

Экз. ЧИТ. ЗАЛА

P4 -5863

Г. Шульц, Х.Ж. Вибике, Ф.А. Гареев

О РЕАКЦИИ (**d**,**p**) НА ДЕФОРМИРОВАННЫХ ЯДРАХ

1971

алборатория теоретической физики

P4 -5863

# Г. Шульц, Х.Ж. Вибике, Ф.А. Гареев

# О РЕАКЦИИ **(d,p)** НА ДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в Nuclear Physics



Проблеме изучения дейтронного срыва на деформированных ядрах посвящен ряд статей /1/.

В настоящей работе для описания этого процесса на деформированных ядрах <sup>24</sup>Mg и<sup>176</sup>Yb применяется метод связанных каналов в борновском приближении (ССВА). Метод связанных каналов, использованный в данной работе, имеет следующие особенности:

1. Обобщенные искаженные волны вычислены в адиабатическом приближении и поэтому все ротационные возбужденные состояния, принадлежащие основной полосе начального и конечного ядер, включены в рас-

2. Волновая функция связанного состояния переданного нейтрона разложена по функциям Штурма<sup>/3,4/</sup>, которые образуют полный набор для любых квадратично интегрируемых функций.

Хорошо известно, что амплитуда передачи очень чувствительна к асимптотическому поведению волновой функции связанного состояния переданной частицы. Обычно при разложении одночастичной волновой функции связанного состояния деформированного ядра по волновым функциям сферического потенциала Саксона-Вудса вкладом от непрерывного спектра пренебрегают. Поэтому полученные одночастичные волновые функции деформированного ядра имеют неправильное асимптотическое поведение при больших г .

Метод разложения по волновым функциям Штурма не имеет принципиального ограничения по числу базисных состояний и, следовательно, этот метод гарантирует корректное поведение волновой функции на любых расстояниях. Заметим, что некоторые попытки в этом направлении были сделаны ранее Немировским и Чепурновым<sup>/5/</sup> и Ростом<sup>/6/</sup>.

В следующем параграфе описан метод вычисления одночастичных волновых функций деформированных ядер и дифференциальных сечений. В §З результаты расчётов сравниваются с экспериментальными данными. Выводы даны в §4.

## 2, Сечение срыва

Вычисление искаженных волн для падающих и рассеянных частиц проводится методом связанных каналов, описанным в /7,8/

Поэтому остановимся только на волновой функции связанного состояния переданного нейтрона. Она характеризуется проекцией Ω полного углового момента J и чётностью π и может быть представлена в виле<sup>/3/</sup>:

$$\psi_{\Omega\pi}\left(\vec{r}_{n}\right) = \sum_{n \ell j} a_{n \ell j}^{(\Omega)} \frac{S_{n \ell j}(r)}{r} |\ell j \Omega \rangle, \qquad (1)$$

где S<sub>nl1</sub>(r) - функции Штурма, которые удовлетворяют уравнению:

$$\left[\frac{\hbar^{2}}{2m}\left(\frac{d^{2}}{dr^{2}}-\frac{\ell(\ell+1)}{r^{2}}\right)+E-V_{S0}(r)\cdot\vec{\sigma\ell}-\alpha_{n\ell_{j}}V(r)\right]S_{n\ell_{j}}(r)=0.$$
 (2)

Здесь V(r) - потенциал Саксона-Вудса, Y<sub>0</sub>(r) - потенциал спин-орбитального взаимодействия, **E** - энергия связи переданного нейтрона. Коэффициенты **a**<sub>n</sub>l<sub>i</sub> являются собственными значениями уравнения (2) и выбраны так, чтобы были справедливы следующие граничные условия:

$$S_{n\ell_l}(0) = 0,$$
 (3)

$$S_{n\ell_{j}}(r \to \infty) \propto \exp\left(-\sqrt{\frac{2m}{\hbar^{2}}} |E|r\right).$$
 (4)

Используя такие одночастичные волновые функции для деформированных ядер  $\psi_{\Omega\pi}$  и искаженные волны с учётом условия (1), можно написать выражение для дифференциального сечения реакции срыва на чётно-четном ядре:

$$\frac{d\sigma}{d\Omega}(\theta) = 2 \cdot \sigma_{LJ\Omega}^{CCBA}(\theta), \qquad (5)$$

где L – переданный угловой момент, J – полный угловой момент и $\Omega$  – проекция J. Сечения  $\sigma_{LJ\Omega}^{CCBA}(\theta)$  определяются /9/:

$$\sigma_{LJ\Omega}^{CCBA}(\theta) = \frac{1}{2} \frac{\mu_{p}\mu_{d}}{(2\pi\hbar^{2})^{2}} D_{np}(\frac{k_{p}}{k_{d}}) \cdot (2L+1)^{-1} *$$
(6)

\* 
$$\sum_{\substack{m_{\rho} \\ m_{\rho}}} |\sum_{n \ell_{I}} a_{n \ell_{I}}^{(\Omega)} \sum_{\sigma} (L s \Omega - \sigma \sigma | J \Omega) (\ell s \Omega - \sigma \sigma | j \Omega) B_{L \Omega} (n \ell_{I}, \sigma) |^{2}$$

$$B_{L\Omega}(n\ell_i,\sigma) = \sum_{\substack{\rho_p \rho_d}} \hat{\ell}_p \hat{\ell}_d \hat{\ell}^{-1}(\ell_p \ell_d 00 | \ell 0) (\ell_p \ell_d m_p m_d | \ell \Omega - \sigma) *$$
(7)

$$*(\ell_p'\ell_d' m_p m_d | L\Omega - \sigma)(\ell_p' \ell_d' m_p' 0 | Lm_p') I(\rho_p \rho_d', n\ell_i) Y_{\ell_p' m_p'}(\theta)$$

ρ обозначает набор квантовых чисел (ℓ,ℓ',m) и :

$$I(\rho_{p} \rho_{d}, nlj) = \int_{0}^{\infty} R_{\rho_{p}}(r) \frac{S_{nlj}(r)}{r} R_{\rho_{d}}(r) r^{2} dr$$
(8)

- интеграл перекрытия радиальных волновых функций. Заметим, что в сечение ССВА входит формфактор, являющийся когерентной суперпозицией функций  $a_{n\ell l}^{(\Omega)} S_{n\ell l}(r)$  и при этом полный переданный угловой момент J не совпадает с *j* -несохраняющимся моментом деформированной орбиты. Заменяя в (8) общую радиальную волновую функцию  $R_{\ell'\ell}^m$  обычной волновой функцией ( $\ell_d' = \ell_d, \ell_p' = \ell_p$ ), можно провести суммирование по  $m_p, m_d, \sigma$  в (7) и (6) и получить условия  $\ell = L$  и *j* = J. В результате DWBA сечение<sup>/10/</sup>

$$\frac{d\sigma}{d\Omega}(\theta) = 2 \cdot \sigma_{LJ}^{DWBA}(\theta)$$
(9)

можно вычислить, причем формфактор является суперпозицией функций  $a_{n}^{(\Omega)}$ , S<sub>n</sub>, и суммирование ведется только по квантовому числу **n** ( l и i фиксированы). Уравнение (9) недавно было применено Андерсеном и др. /4/ для описания (d, p) реакции на ядре <sup>239</sup> Pu в случае возбуждения высоколежащих состояний. В работе авторы пренебрегают зависимостью одночастичных состояний деформированных ядер от  $\beta_4$ , берут простое спин-орбитальное взаимодействие, не зависящее от параметров деформации β<sub>λ</sub>, и, что самое главное, среднее поле для деформированного ядра разлагают в ряд Тэйлора. А ряд Тэйлора при тех значениях /4/ параметров, которые применяются в , сволится только для окрестностей двух углов θ, определяемых нулями сферической функции Υ<sub>20</sub> (θ). Важно отметить, что правильную асимптотику на больших г имеют только одночастичные волновые функции, полученные методом Штурма-Лиувилля или методом связанных каналов . DWBA сечение (9) применимо только в том случае, когда члены с *j ≠ J* в ССВА амплитуде малы по сравнению с членом i = J и использование искаженных волн. меняюшихся в зависимости от параметров деформации среднего поля, не приводит к дополнительным эффектам.

На основе изложенного выше формализма написана программа **POLLUX** /11/ на языке **ALGOL** для ЭВМ **CDC**-1604А. При вычислении амплитуды перехода дейтронная волновая функция нормируется в приближении нулевого радиуса действия ядерных сил и сечение умножается на фактор 1,5.

### 3. Сравнение с экспериментальными данными

Для сравнения теории с экспериментальными данными были выбраны сильнодеформированные ядра <sup>25</sup> Mg и<sup>177</sup> Yb. Эти ядра принадлежат к различным областям по атомным весам и поэтому должны изучаться неза-

висимо. Легкое ядро  ${}^{25}Mg$  имеет ротационные полосы с небольшим числом возбужденных состояний и нужная точность одночастичной волновой функции достигается при меньшем числе членов разложения (1), чем в случае ядра  ${}^{177}$ Yb.Кроме того, в  ${}^{24}Mg(d,p)$  реакции существуют так называемые запрещенные переходы / 12/, которые служат чувствительным тестом для используемой модели.

3.1. Оптические параметры и параметры деформации

Параметры деформации и оптического потенциала в расчётах по методу ССВА были получены при обработке упругого и неупругого рассеяния протонов и дейтронов с помощью программы КАЗТОК /11/. Пля ядра 24 Мg теоретический анализ экспериментальных данных по упругому и неупругому рассеянию дейтонов с энергией 13.5 Мэв и протонов с энергией 17,5 Мэв проведен в<sup>/12/</sup>. Для реакции <sup>176</sup> Yb(d, p) при Е<sub>d</sub> = 12 Мэв полные экспериментальные данные отсутствуют. Поэтому параметры для протонов взяты из , где исследовалось упругое и неупругое рассеяние протонов <sup>174</sup> УЬ ( Е = 12 Мэв). Экспериментальные данные о рассеянии дейтонов на 176 уь малочисленны, поэтому для получения дейтронных оптических параметров была использована следующая процедура. Упругое рассеяние дейтонов с энергией Е, = 12 Мэв на 172 УЬ и неупругое на<sup>176</sup> Yb было исследовано в /14/ методом связанных каналов. Сечение неупругого рассеяния измерено только при двух углах (90 и 125<sup>0</sup>) и поэтому в расчётах по методу связанных каналов были использованы параметры деформации, полученные при обработке экспериментальных данных по неупругому рассеянию на <sup>174</sup> Yb . Теоретический анализ при таких условиях хорошо согласуется с экспериментальными данными (см. рис. 1).

Ясно, что оптические параметры, полученные методом связанных каналов, не могут быть использованы в **DWBA** вычислениях, т.к. часть (около 20% при  $\beta_2 = 0,2$ ) потенциала поглощения, имеющаяся в упругом канале, объясняется взаимодействием первых ротационных состоя-

Значения оптических параметров и параметров деформации, применяемые н вычислениях A Ц R ю ТΑ CCBA ДWBA и е

| Репкция      | Іастица | ДWВА<br>глуби<br>потен | ни<br>циалов | ССВА<br>глубин<br>потенц | ны<br>Імалов  | Геомет<br>(одина<br>прибли | рические<br>ковие дл<br>хений) | е парамел<br>1я Д WBA | гры<br>и ССВА | Hapa<br>Jedo<br>CCBA | метры<br>риации<br>вычисл | для<br>тений |
|--------------|---------|------------------------|--------------|--------------------------|---------------|----------------------------|--------------------------------|-----------------------|---------------|----------------------|---------------------------|--------------|
|              |         | V<br>[MeV]             | Wb<br>[MeV]  | V<br>[MeV]               | [MeV]         | ري<br>[#]                  | [fr]                           | [fu]                  | ar<br>[fin]   | [fm]                 | $\beta_2$                 | <u> </u>     |
| 2441- 1 - 1  | σ       | 78.0                   | 21.5         | .80.0                    | 17 <b>.</b> 0 | I.25                       | I•67                           | I,30                  | .77           | •43                  | -47                       | <b>-</b> •05 |
| I d'a' bu    | ď       | 47 <b>.</b> I          | 6.5          | 46.0                     | 3.6           | I.22                       | I.27                           | I•22                  | •60           | •64                  | -47                       | <b>-</b> •05 |
| I76 Vie Va 2 | ס'      | I04.I                  | 7.I          | 7.IOI                    | 5 <b>-</b> 9  | I.I5                       | I.43                           | I.25                  | •67           | 1 <b>.</b> 06        | - 28                      | • 008        |
| id'ni ai     | ¢.      | 57.2                   | IO.5         | 52.9                     | 9.5<br>Č      | I.20                       | I.24                           | I.20                  | •68           | <b>.</b> 83          | - 28                      | -008         |



Рис. 1. Угловые распределения упругого и неупругого рассеяния дейтронов на изотопах итербия, измеренные в/14,15/. Сплошные линии вычислены программой KASTOR, значения соответствующих параметров приведены в таблице 1.

8

ний<sup>/8/</sup>. Учитывая это, обсудим данные об упругом рассеянии, изменяя глубины потенциалов V и  $W_D$ . В таблице 1 приведены значения параметров, использованных в **DWBA** и ССВА вычислениях. Сравнивая величины  $W_D$  в обоих случаях, видим эффект влияния взаимодействия ротационных состояний на мнимую часть потенциала. Например, для <sup>24</sup>Mg при  $\beta_2 = 0,47$ этот эффект превышает 30%. Глубины действительной части потенциала остаются практически без изменений.

3.2. Реакция <sup>24</sup> Мg(d,p)<sup>25</sup> Мg

Дейтронный срыв на <sup>24</sup> Mg при  $E_d = 13,5$  Мэв недавно был исследован в /12/. ССВА метод, примененный в /12/, имеет некоторые недостатки, связанные с использованием одночастичных волновых функций деформированного потенциала Саксона-Вудса. Рассмотрим, каким путем эти результаты могут быть улучшены, если применять корректные одночастичные волновые функции, полученные методом Штурма-Лиувилля

Если разложить одночастичную волновую функцию деформированного ядра по сферическим волновым функциям потенциала Саксона-Вудса, то каждому члену разложения соответствуют различные собственные значения, значительно отличающиеся от энергии связи данного одночастичного состояния в деформированном потенциале. В этом случае интегралы перекрытия (8) для главного члена с i=J в ССВА вычисляются с использованием радиальных функций с энергиями связи, которые отличаются от энергии связи деформированных орбит. Применение такого метода дает некорректное поведение волновой функции на больших расстояниях и может сильно изменить абсолютные значения ССВА амплитуды. Чтобы избежать такой непоследовательности, в<sup>/12/</sup> сферические радиальные волновые функции потенциала Саксона-Вудса были вычислены так, чтобы энергия основного состояния деформированного ядра <sup>24</sup>Mg совпадала с экспериментальной энергией связи. Эта процедура оказалась удовлетворительной при расчёте состояний положительной чётности ( $5/2^{+}[202]$ ,  $1/2^{+}[211]$ ,

1/2<sup>+</sup>[200]). Однако для состояний отрицательной чётности этот метод не годится, т.к. сферические одночастичные состояния имеют или очень маленькую энергию связи, или совсем не связаны.

При использовании метода Штурма-Лиувилля такой проблемы не возникает, т.к. все базисные и результирующие функции имеют одинаковую энергию связи, совпадающую с экспериментальной. Следовательно, такой метод совместно с ССВА может быть применен для описания реакции передачи на высоковозбужденные состояния и на состояния с малой энергией возбуждений, которые сильно зависят от отдельных компонент базисных функций и формы потенциала. Кроме того, поскольку метод Штурма-Лиувилля может дать любую желаемую точность, то можно проверить корректность более простых моделей.

Чтобы подтвердить эти последние факты, сравним в таблице 2 коэффициенты Штурма-Лиувилля для всех четырех вращательных полос в<sup>25</sup>Mg с теми, которые были использованы ранее в<sup>/12/</sup>. Видно, что несмотря на то, что число коэффициентов Штурма-Лиувилля значительно больше, чем в других моделях, сходимость разложения (1) довольно быстрая. Более того, в различных моделях наиболее важные коэффициенты близки между собой. Другими словами, это означает, что эти коэффициенты почти не зависят от метода разложения, и объясняет, почему часто применяемый метод<sup>/6/</sup>, использующий сферические волновые функции потенциала Саксона-Вудса и коэффициенты Нильссона<sup>/17/</sup> для вычисления формфактора в **DWBA** сечениях, иногда оказывается довольно хорошим приближением.

Полоса 5/2<sup>+</sup> [202]

Как видно из рис. 2, настоящие ССВА вычисления (сплошные линии) в общем согласуется с ранними расчётами (точечные линии). Этот результат можно было ожидать, т.к. в различных моделях 1d5/2 базисное состояние имеет одинаковую энергию и его коэффициент сме-

шивания близок к единице (см. таблицу 2). ССВА расчёты хорошо согласуются с экспериментальными данными<sup>18</sup>. Заметим, в ССВА сечения для  $7/2^+$  и  $9/2^+$  состояний дают основной вклад члены амплитуды срыва с *j*=J. Кроме того, можно заметить, что DWBA сечение (пунктирная линия) для основного состояния не описывает экспериментальные данные при больших углах, хотя при малых углах согласие удовлетворительное. Используя, например, коэффициенты Нильссона, получим в DWBA приближении для  $7/2^+$  и  $9/2^+$  состояний нулевое сечение, т.к. в модели Нильссона состояние  $5/2^+$ [202]имеет максимальные L= 2 и J= 5/2.

Пунктир- точечная кривая вычислена **DWBA** методом с оптическими параметрами, полученными в ССВА расчётах. Отличия между двумя **DWBA** сечениями значительны, поэтому ясно, что **DWBA** и ССВА расчёты с одинаковыми параметрами не могут быть сравнены.

Полосы 1/2<sup>+</sup>[200] и 1/2<sup>+</sup>[211]

Как мы уже говорили, при использовании процедуры<sup>12/</sup>для вычисления деформированных орбит энергии связи для сферических состояний берутся из эксперимента (наибольшие отличия около 1-2 Мэв). Настоящие ССВА сечения отличаются от ранее полученных только по абсолютной величине, в то время как угловое распределение фактически почти не меняется. Поэтому мы не приводим эти сечения здесь, они представлены в<sup>12/</sup>. Однако имеются указания на то<sup>19/</sup>, что между этими двумя полосами может существовать сильное кориолисово взаимодействие и оно может играть определенную роль.</sup>

Полоса 1/2 [330]

Расчёт сечений для 1/2<sup>-[330]</sup> полосы был выполнен в<sup>/12/</sup> с некоторыми трудностями, связанными с вычислением соответствующих базисных волновых функций для связанных состояний. Поэтому сравнение настоящих ССВА сечений с полученными ранее не очень последовательно. Из таблицы 2 видно, что для 1/2<sup>-</sup>[330] орбиты базис-

## ТАБЛИЦА 2

Коэффициенты разложения одночастичных волновых функций деформированного ядра 25 kg, использованные и полученные по методу Штурма-Лиувилля /3/ в настоящей работе, сравниваются с теми, которые взяты из работн /20/ и с коэффициентами Нильссона. Осциляторное квантовое число N определяется соотношением N =2pn-/1) +  $\ell$ , где (n-1) - число узлов радиольных частей базисных функций.

| полоса     | Базисные<br>состояния |                                           | Коэффициенты<br>Штурма-Лиувилля<br>настоящая работа |                            |                                           | Коэффициенты<br>Саксона-Вудса<br>/I2/ |                              | Коэффициен-<br>ты Нильссона<br>(β <sub>2</sub> =0,3) |  |
|------------|-----------------------|-------------------------------------------|-----------------------------------------------------|----------------------------|-------------------------------------------|---------------------------------------|------------------------------|------------------------------------------------------|--|
|            | ٤                     | j                                         | N =0                                                | N =2                       | N =4                                      | N =0                                  | N =2                         | N <b>=</b> 2                                         |  |
| 5/2* [202] | d<br>g                | 5/2<br>7/2                                |                                                     | I.05                       | 0.73<br>083                               |                                       | I.00                         | I.00                                                 |  |
| 1/2+ [511] | s d g                 | I/2<br>3/2<br>5/2<br>7/2                  | <b></b> 044                                         | •447<br>-•742<br>-•490     | 004<br>089<br>.023<br>094                 | <b></b> 035                           | •409<br>-•765<br>-•496       | •37<br>-•75<br>-•54                                  |  |
| 1/2† [200] | 9<br>5<br>6<br>9<br>0 | 9/2<br>I/2<br>3/2<br>5/2<br>7/2<br>9/2    | <b>.</b> I48                                        | •724<br>•638<br>-•346      | 039<br>049<br>.066<br>.126                | •087                                  | •749<br>•587<br>-•294        | .76<br>.58<br>29                                     |  |
|            | <u> </u>              | <u> </u>                                  | N =I                                                | N =3                       | N =5                                      | N =I                                  | N =3                         | N =3                                                 |  |
| 1/2- [330] | f<br>f<br>h           | pI/2<br>p3/2<br>5/2<br>7/2<br>9/2<br>II/2 | .038<br>258                                         | 173<br>.602<br>075<br>.591 | 054<br>.097<br>040<br>.103<br>015<br>.083 | 011<br>111                            | нс си<br>.63<br>не си<br>.76 | ялзано23<br>2 .55<br>5лзано20<br>57 .78              |  |

ные состояния с N = 1 и N = 5 играют некоторую роль (например  $a^{(1)}$ = -0,258). Состояния p1/2 дают вклад в прямой переход с J = 1/2и их коэффициенты относительно малы, поэтому основной вклад в амплитуду перехода идет от непрямого процесса через 2p3/2 состояние. Кроме того, поскольку параметр деформации  $\beta_2 = 0.47$  очень велик, то обобщенные искаженные волны сильно изменяются деформацией среднего ядерного поля. Это можно видеть из рис. За, где приведены ССВА (сплошные линии) и DWBA (пунктирные линии) сечения. Отличия между этими двумя способами описания довольно значительны. ССВА дифференциальные сечения более близки к экспериментальным данным и более плавны, чем DWBA сечения. Например, 3/2 ССВА сечение отличается очень сильно отDWB & сечения и согласуется очень хорошо с экспериментальными данными, как мы увидим позднее. Для углов вперед абсолютные значения ССВА сечений иногда меньше, чем DWBA сечения, в то время как для углов назад только 3/2 ССВА сечение значительно меньше по сравнению с DWBA сечением. Штрих-пунктирные линии рассчитаны в DWBA приближении с оптическими параметрами, полученными в ССВА методе. Эти кривые демонстрируют зависимость сечений от значений оптических параметров. Эффект почти такой же, как для основного состояния ротационной полосы 5/2<sup>+</sup>[202] .

При сравнении ССВА сечения с экспериментальными данными мы должны помнить, что все состояния этой полосы не были разрешены на эксперименте от других состояний. Поэтому  $3/2^-$  и  $7/2^-$  сечения должны рассматриваться совместно с сечениями  $9/2 5/2^+$ [202] и 5/2 $1/2^+$ [200]. В таком случае абсолютные значения сечений для углов назад сильно возрастают и теоретические сечения лучше согласуются с экспериментальными. Это видно из рис. Зв, где теоретические сечения нормированы к экспериментальным и нормировочный фактор  $\frac{d\sigma}{d\Omega_{theor}}$  $/\frac{d\sigma}{d\Omega_{oxp}}$  (15°) дан справа от кривых. Вычисления воспроизводят общую форму измеренного углового распределения и согласие между теорети-



Рис. 2. Угловые распределения <sup>24</sup>Mg(d, p) реакции, идущей на полосу 5/2<sup>+</sup>[202] в <sup>25</sup>Mg. Сплошные линии вычислены программой POLLUX, значения оптических параметров и параметров деформации приведены в таблице 1, а значения коэффициентов разложения по функциям Штурма – в таблице 2. Точечные линии взяты из/12/. Пунктирные и штрих-пунктирные линии вычислены в DWBA приближении, оптические параметры взяты из DWBA и ССВА методов, соответственно.



Рис. За. Угловые распределения  ${}^{24}Mg(d,p)$  реакции, идущей на полосу 1/2 [330] в  ${}^{25}Mg$ . Кривые вычислены со значениями коэффициентов разложения по функциям Штурма из таблицы 2. На рис. За абсолютные значения ССВА сечений сравниваются с DWBA сечениями, вычисленными с оптическими параметрами, которые были взяты из DWBA (пунктирные линии) и ССВА (пунктир-точечные линии) приближений. Уровни 1/2 [330] не были разрешены от других уровней. Кривые на рис. Зб являются суммой сечений смешанных состояний, сечения нормированы к экспериментальным сечениям при  $\theta = 15^{\circ}$ , нормировочный фактор приведен справа от кривых.



16

ческими и экспериментальными сечениями лучше, чем в работе  $^{/12/}$ . Это касается больше  $3/2^-$  ротационного состояния, где улучшено согласие с экспериментальными данными даже в области второго максимума и для углов назад. Пропорциональность сечения квадрату коэффициентов смешивания  $(a_{n\ell_l}^{(\Omega)})^2$ , найденная в  $^{/12/}$ , нарушается возмущениями, обусловленными членами с  $\ell \neq L$ , дающими заметный вклад в ССВА амплитуду.

3.3. Реакция (d, p) на<sup>176</sup> Yb

Экспериментальные данные и DWBA анализ для(d,p) реакции на <sup>176</sup>Yb при E<sub>d</sub> = 12 Мэв будут опубликованы Яшкола<sup>X/</sup> и др. в работе<sup>/21/</sup>. Мы здесь исследуем с помощью ССВА метода только сечения, принадлежашие 1/2 [510] и 3/2 [512] ротационным полосам, т.к. для этих двух полос имеются экспериментальные дифференциальные сечения перехода на высоковозбужденные ротационные состояния. Коэффициенты разлои аналогичные коэффициенты из представлены в таближения  $\mathbf{a}_{\mathbf{p}}^{(\Omega)}$ це 3. Видно, что только базисные состояния с N = 5 имеют большие коэффициенты смешивания и они близки в разных моделях. Кроме того, мы напоминаем, что в ССВА вычисления включены все базисные состояния одночастичных уровней деформированного ядра. Наоборот, в DWBA приближении применяется модифицированный формфактор, который является суммой только по состояниям, данным на одной строке таблиц 2 или 3, соответственно. Такой упрощенный формфактор больше подходит для описания реакции срыва на легких ядрах, чем на тяжелых. поскольку вклады от непрямых процессов в амплитуду перехода, обусловленные членами с i J , становятся более значительными для тяжелых ядер.

Полосы 1/2 [510] и 3/2 [512]

На рис. 4 и 5 для этих двух полос приведены экспериментальные данные и теоретические ССВА (сплошные линии) и DWBA (ур. (9))

х/ Мы благодарим др. Яшкола за представление экспериментальных данных до их опубликования.

# ТАБЛИЦА З

Коэффициенты разложения одночастичных волновых функций деформированного ядра <sup>177</sup>УЬ, использованные и полученные по методу Штурма-Лиувилля <sup>/3</sup>/ в настоящей работе, сравниваются с теми, которые взяты из работы <sup>/20/</sup>. Осцилляторное квантовое число N определяется соотношением N =2(n-1) + l, где (n - I) - число узлов радиальной части базисных функций.

| Полоса     | Базисные<br>состояния                                              | Коэффициенты<br>Штурма-Лиувилля<br>настоящая работа |                             |                                            |                                                          | Коэф<br>Сакс | Коэффициенты<br>Саксона-Вудса/20/ |                                            |  |  |
|------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|--------------------------------------------|----------------------------------------------------------|--------------|-----------------------------------|--------------------------------------------|--|--|
|            | lj                                                                 | N ŧI                                                | N =3                        | N =5                                       | N =7                                                     | N =I         | N =3                              | N =5                                       |  |  |
| 1/2- [210] | pI/2<br>p3/2<br>f5/2<br>f7/2<br>h9/2<br>h II/2<br>j I3/2<br>j I5/2 | 02I<br>.016                                         | 034и<br>.036<br>.021<br>066 | .022<br>.603<br>.558<br>418<br>394<br>.137 | 025<br>020<br>.014<br>.074<br>.084<br>088<br>099<br>.072 | 009<br>.009  | 022<br>.044<br>.040<br>036        | .II7<br>.616<br>.476<br>423<br>418<br>.098 |  |  |
| 3/2- [212] | p3/2<br>{5/2<br>{7/2<br>h9/2<br>hII/2<br>J I3/2<br>j I5/2          | •006                                                | 004<br>.042<br>.064         | 367<br>.746<br>.346<br>441<br>128          | .038<br>.014<br>061<br>.096<br>.078<br>104<br>071        | 002          | 024<br>.053<br>.036               | 496<br>.611<br>.397<br>438<br>104          |  |  |



Рис. 4. Угловые распределения <sup>176</sup> Yb(d, p) реакции, идущей на полосу 1/2<sup>-</sup>[510] в<sup>177</sup> Yb. ССВА сечения (сплошные линии) сравниваются с DWBA сечениями (пунктирные линии). Точечная линия вычислена с формфактором, имеющим только одну радиальную функцию потенциала Саксона-Вудса.



Рис. 5. Угловые распределения <sup>176</sup>Yb(d,p)реакции, идущей на полосу 5/2<sup>-</sup>[512] в <sup>177</sup>Yb. Дальнейшие объяснения см. под рис. 4.

(пунктирные линии). Сравнивая эти теоретические сечения с экспериментальными сечениями, можно сделать следующие выводы:

 Для двух первых состояний предсказанные сечения довольно близки в двух приближениях и они меньше на фактор 1,5 по сравнению с экспериментальными данными.

2. Для высоковозбужденных ротационных состояний ССВА сечения больше в 2-3 раза и согласуются намного лучше с экспериментальными данными, чем DWBAсечения.

Эти факты уже были обнаружены и обсуждены в<sup>/12/</sup>. Они могут быть объяснены тем, что для высоких возбужденных состояний неупругие процессы начинают играть важную роль и в ССВА амплитуде непрямые вклады, обусловленные членами  $\ell < L_{\bullet}$ становятся важными. В особенности хорошее согласие ССВА сечения с экспериментальными данными для 9/2<sup>-</sup> ротационного состояния полосы 1/2<sup>-</sup>[510]. Переход на это состояние в основном обусловлен непрямыми вкладами в ССВА амплитуду, т.к. прямой член j = 9/2 мал (пропорционален  $(a_{1n9/2})^2 = 0,16$ ). DWBA

На рис. 4 приведены также DWBA расчёты, вычисленные только с одной радиальной волновой функцией потенциала Саксона-Вудса (точечные линии). Сравнивая между собой DWBA сечения в различных приближениях (пунктирные и точечные линии на рис. 4), можно видеть, что эти два сечения довольно похожи для первых возбужденных состояний, в то время как для более сильновозбужденных состояний отличия становятся более значительными. ССВА сечения для высоких возбужденных состояний намного больше, чем DWBA сечения и хорошо согласуются с экспериментальными данными. Это интересный факт и отсюда можно сделать вывод, что DWBA сечения с упрощенным формфактором (ур. (9)) не могут удовлетворительно описать абсолютные сечения на высоколежащие ротационные состояния.

#### 4. Выводы

Итак, применение метода Штурма-Лиувилля для вычисления одночастичных состояний в деформированном потенциале Саксона-Вудса, которые затем были использованы для расчёта формфакторов, оказалось очень плодотворным. Преимущества этого метода по сравнению с другими методами заключается в том, что расчёты в методе Штурма-Лиувилля могут проводиться с любой желаемой степенью точности (дискретный набор базисных функций) и полученная одночастичная волновая функция корректна во всей области изменений г. Поэтому формфакторы в этом методе вычисляются более последовательно, чем в других методах. Следовательно, метод Штурма-Лиувилля совместно с ССВА может быть применен для описания реакций передач на высоковозбужденные состояния и на состояния с малой энергией возбуждения, которые сильно зависят от индивидуальных свойств базисных функций и от потенциала взаимодействия.

Кроме того, найдено, что абсолютные эначения больших коэффициентов разложения одночастичной волновой функции в различных моделях довольно близки друг к другу. Отсюда ясно, что использование коэффициентов Нильссона и радиальных функций потенциала Саксона-Вудса для вычисления формфакторов в **DWBA** приближении во многих случаях является удобным средством для теоретических расчётов.

При изучении реакции срыва на легком ядре <sup>24</sup>Mg показано, что ССВА дифференциальные сечения более плавны, чем DWBA сечения. Угловые распределения, вычисленные в ССВА приближении, лучше согласуются с экспериментальными данными, чем DWBA сечения, в то время как отличия в абсолютных значениях сечений ССВА иDWBA - 30% для углов вперед.

При описании реакции срыва на тяжелом ядре <sup>176</sup>YbCCBA и DWBA методы дают почти одинаковые сечения для первых двух возбужденных

состояний соответствующих полос. Для срыва на более сильно возбужденные состояния вращательных полос ССВА сечения становятся значительно больше (на фактор 2 и более) и намного лучше согласуются с экспериментальными данными, чем **DWBA** сечения. Это может быть объяснено тем, что при реакции срыва на высоковозбужденные состояния вращательной полосы члены с  $\ell < L$  дают вклад в ССВА амплитуду и не малы по сравнению с главным членом  $\ell = L$ . Кроме того, **DWBA** сечения, когда включены в формфактор все базисные состояния с одинаковыми  $\ell$  и j, передача идет на высоковозбужденные состояния, меньше на фактор 2 и более, чем ССВА сечения.

Мы благодарны профессору В.Г. Соловьеву за постоянный интерес и поддержку. Один из нас (Г.Ф.А.) благодарен С.П. Ивановой и профессору Д.П.Гречухину за полезные обсуждения, Н.Ю. Шириковой за консультации при составлении программ.

#### Литература

- S.K. Penny and G.R. Satchler. Nucl.Phys.,<u>53</u>, 145 (1964);
   P.I. Iano and N. Austern. Phys.Rev., <u>151</u>, 853 (1966);
   V.K. Lukyanov and I.Zh. Petkov. Yad.Fiz., <u>6</u>, 988 (1967);
   R.J. Ascuitto and N.N. Glendenning. Phys.Rev., <u>181</u>, 1396(1969);
   P.J. Iano, S.K. Penny and R.M. Drisko.Nucl.Phys., <u>A127</u>, 47 (1969).
- 2. H. Schulz and H.J. Wiebicke. Phys.Lett., 29B, 18 (1969).
- F.A. Gareev, S.P. Ivanova and N.J. Schirikova. Preprint P4-5351, Dubna (1970).
   TMΦ, τ. 8, №1, 97 (1971).
- 4. B.L. Andersen, B.B. Buck and J.M. Bang. Nucl. Phys., A147, 33(1970).
- 5. P.E. Nemirovsky and V.A. Chepurnov. Sov.J.Nucl.Phys., 3, 730 (1966).
- 6. E. Rost. Phys. Rev., 154, 994 (1967).
- 7. S.I. Drozdov. Yad.Fiz., 1, 407 (1965).
- 8. T. Tamura. Rev. Mod. Phys., 37, 679 (1965).

- 9. H. Schulz and H.J. Wiebicke. Thesis, Technical University Dresden (1969) (unpublished).
- 10. G.R. Satchler. Ann. of Phys., 3, 275 (1958).
- 11. H. Schulz and H.J. Wiebicke, unpublished.
- H. Schulz, H.J. Wiebicke, R. Fulle, D. Netzband and K. Schlott, Nucl.Phys., <u>A159</u>, 324 (1970).
- 13. A.B. Kurepin, H. Schulz and H.J. Wiebicke to be published.
- 14. P.R. Christensen, A. Berinde, I. Neamu and N. Scintei. Nucl.Phys., <u>A129</u>, 337 (1968).
- D.G. Burke and B. Elbek. Dan.Vid.Selsk.Mat.Fys.Medd., <u>36</u>, No.6 (1967).
- 16. B. Elbek and P.O. Tjom. Advances in Nucl. Phys., 3 259(1969).
- 17. S.G. Nilsson, Dan. Vid, Selsk, Mat, Fys, Medd., 29, N.16 (1955).
- 18. R.Fulle et al. to be published in a report of the Central Institute for Nuclear Research, Rossendorf, GDR.
- Н.И. Пятов, М.И. Черней. Препринт ОИЯИ Е4-4523, Дубна, 1969;
   Препринт ОИЯИ, Р4-4966, Дубна 1970.
- 20. F.A. Gareev, S.P. Ivanova and B.N. Kalinkin. Preprints P4-2976 and P4-3451, Dubna (1967).

Ф.А. Гареев, С.П. Иванова, Б.Н. Калинкин, С.К. Слепнев, М.Г. Гинзбург. Препринт ОИЯИ Р4-3604, Дубна, 1967.

21. M. Jaskola et al. to be published.

Рукопись поступила в издательский отдел 10 июня 1971 года.