных состояний. Из выражения для $V(\beta)$ мы можем определить жесткость ядра по отношению к β -колебаниям - C. Взяв массовый коэффициент **В** из выражения для энергии вращения, мы грубо определим энергию 0⁺ возбужденных состояний как $E(0_2) = \frac{\hbar}{\sqrt{\frac{C}{B}}}$. Так как взяв $V(\beta)$ в виде (3), мы получаем аналитическое выражение для энергии вращательных уровней, а экспериментальные энергии описываются хорошо всеми из приведенных выше формул, то ниже мы будем использовать эту последнюю модель. Кроме того, имеются теоретические указания на то, что при больших *I* вращательные спектры должны быть эквидистантными /10/. А к такой асимптотике и приводит формула (1). (К эквидистантной асимптотике, кроме этой модели, приводит модель Давыдова-Чабана). В результате для жесткости по отношению к β -колебаниям получаем значение *ЗВ* ω^2 , а для $E(0_2)$ - величину $\sqrt{3}\omega$. Из выражения для E_1 следует, что

$$E(0_{2}) = E(2_{1}) \sqrt{\frac{2 \frac{E(4_{1})}{E(2_{1})} - (\frac{E(4_{1})}{E(2_{1})} - 1)}{\frac{10}{3} - \frac{E(4_{1})}{E(2_{1})}}}.$$
(6)

Можно предположить, что в тех ядрах, в которых жесткость по отношению'к у-колебаниям достаточно велика, так что можно принимать во внимание лишь изменения переменной β , формула (6) должна давать хорошее согласие с экспериментальными данными. К таким ядрам, видимо. относятся переходные ядра начала области редкоземельных элементов -Sm , Gd . В этих ядрах статическая деформация возникает скачком, и расчеты показывают, что ядра сразу становятся аксиально-симметричными /11/. В то же время в переходной области Pr и Os деформация меняется плавно, а энергия деформации слабо зависит от у . Мягкость ядра по отношению к изменениям у сама может быть причиной отклонения отношений энергий уровней во вращательной полосе от типично ротационных значений в сторону чисел, характерных для сферических ядер. В этом случае, предположив, что отношение $\frac{E(4_1)}{E(2_1)}$ полностью определяется мягкостью по отношению к в -колебаниям, мы неправильно определим параметры потенциальной энергии В-колебаний, а следовательно, и энергии 0⁺ возбужденных состояний. Результаты, приведенные в табл.1, подтверждают эти предположения. Из табл. 1 видно, что тенденция роста величины $\frac{E(0_2)}{E(2_1)}$ с увеличением деформации в изотопах Sm и Gd

хорошо воспроизводится формулой (6). В то же время теоретические и экспериментальные результаты для изотопов *Pt* не совпадают.

Естественно продолжить проверку соотношения (6), рассмотрев сильнодеформированные ядра. В этом случае предположение об одной коллективной переменной β должно соответствовать действительности. Но у деформированных ядер величина $\frac{10}{3} - \frac{E(4_1)}{E(2_1)}$ настолько мала, что становится чувствительной к экспериментальным ошибкам. Это приводит к слишком большому разбросу значений $\frac{E(0_2)}{E(2_1)}$, полученных по формуле (6), что не позволяет сделать четких выводов. Результаты расчетов для изотопов **D**у приведены в табл. 2.

В случае сферических ядер и ядер с замкнутыми оболочками предположение об одной динамической перменной не должно, казалось бы, соответствовать действительности. Тем не менее результаты, приведенные в табл. 3 и 4, указывают на качественное согласие между теоретическими и экспериментальными величинами (за исключением отдельных ядер). Видимо, это говорит о том, что всегда можно так выбрать основную динамическую переменную, чтобы с ее помощью получить качественное описание экспериментальных данных. Но интерпретация такой феноменологически введенной динамической переменной может меняться от ядра к ядру.

Литература

- M.A.J. Mariscotti, G. Scharff-Goldhaber, B. Buck. Phys.Rev., 178, 1864 (1969).
- D.R. Bés, R.A. Broglia. Nucl. Phys., <u>80</u>, 289 (1966);
 V.G. Soloviev. Nucl. Phys., <u>69</u>, 1 (1965).
- С.Т. Беляев, Б.А. Румянцев. Phys.Lett., <u>30B</u>, 444 (1969).
 К.М. Железнова, Н.И. Пятов, М.И. Черней. Изв. АН СССР, сер.физ., 31, 550 (1967).

- 4. А.С. Давыдов, А.А. Чабан. Nucl. Phys., 20, 499 (1960);
 - А.С. Давыдов. Возбужденные состояния атомных ядер. Атомиздат, 1967.
- 5. E.Nadjakov and I.N.Mikhailov. Nucl. Phys., A107, 92 (1968).
- 6. P.Holmberg, P.O.Lipas, Nucl. Phys., A117, 552 (1968).
- 7. H.Ejiri, Preprint INSJ-104, Tokyo, 1967.
- 8. T.K.Das, R.M.Drezler and A.Klein. Phys.Lett., <u>34B</u>, 235 (1971).
- 9, F.S. Stephens, N. Lark, R.M. Diamond, Phys. Rev. Lett., <u>12</u>, 225 (1964).
- В.Г. Зелевинский, М.И. Штокман. Программа и тезисы докладов XXI ежегодного совещания по ядерной спектроскопии и структуре атомного ядра, Москва, 1971, стр. 178.
- 11. D.A. Arseniev, L.A. Malov, V.V. Pashkevich, V.G. Soloviev. Preprint JINR, E4-3703, 1968.

Рукопись поступила в издательский отдел 5 августа 1971 года.

Значения	Тәблица І величин $rac{E(4_4)}{E(2_4)}$	$\frac{E(O_2)}{E(2_1)}$	$\frac{E(O_2)}{E(2_1)}$ meon.					
для изотопов Sm, Gdu Pt.								
Ядро	$\frac{E(4_{1})}{E(2_{1})}$	$h. \qquad \frac{E(0_2)}{E(2_1)}$	$\frac{E(0_2)}{E(2_1)} \text{meop.}$					
¹⁵² Gd	2,19	I , 79	2,15					
^{I54} Gd	3,02	5,54	6,18					
¹⁵⁶ Gd	3,24	II,8	12,4					
¹⁵⁸ Gd	3,29	18,2	I9 , 4					
146 Sm	I,85	I,94	I,45					
148 Sm	2,14	2,12	2,03					
150 Sm	2,34	2,24	2,52					
152 Sm	3,0I	5,45	6 , IO					
154 Sm	3,24	I2 , 4	12,8					
¹⁸⁴ Pt	2,69	3,04	3,77					
¹⁸⁶ Pt	2,56	2,47	3,22					
¹⁸⁸ Pt	2,52	3,00	3,08					
¹⁹⁰ Pt	2,49	3 , II	2,97					
¹⁹² Pt	2,48	3,78	2,94					
¹⁹⁴ Pt	2,47	3,86	2,91					
¹⁹⁶ Pł	2,46	3,19	2,87					

	таолица с		
Значения ве:	пичин $\frac{E(4_1)}{E(2_1)}$ эксл.	$\frac{E(O_2)}{E(2_4) \Rightarrow kch.}$	$\frac{E(0_2)}{E(2_1)}$ meop.
для 1	изотопов Ду		
Ядро	$\frac{E(4_1)}{E(2_1)} \Rightarrow cn.$	$\frac{E(O_2)}{E(2_1)} \xrightarrow{3kcn}$	$\frac{E(0_2)}{E(2_1)} meop$
56 Dy	2,82 + 3,03	4,90	4,44 : 6,36
58 Jy	3,I4 ÷3, 27	10,0	8,34 + I4,8
60 Jy	3,26+3,29	14,6	I4,2 ÷ I8,9
.62 Dy	3,26÷3,31	I4 , 0	I4,I ÷ 24,8
	Тәблица 3		
			<u>L (02)</u>
Значения во для изо	DTOROB Z_{2} , S_{n} , C	$\overline{E(2_1)}^{\text{sken.}}$	E(2 ₁)
Значения ве для изо 	E (2 ₁) \Rightarrow kcn. DTONOB Z_{7} , S_{1} , C $\frac{E(4_{1})}{E(2_{1})} \Rightarrow$ kcn.	$\frac{\overline{E(2_1)} \xrightarrow{\text{skcn. } 1}}{\frac{\overline{E(0_2)}}{\overline{E(2_1)} \xrightarrow{\text{skcn. } 1}}}$	$E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$
Значения ве для изо Ядро	ETINGUNH $E(2_1)$ where, DTORIOB Z_2 , S_1 , C $\frac{E(4_1)}{E(2_1)}$ where,	$\frac{\overline{E(2_1)} \xrightarrow{\text{skcn. } 1}}{\underline{E(2_1)}}$ $\frac{\overline{E(0_2)}}{\overline{E(2_1)} \xrightarrow{\text{skcn. } 1}}$	$E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$ $E(2_1)$
Значения ве для изо Ядро ⁸⁸ Zz	Е (21) Эксл. ОТОПОВ Z_{2} , S_{2} , C_{1} , C_{2} $E(2_{1})$ Эксл. $E(2_{1})$ Эксл. I,72	$F(2_{1}) \xrightarrow{i}{E(2_{1})} \xrightarrow{i}{F(2_{1})} \frac{i}{F(2_{1})} \frac{E(0_{2})}{E(2_{1})}$	$E(2_1)$ mulp. $Cn. \frac{E(0_2)}{E(2_1)}$ mapp. I,24
Значения ве для изо Ядро ⁸⁸ Zz ⁹⁰ Zz	эличин $\overline{E(2_1)}$ эксл. отопов Z_2 , S_n , C $\frac{E(4_1)}{E(2_1)}$ эксл. I,72 I,4I	$F(2_{1}) \xrightarrow{F(C_{1})} F(C_{1}) \xrightarrow{F(C_{1})} F(C_{2})}{E(C_{1})}$ $E(C_{2}) \xrightarrow{F(C_{2})} F(C_{2})}{E(C_{1})} \xrightarrow{F(C_{1})} F(C_{2})}$ I,44 0,80	$E(2_1)$ multiple $E(2_1)$ mul
Значения ве для изо Ядро ⁸⁸ Zr 90 _{Zr} 92 _Z r	Эличин $\overline{E(2_1)}$ эксл. отопов Z_2 , S_2 , C_2 , C_2 $\frac{E(4_1)}{E(2_1)}$ эксл. I,72 I,41 I,60	$p = E(2_1)^{3KCn.}$ E = PB $E(0_2)$ $E(2_1)^{3KC}$ $E(0_2)$ $E(2_1)^{3KC}$ I,44 0,80 I,49	$E(2_1)$ multiple $cn. \frac{E(0_2)}{E(2_1)}$ material I,24 0,78 I,05
Значения ве для изо Ядро ⁸⁸ Zz ⁹⁰ Zz ⁹² Zz ⁹⁴ Zz	Эличин $\overline{E(2_1)}$ эксл. отопов Z_2 , S_n , C $\frac{E(4_1)}{E(2_1)}$ эксл. I,72 I,41 I,60 I,60	$\frac{F(2_{1})}{E(2_{1})} \xrightarrow{\text{sken. } 1}$ $\frac{F(0_{2})}{F(2_{1})} \xrightarrow{\text{sken. } 1}$ $I,44$ $0,80$ $I,49$ $I,41$	$E(2_1)$ multip. $Cn. \frac{E(0_2)}{E(2_1)}$ material I,24 0,78 I,05 I,05
Значения ве для изо Ядро ⁸⁸ Zr ⁹⁰ Zr ⁹² Zr ⁹⁴ Zr ⁹⁶ Zr	Эличин $\overline{E(2_1)}$ эксл. отопов Z_7 , S_{H} , C $\frac{E(4_1)}{E(2_1)}$ эксл. I,72 I,41 I,60 I,60 I,82	$F(2_{1}) \xrightarrow{3 \times cn.} \gamma$ $E(2_{1}) \xrightarrow{3 \times cn.} \gamma$ $E(2_{2}) \xrightarrow{E(2_{1})} \xrightarrow{3 \times cn.} \gamma$ $I,44$ $0,80$ $I,49$ $I,41$ $0,94$	$E(2_1)$ multiple $cn. \frac{E(0_2)}{E(2_1)}$ metop. I,24 0,78 I,05 I,05 I,40
Значения ве для изо Ядро ⁸⁸ Zz ⁹⁰ Zz ⁹² Zz ⁹⁴ Zz ⁹⁶ Zz II ⁴ Sn	Эличин $\overline{E(2_1)}$ эксл. отопов Z_7 , S_{h} , C $\frac{E(4_1)}{E(2_1)}$ эксл. I,72 I,41 I,60 I,60 I,82 I,68	$\frac{F(2_{1})^{3KCn}}{E(2_{1})^{3KCn}}$ $\frac{F(0_{2})}{F(2_{1})^{3KC}}$ $I,44$ $0,80$ $I,49$ $I,41$ $0,94$ $I,22$	$E(2_{1})$
Значения ве для изо Ядро ⁸⁸ Zr 90Zr 92Zr 94Zr 96Zr 114Sn 116Sn	Эличин $\overline{E(2_1)}$ эксл. отопов Z_2 , S_n , C $\frac{E(4_1)}{E(2_1)}$ эксл. I,72 I,41 I,60 I,60 I,82 I,68 I,84	$F(2_{1}) \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$$	$E(2_1)$ multiple $E(2_1)$ mul
Значения ве для изо Ядро ⁸⁸ Zr ⁹⁰ Zr ⁹² Zr ⁹⁴ Zr ⁹⁶ Zr ¹¹⁴ Sn ¹¹⁶ Sn ¹¹⁸ Sn	Эличин $\overline{E(2_{1})}$ эксл. отопов Z_{2} , S_{2} , C_{2} , C	$F(2_{1}) \text{$ \rightarrow \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$ \text{$$	$E(2_{1})$
Значения ве для изо Ядро ⁸⁸ Zr ⁹⁰ Zr ⁹² Zr ⁹⁴ Zr ⁹⁶ Zr ¹¹⁴ Sn ¹¹⁶ Sn ¹¹⁸ Sn ¹²⁰ Sn	Эличин $\overline{E(2_1)}$ эксл. отопов Z_2 , S_n , C $\frac{E(4_1)}{E(2_1)}$ эксл. 1,72 1,41 1,60 1,60 1,82 1,68 1,84 1,87 1,88	$\begin{array}{c} \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \hline \\ \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \hline \\ \hline \\ 1,44 \\ 0,80 \\ I,49 \\ I,41 \\ 0,94 \\ I,22 \\ I,33 \\ I,43 \\ I,58 \end{array}$	$E(2_{1})$
Значения ве для изо Ядро ⁸⁸ Z2 ⁹⁰ Z2 ⁹² Z2 ⁹⁴ Z2 ⁹⁶ Z2 ¹¹⁴ Sn ¹¹⁶ Sn ¹¹⁸ Sn ¹²⁰ Sn ¹⁴⁰ C	Эличин $\overline{E(2_{1})}$ эксл. отопов Z_{2} , S_{2} , C_{2} , C	$\begin{array}{c} \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \overline{E(2_{2})} \xrightarrow{3 \times cn.}{} \\ \hline \\ \overline{E(2_{1})} \xrightarrow{3 \times cn.}{} \\ \hline \\ \hline \\ 1,44 \\ 0,80 \\ 1,49 \\ 1,41 \\ 0,94 \\ 1,22 \\ 1,33 \\ 1,43 \\ 1,58 \\ 1,19 \end{array}$	$E(2_{1})$

	Таблица 4	-				
Значения величин $\frac{E(4_1)}{E(2_1)}$ эксп. $I \frac{E(0_2)}{E(2_1)}$ эксп. $J \frac{E(0_2)}{E(2_1)}$ теор. для изотопов Ru, Pd, Cd						
Ядро	$\frac{E(4_1)}{E(2_1)} \xrightarrow{\text{SKCM}}.$	$\frac{E(O_2)}{E(2_1)}$ skon.	$\frac{E(0_2)}{E(2_1)} \operatorname{meop}.$			
100 Ry	2,28	2,10	2,35			
¹⁰² Ru	2,34	I,99	2,49			
^{IO4} Ru	2.48	2,74	2,92			
IO4 Pd	2,40	3,25	2,68			
106 Pd	2,42	2,22	2,64			
IO8Pd	2,38	2,43	2,73			
^{IIO} Pd	2,46	2,53	2,88			
^{IIO} Cd	2,34	2,25	2,54			
II2Cd	2,29	I,98	2,38			
II4Cd	2,30	2,03	2,40			
II6Cd	2,37	2,69	2,60			

12

Рис. 1. Потенциальная энергия β -колебаний и эффективная потенциальная энергия $E_{I}(\beta)$ в модели переменного момента инерции.

Рис. 2. Потенциальная энергия β -колебаний и эффективная потенциальная энергия $E_{I}(\beta)$ в модели /5,6/.

