5889

Эка чит. ЗАЛА

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна.

P4 - 5889

С.И. Габраков, А.А. Кулиев, Н.И. Пятов, Д.И. Саламов, Г. Шульц

КОЛЛЕКТИВНЫЕ 1⁺ -СОСТОЯНИЯ В ЧЕТНО-ЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДРАХ

1971

ААБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

P4 - 5889

С.И. Габраков, А.А. Кулиев, Н.И. Пятов, Д.И. Саламов, Г. Шульц

КОЛЛЕКТИВНЫЕ 1⁺ -СОСТОЯНИЯ В ЧЕТНО-ЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в Nuclear Physics

Введение

В настоящее время идея об остаточных спин-спиновых корреляциях $^{/1/}$ получила широкое признание в ядерной физике. В сферических ядрах эти корреляции объясняют наблюдаемое отклонение магнитных моментов от линий Шмидта $^{/2/}$. В деформированных ядрах учет спин-спиновых корреляций позволяет вычислить значения эффективных g_{κ} -факторов, извлекаемых из магнитных моментов и значений B(M1) в ротационных полосах $^{/3,4/}$. Спин-спиновые (np) -корреляции приводят к сильному замедлению разрешенных бета-переходов га - мов-теллеровского типа между низколежащими состояниями $^{/5/}$. До сих пор мы упоминали только эффекты, проявляющиеся в низковозбужденных состояниях атомных ядер, и их объяснение требует отталкивательного характера спин-спиновых корреляций. Следовательно, коллективные ветви возбуждений, генерируемых этими остаточными взаимодействиями, должны лежать в области высоких энергий.

Целью данной работы является исследование коллективных 1⁻-возбуждений, обусловленных спин-спиновыми корреляциями между тождественными нуклонами в четно-четных деформированных ядрах. Первые результаты этих исследований были опубликованы в работах ^{/6/}. В них 1⁺-состояния рассматривались как вибрационные возбуждения. Расчеты проводились методом Тамма-Данкова с использованием схемы одночас-

тичных уровней в модели Нильссона. Было показано, что в области энергий порядка 10-13 Мэв возможно формирование нескольких когерентных состояний типа магнитного дипольного MI -резонанса. Эти состояния вбирают в себя большую часть силы MI -переходов в основное состояние и дают около 80% вклада в дипольное правило сумм.

Состояния типа M1 -резонанса были недавно обнаружены в ядре 208 Рь в реакции (у, n)^{77/}. В интервале энергий 7,4-8,25 Мэв было найдено 7 состояний типа 1⁺, которые, по-видимому, исчерпывают основную осцилляторную силу M1 -переходов (≈ 90%). В деформированных ядрах аналогичные состояния пока не обнаружены.

В настоящей работе приведены более полные и уточненные расчеты свойств коллективных 1⁺состояний, в которых (а) использована реалистическая схема одночастичных уровней в потенциале Саксона-Вудса, (б) сравниваются расчеты по методу Тамма-Данкова (ТД) и в приближении случайных фаз (СФ), (в) уточнены константы спин-спинового взаимодействия из рассмотрения магнитных моментов нечетных ядер.

Модельный гамильтониан и описание 1 состояний

Рассмотрим систему нуклонов в аксиально-симметричном среднем поле, взаимодействующих посредством спаривательных и спин-спиновых остаточных сил. Для простоты мы пренебрегаем квадруполь-квадрупольными силами, которые несущественны для рассматриваемых 1⁺-состояний. Гамильтониан системы, описывающий внутреннее движение нуклонов при фиксированной ориентации ядра, после канонического преобразования Боголюбова запишем в представлении квазичастиц ^{/4,6/}:

$$H = H_{sqp} + H_{coll} + H_{int}$$
(1)
$$H_{sqp} = \Sigma E_{s}(\tau) B_{es}(\tau)$$
(1a)

$$H_{coll} = \frac{1}{4} \sum_{\tau\tau'} \kappa_{\tau\tau'} \sum_{ss'} \sigma_{ss'}^{(\mu)} L_{ss'} [C_{ss'}^{+}, (\tau) + C_{ss'}, (\tau)] \times$$

$$\times \sum_{mm'} \sigma_{mm'}^{(\mu)} L_{mm'} [C_{mm'}^{+}, (\tau') + C_{mm'}, (\tau')]$$

$$H_{int} = \frac{1}{2\sqrt{2}} \sum_{\tau,\tau'} \kappa_{\tau\tau'} \sum_{ss'} \sum_{mm'} \{\sigma_{ss'}^{(\mu)} M_{ss} \sigma_{mm'}^{(\mu)} L_{mm'} D_{ss'}, (\tau) \times$$

$$\times [C^{+}, (\tau') + C_{ss'}, (\tau')] + \sigma_{ss'}^{(\mu)}, L_{ss'}, \sigma_{mm'}^{(\mu)}, M_{ss'}, [C^{+}, (\tau) + C_{ss'}, (\tau)] D_{mm'}, M_{ss'}$$

$$\times [C^{+}, (\tau') + C_{ss'}, (\tau')] + \sigma_{ss'}^{(\mu)}, L_{ss'}, \sigma_{mm'}^{(\mu)}, M_{ss'}, [C^{+}, (\tau) + C_{ss'}, (\tau)] D_{m'}, M_{ss'}$$

Здесь H_{xqp} описывает квазичастичные возбуждения системы с энергиями $E_x(r) = \sqrt{\Delta^2 + (\epsilon_x(r) - \lambda_r)^2}; H_{coll}$ описывает коллективные 1⁺ возбуждения с проекцией углового момента на ось симметрии ядра K = 0 или 1 ; H_{int} представляет взаимодействие квазичастиц с 1⁺ фононами. В гамильтониане (1) включена только изотропная по угловым переменным часть спин-спинового взаимодействия, причем предполагается, что все радиальные матричные элементы постоянны и включены в силовой параметр κ_{rr} . В дальнейшем полагаем $\kappa_{rr} = \kappa$, $\kappa_{np} = q\kappa (0 \le |q|| \le 1)$. В выражениях (16) и (1в) $\sigma_{ss}^{(\mu)}$, – матричные элементы оператора $\sigma_{\mu} + (-1)^{\mu} \sigma_{\mu}$, состояния $|\nu, \rho > u, |\nu, -\rho >$ сопряжены по времени, величины L_{ss} . и M_{ss} , связаны с параметрами канонического преобразования

 $L_{ss} = u_{s} v_{s} - u_{s} v_{s}$ $M_{ss} = u_{s} u_{s} + v_{s} v_{s}$ (2)

а операторы В, , , D, , и С, , определены как

 $B_{ss} = \sum_{\rho=\pm}^{s} a_{s\rho}^{+} a_{s'\rho}^{+} \rho$ $D_{ss} = \sum_{\rho}^{\rho} \rho a_{s-\rho}^{+} a_{s-\rho}^{+} \rho$ $C_{ss} = \frac{1}{\sqrt{2}} \sum_{\rho}^{\rho} a_{s'\rho}^{+} a_{s-\rho}^{+}$

В методе СФ 1⁺-состояния рассматриваются как однофононные возбуждения, описываемые волновой функцией

$$|\Psi_{I}\rangle = Q_{I}^{+} |\Psi_{0}\rangle = \frac{1}{\sqrt{2}} \sum_{ss',\tau} [\Psi_{ss}^{I}, (\tau) C_{ss'}^{+}, (\tau) - -\phi_{ss'}^{I}, (\tau) C_{ss'}^{+}, (\tau)]|\Psi_{0}\rangle, \qquad (4)$$

где Q_{i}^{+} - оператор рождения 1⁺ фонона, а $|\Psi_{0}\rangle$ - фононный вакуум. Двухквазичастичные амплитуды ψ_{ss}^{i} , и ϕ_{ss}^{i} , нормированы условием

$$\sum_{ss'\tau} \left[\left(\psi_{ss}^{l}, (\tau) \right)^{2} - \left(\phi_{ss}^{l}, (\tau) \right)^{2} \right] = 1.$$
 (5)

Следуя обычной процедуре метода СФ, получим дисперсионное уравнение для энергий возбуждения ω , ^{x/}:

$$(1 + \kappa F(\tau))(1 + \kappa F(\tau')) - \kappa^2 q^2 F(\tau) F(\tau') = 0, \qquad (6)$$

где

$$F(\tau) = \sum_{ss} \frac{\sigma_{ss}^{2} \cdot (\tau) L_{ss}^{2} \cdot (\tau)}{E_{ss}^{2} \cdot (\tau) - \omega_{l}^{2}}.$$
 (6a)

Полагая все ϕ_{ss}^{i} , \mathcal{D} , получим обычные уравнения метода ТД.

В силу симметрии выбранного спин-спинового взаимодействия наиболее характерной величиной для рассматриваемых 1⁺-состояний будет вероятность перехода в основное состояние. Как показано в работе ^{/6/}, приведенная вероятность M1-перехода может быть записана в виде

$$B_{i}(M1, 0^{+} \rightarrow 1^{+}K) = \frac{3}{16\pi} \left[\sum_{ss'\tau} d_{ss'}^{(\mu)}(\tau) L_{ss'}(\tau) \left[\psi_{ss}^{i}, (\tau) + \phi_{ss'}^{i}, (\tau)\right]^{2},$$

$$(7)$$

^{X/}Так как гамильтониан (1) не является ротационно-инвариантным, среди решений уравнения (6) есть одно "духовое" состояние с K=1, размешанное по всем состояниям. Процедура отделения "духа" была недавно разработана Бирбраиром ^{/87}. Исключение этого состояния практически не влияет на свойства высоколежащих 1⁺-состояний.

$$D_{\mu} = g_{s} \left(\sigma_{\mu} + (-1)^{\mu} \sigma_{-\mu} \right) + 2 g_{\ell} \left(\ell_{\mu} + (-1)^{\mu} \ell_{-\mu} \right).$$
(7a)

Чтобы установить положение магнитного дипольного резонанса (группы когерентных 1⁺ уровней), используем дипольное правило сумм и силовые функции MI -переходов /9,10/

$$\frac{1}{4} < \Psi_0 \ | [D_\mu, [H, D_\mu]] | \Psi_0 > = \frac{8\pi}{3} \sum_i \omega_i B_i (M1, 0^+ \downarrow 1^+)$$
(8)

$$S_{\mu}(\omega) = \frac{1}{\Delta \omega} \sum_{(i,\Delta \omega)} |\langle \Psi_i | D_{\mu} | \Psi_0 \rangle|^2, \qquad (9)$$

причем исследуется "насыщение" правой части правила сумм (8) с помощью функции

$$\chi_{n}(\omega) = \frac{8\pi}{3} \sum_{i=1}^{n} \omega_{i} B_{i} (M1, 0^{+} \rightarrow 1^{+}_{i}).$$
(10)

Левая часть правила сумм (квазичастичная оценка) не зависит от κ_{π} . Уравнение (8), вообще говоря, не выполняется, поскольку $|\Psi_i>$ не являются точными собственными функциями гамильтониана (1). По различию левой и правой частей уравнения (8) можно судить о степени точности используемого приближения при решении задачи. По поведению функции $\chi_{n}(\omega)$ можно судить о вкладе различных 1⁺ состояний в правило сумм.

В области высоких энергий, где плотность 1⁺-уровней велика, экспериментально удобнее измерять среднюю приведенную ширину M1 -переходов \bar{k}_{M1} /11/, которая связана с величиной силовой функции

$$\vec{K}_{M1} = 2,76 \cdot 10^{-3} \, \mathrm{S}(\omega), \qquad (10)$$

где $S(\omega)$ - статистическая сумма S_{μ} при $\mu=0,\pm 1$ /10/.

6

Результаты расчетов и обсуждение

В расчетах использовалась схема одночастичных уровней в деформированном потенциале Саксона-Вудса. Уравнение Шредингера с таким потенциалом решалось методом, развитым в работе ^{/12/}, при следующих значениях параметров (обозначения см. ^{/12/}):

$$r_{0} = 1,26 \ \phi, \qquad V_{0} = 44,8 \ \text{M} \Rightarrow \text{B}$$

$$\kappa_{\ell_{s}} = 0,43 \ \phi^{2}, \qquad a = 1,67 \ \phi^{-1}$$

$$r_{0} = 1,24 \ \phi, \qquad V_{0} = 60 \ \text{M} \Rightarrow \text{B}$$

$$\kappa_{\ell_{s}} = 0,33 \ \phi^{2}, \qquad a = 1,67 \ \phi^{-1}$$

$$(11)$$

Для рассматриваемой группы ядер с 160 < A < 180 расчеты проводились при значении параметров деформации

$$\beta_{20} = 0,28$$
, $\beta_{40} = 0,02$. (12)

Отметим, что при значении параметров (11) и (12) удается хорошо описать экспериментальные уровни нечетных ядер в этой области $^{/13/}$. При вычислении характеристик спаривательного взаимодействия (Δ , λ) учитывалось по 48 нейтронных и протонных уровней.

Константы спин-спинового взаимодействия находились из расчета магнитных моментов нечетных ядер с использованием методов учета взаимодействия квазичастиц с фононами, развитых в работах Соловьева (см., например, ^{/14/}) и Кулиева и др. ^{/4/}. В методе Соловьева фононы в четно-четных ядрах описываются в приближении СФ и полагается, что в нечетных ядрах их структура не меняется, т.е. не учитывается эффект блокировки в фононах. В работе ^{/4/} учет связи квазичастиц с фононами проводится самосогласованно в методе ТД, т.е. структура 1⁺фононов изменялась в зависимости от состояния нечетной частицы и учитывается эффект блокировки. В качестве примера на рис. 1 показаны

Рис. 1. g_к -фактор в¹⁶³ Dy как функция силового параметра к . Расчеты проведены по методу Соловьева (1-ТД и 11-СФ) и Кулиева-Пятова (III) . Заштрихована область экспериментальных значений, приведенных в работе ^{/4/}.

а

результаты расчетов g_{κ} -фактора для основного состояния 5/2⁻ в ядре ¹⁶³ D_{γ} , проведенных с использованием обоих методов (в методе Соловьева 1⁺ фононы вычислялись в приближении ТД и СФ ^{X/}). Различие этих методов можно свести к перенормировке константы κ примерно на 10-20%. Удовлетворительное описание экспериментальных значений g_{κ} в редкоземельных ядрах получено при значениях

к≌ 0,26 Мэви q≈0, (13)

что близко к значению $\kappa = 0,04\hbar\omega_0$, полученному ранее с моделью Нильссона /4/. Таким образом, при использовании потенциала Саксона-Вудса значение этого параметра практически не изменяется.

Вышеуказанные значения параметров (13) использовались во всех расчетах для четно-четных ядер с 160 < A < 180.

В интервале энергий возбуждений от 2 до 15 Мэв получено примерно по 140 нейтронных и протонных состояний с K = 1 и по 60 состояний с K = 0 . В этом интервале энергий можно выделить три области со специфическими свойствами 1⁺-состояний.

а. В области спектроскопических энергий ($\omega \leq 4-5$ Мэв) все 1⁺состояния слабо коллективизированы и характеризуются малыми значениями B(M1) (См. табл. 1). Среди них, однако, могут появиться несколько состояний с K=1, имеющих B(M1) \approx B(M1) $_{sp}$. Как правило, это почти чистые двухквазичастичные состояния с квазичастицами на уровнях из одной сферической подооболочки вблизи поверхности Ферми. Состояния этой области дают малый вклад ($\approx 5\%$) в дипольное правило сумм (см. рис. 2,3).

б. В области энергий связи нейтрона (6-8 Мэв) 1⁺-состояния значительно более коллективизированы. Здесь характерное эначение В(М1)_≈0,5B(М1)_{_}.

 $^{x/B}$ расчетах учитывалось около 140 фононов с K=0 в нейтронной системе.

Основной вклад в вероятность перехода, как правило, дают одночастичные переходы между состояниями подоболочек с различными ℓ (например, типа $f_{7/2} \rightarrow h_{11/2}$, $g_{9/2} \rightarrow i_{13/2}$ и т.д.) и между уровнями одной сферической подоболочки (см. табл. 1). Состояния этой области дают примерно 20% вклада в дипольное правило сумм. Они могут наблюдаться в реакциях типа (n, γ) , причем характерное значение k_{1} , для них порядка 20 х 10⁻³ Мэв⁻³ (см. рис. 4). Это предсказание теории качественно согласуется с экспериментальными данными, полученными из (n, y)реакций (см., например, /15). Однако в эксперименте обычно наблюдаются усредненные характеристики М1-переходов с группы резонансов (с различными значениями спинов) на различные по структуре низколежащие состояния. В теории же вычисляется усредненная по небольшому энергетическому интервалу ширина k, для переходов с различных по энергии 1⁺-состояний в основное состояние. Поэтому в теории и эксперименте мы имеем дело с различными энергетическими зависимостями *k*... и прямое сравнение возможно только для отдельных переходов. В отличие от авторов /10/ мы приходим к выводу, что 1+-состояния в области энергии связи нуклона далеко не исчерпывают всей возможной силы М1-переходов.

в. Несколько сильно коллективизированных (когерентных)состояний с K=0 и K=1 появляются в области энергий 8-10 Мэв. Для них значение B(M1) может достигать нескольких одночастичных единип. Эти состояния дают основной вклад в дипольное правило сумм. Можно ожидать, что они формируют магнитный дипольный резонанс, доступный экспериментальному наблюдению в реакциях типа (γ ,n), (p,p), (e,e) и др. Гамма-переходы с этих состояний характеризуются большими эначениями $\bar{k}_{M1} \approx 60 \cdot 10^{-3}$ Мэв⁻³ (см. рис. 4). Анализ структуры когерентных возбуждений показывает, что они в основном обусловлены одночастичными переходами между уровнями спин-орбитальных партнеров в области энергий связанных состояний, как и в сферических ядрах ^{/9/} (см. табл. 1).

10

Таблица І

Характеристики ряда I⁺ состояний с наибольшими значениями B(MI) в ¹⁶⁸ Ег. Расчет проведен в методе СФ. Амплитуды У₅₅⁴ не приведены ввиду их малости (/У₅₅//<0,1).

Энергия Се:(Мэв) Н	к ^п -	B(M1) B(M1)	Структура состояний	Амплитуда У вв'
3,18	1+	1,07	pp 514 h11/2 - 523 h11/2 pp 411 d 5/2 - 411 d 3/2	-0,99 0,18
7,80	1+	1,28	pp 523 h11/2 - 523 h 9/2 pp 532 h11/2 - 521 f 7/2 pp 532 h11/2 - 521 f 7/2 pp 532 h11/2 - 532 h 9/2 pp 532 h 9/2 - 550 h11/2 pp 530 f 7/2 - 550 h11/2 pp 404 g 9/2 - 404 g 7/2	0,27 -0,82 0,16 0,21 -0,21 0,24
8,22	1+	1,02	pp 514+ h11/2 - 514+ h 9/2 pp 523+ h11/2 - 523+ h 9/2 pp 523+ h 9/2 - 523+ h 9/2 pp 523+ h 9/2 - 541+ h11/2 pp 532+ h11/2 - 521+ f 7/2 pp 532+ h11/2 - 532+ h 9/2 pp 532+ h 9/2 - 550+ h11/2 pp 404+ g 9/2 - 404+ g 7/2 pp 400+ s 1/2 - 420+ d 5/2 pp 411+ d 5/2 - 431+ g 7/2	-0,18 0,28 -0,23 0,39 0,18 0,17 0,27 0,17 0,62
9 , 45	1+	0,73	nn 505† h11/2 - 505 + h 9/2 nn 514† n11/2 - 503 † f 7/2 nn 514† n11/2 - 514 † h 9/2 m 514† n11/2 - 514 † h 9/2 m 514 + h 9/2 - 532 † h11/2 nn 523† h11/2 - 523 † h 9/2 nn 503† f 7/2 - 532† h11/2 nn 501† f 5/2 - 541 † f 7/2 nn 642, i11/2 - 6604 i13/2	0,38 0,16 0,20 -0,22 0,17 0,58 0,45 0,28
9,73	1+	0,99	pp 514 + h11/2 - 514 + h 9/2 pp 523 + h11/2 - 512 + f 7/2 pp 523 + h11/2 - 523 + h 9/2 pp 404 + g 9/2 - 404 + g 7/2 pp 413 + g 9/2 - 413 + g 7/2 pp 422 + g 7/2 - 400 + s 1/2	0,66 0,22 0,14 0,14 -0,16 -0,58

В области энергий порядка 15 Мэв появляется несколько слабо коллективизированных состояний. Они соответствуют возбуждениям, при которых происходят переходы с изменением главного квантового числа $\Delta N = \pm 2$ и характеризуются заметной величиной \vec{k}_{KI} (рис. 4). При использовании модели Нильссона, в которой нет смешивания состояний из различных оболочек, такие состояния не появляются.

Правила сумма (8) значительно лучше выполняются в методе СФ, чем в приближении ТД (сравни рис. 2 и 3); вычисленные энергии ω, при этом отличаются слабо.

На рис. 4 показано также поведение \vec{k}_{M1} при $\kappa = 0$. Включение спин-спиновых корреляций смещает максимум \vec{k}_{M1} в область высоких энергий, где формируется M1 -резонанс.

Результаты настоящей работы качественно согласуются с ранее проведенными расчетами при использовании модели Нильссона /6/

В заключение выражаем признательность сотрудникам отдела теории ядра за полезное обсуждение работы.

Литература

- A.Arima, H.Horie. Progr. Theor. Phys., <u>11</u> 509 (1954). <u>12</u>, 623 (1954). B.R. Mottelson. Proc. Int. School of Phys., XV Course, Varenna, 1960. Academic Press, 1962, p.44.
- 2. A.Bohr, B.R.Mottelson. Nuclear Structure, Benjamin Inc., 1969.
 v.1; N.Freed, L.S.Kisslinger. Nucl. Phys., 25, 611 (1961);
 A.B. Migdal. Nucl. Phys., 75, 441 (1966).
- 3. Э. Боденштедт, Дж. Роджерс. Возмущенные угловые корреляции. Атомиздат, М., 1966, гл. II

Z.Bochnacki and S.Ogaza. Nucl. Phys., <u>69</u>, 186 (1965).

4. А.А. Кулиев, Н.И. Пятов. ЯФ, <u>9</u>, 313, 955 (1969).

- J.Fujita and K. Ikeda, Nucl. Phys., <u>67</u>, 145 (1965);
 J.A.Halbleib and R.A. Sorensen. Nucl. Phys., <u>A98</u>, 542 (1967).
 - С.И. Габраков, А.А. Кулиев. Препринт ОИЯИ Р4-5003, Дубна, 1970.
- 6. С.И. Габраков, А.А. Кулиев, Н.И. Пятов. ЯФ, <u>12</u>, 82 (1970).
 - S.I. Gabrakov, A.A. Kuliev, N.I. Pyatov, JINR, E4-4908, Dubna, 1970.
- 7. C.D. Bowman et al., Phys. Rev. Lett., 25, 1302 (1970).
- 8. B.L. Birbrair. Nucl. Phys., A108, 449 (1968).
- 9. R.A. Broglia / et al., Nucl. Phys., A109, 353 (1968).
- 10. C.S. Shapiro and G.T. Emery. Phys. Rev. Lett., 23, 244 (1969).
- Дж. Блатт, В. Вайскопф. Теоретическая ядерная физика, ИИЛ, Москва, 1954.
- Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин. Изв. АН СССР, сер. физ., <u>32</u>, 1960 (1968).
- О. Натан, С.Г. Нильссон. Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана. Атомиздат, М., гл. 10, 1969.
- V.S. Soloviev. Phys. Lett., <u>16</u>, 308 (1965);
 Prog. Nucl. Phys., <u>10</u>, 239 (1968).
- 15. L.M.Bollinger and G.E.Thomas. Phys. Rev., <u>C2</u> 1951 (1970).

Рукопись поступила в издательский отдел 24 июня 1970 года.