J. J. HVIT. JATI.

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

DETHUE

AABODATOPHA TE

**Дубна** 

P 4-5744

С.И.Габраков, А.А.Кулиев, Д.И. Саламов

ГАМОВ-ТЕЛЛЕРОВСКИЕ 1<sup>+</sup>-ВОЗБУЖДЕНИЯ В НЕЧЕТНО-НЕЧЕТНЫХ ЯДРАХ

P 4-5744

С.И.Габраков, А.А.Кулиев, Д.И. Саламов

# ГАМОВ-ТЕЛЛЕРОВСКИЕ 1<sup>+</sup>-ВОЗБУЖДЕНИЯ В НЕЧЕТНО-НЕЧЕТНЫХ ЯДРАХ

## Научно-техническая библиотека ОИЯИ

#### § 1. Введение

Известно, что эффекты спиновой поляризации, проявляющиеся в разрешенных  $\beta$  – распадах нечетных ядер /1,2/, обусловлены зарядовообменной частью остаточного спин-спинового взаимодействия между нуклонами. Как показали наши исследования<sup>2</sup>, эти силы генерируют коллективные  $1^+$  - состояния в нечётно-нечётных ядрах, а поляризационные эффекты в нечётных ядрах появляются в результате взаимодействия нечётной частицы с этими возбуждениями. Таким образом объяснялось наблюдаемое сильное замедление скорости разрешенных гамов-теллеровских  $\beta$ -распадов.

Представляет большой интерес исследовать структуру этих 1<sup>+</sup>-состояний в нечётно-нечётных ядрах, *β* -распадные свойства и области энергии, где было бы возможно их наблюдать.

Нами было проведено такое исследование в рамках метода случайных фаз, и предварительные результаты его были опубликованы<sup>/3/</sup>.

Отметим, что рассмотрение подобных 1<sup>+</sup>-возбуждений в некоторых сферических ядрах было проведено в работе<sup>/4/</sup>.

### §2. Рассмотрение в рамках метода случайных фаз

Для описания l<sup>+</sup>-возбуждений в нечётно-нечётных ядрах используем модельный гамильтониан типа <sup>/2/</sup>

$$H = H_{s.p.} + H_{pair} + H_{\beta}, \qquad (1)$$

где Н<sub>в.р.</sub> описывает одночастичное движение в деформированном среднем поле, Н<sub>рвіг</sub> – спаривательное взаимодействие и Н<sub>β</sub> – остаточное зарядовообменное спин-спиновое взаимодействие. В представлении вторичного квантования Н<sub>β</sub> записывается в виде

$$H_{\beta} = 2 \kappa_{\beta} \sum_{\mu} \beta_{\mu}^{(+)} \beta_{\mu}^{(-)}, \qquad (2)$$

где

$$\beta_{\mu}^{(+)} = \sum_{n \ p, \rho, \rho'} \langle n \rho | \sigma_{\mu} + (-1)^{\mu} \sigma_{\mu} | p \rho' > a_{n \rho}^{+} a_{p \rho'}.$$
(3)

Здесь а<sup>+</sup><sub>л</sub> (а<sub>р</sub> ) – операторы рождения (уничтожения) нейтрона(протона). В случае взаимодействия типа Гамова-Теллера μ = 1 (для переходов с∆1=1).

В дальнейшем используются следующие свойства симметрии операторов  $eta_{\mu}$  и матричных элементов:

$$\beta_{\mu}^{(+)} = (\beta_{\mu}^{(-)})^{+}, \qquad (4)$$

$$\sigma_{n p}^{(\mu)} = \langle n + |\sigma_{\mu} + (-1)^{\mu} \sigma_{-\mu}|p + \rangle = - \langle n - |\sigma_{\mu} + (-1)^{\mu} \sigma_{-\mu}|p - \rangle.$$

$$\beta_{\mu}^{(+)} = \sum_{np} \sigma_{np}^{(\mu)} \left[ u_{n} u_{p} D_{np} + v_{n} v_{p} D_{np}^{+} + \sqrt{2} \left( u_{n} v_{p} C_{np}^{+} - u_{p} v_{n} C_{np} \right) \right],$$
(5)

где u (v) - коэффициенты преобразования Боголюбова, а операторы D и C определены, как в работе<sup>/5/</sup>:

$$D_{n p} = \sum_{\rho} \rho a_{n-p}^{+} a_{p-\rho}^{-} ,$$

$$C_{n p}^{+} = \frac{1}{\sqrt{2}} \sum_{\rho} a_{n-\rho}^{+} a_{p\rho}^{+} .$$
(6)

С помощью (5) и (2) гамильтониан можно представить как сумму из трех частей<sup>х/</sup>:

$$H = H_{sqp} + H_{coll} + H_{int} .$$
 (7)

Здесь приняты следующие обозначения:

$$H_{sqp} = \Sigma \epsilon_s (a_s^+ a_{s}^+ a_{\tilde{s}}^+ a_{\tilde{s}}^-) -$$
(8)

- гамильтониан невзаимодействующих квазичастиц, в котором  $\epsilon_s$  обозначает энергию квазичастиц:  $\epsilon_s = \sqrt{(E_s - \lambda)^2 + \Delta^2}$ ;

$$H_{ool1} = 4 \kappa_{\beta \Sigma} \underbrace{(u_{p} v_{p} C_{np}^{+} - u_{p} v_{n} C_{np}) \sigma_{np} \times}_{\times (u_{n}, v_{p}, C_{n'p}, - u_{p}, v_{n}, C_{n'p}^{+}, ) \sigma_{n'p}}$$
(9)

- гамильтониан коллективных возбуждений, где оператор С  $_{\rm n\,p}$  описывает нейтрон-протонные двухквазичастичные возбуждения с моментом  $1^+$ ,

<sup>X/</sup>В (7) не учтены члены типа  $\sigma_{np} \sigma_{n'p'} (u_n u_p D_{np} + v_n v_p D_{np}^+) (u_{n'}u_p, D_{n'p'}^+ + v_n' v_p, D_{n'p'}),$  которые приводят к простому сдвигу всех одноквазичастичных уровней и несущественны для последующего рассмотрения. Н<sub>int</sub> - гамильтониан взаимодействия квазичастиц с коллективными возбуждениями. Последнее взаимодействие не учитывается в чётных ядрах ( в квазибозонном приближении). Поэтому в нашем модельном гамильтониане остаются только Н<sub>вар</sub> и Н<sub>соll</sub>.

Коллективные состояния рассматриваются как однофононные возбуждения, образованные линейной комбинацией нейтрон-протонных квазичастичных пар. Волновая функция этого состояния ищется в виде

$$|\Psi_{i}\rangle = Q_{i}^{+}|\Psi_{0}\rangle = \sum_{np} \{\psi_{np}^{i}C_{np}^{+} - \phi_{np}^{i}C_{np}^{-}\}|\Psi_{0}\rangle, \qquad (10)$$

где  $\psi_{np}^{i}$  и  $\phi_{np}^{i}$  – двухквазичастичные амплитуды i -того возбуждения, а  $|\Psi_{0}\rangle$  – фононный вакуум, т.е.  $Q_{i}^{i} |\Psi_{0}\rangle = 0$ .

Из условия нормировки волновой функции (10) получим:

Σ

$$\left[\psi_{n\,p}^{i^{2}} - \phi_{n\,p}^{i^{2}}\right] = 1.$$
(11)

Амплитуды  $\psi_{np}^{i}$  и  $\phi_{np}^{i}$  и энергии  $1^{+}$ -возбуждений находятся с помощью вариационной процедуры:

$$\delta \{ \langle \Psi_{0} | Q_{1} H Q_{1}^{+} | \Psi_{0} \rangle - \omega_{1} [\sum_{np} (\psi_{np}^{i^{2}} - \phi_{np}^{i^{2}}) - 1] \} = 0, \qquad (12)$$

где ω<sub>i</sub> - множитель Лагранжа. После некоторых вычислений получаем следующее секулярное уравнение для определения энергий возбуждения ω<sub>i</sub>:

$$[1/\kappa_{\beta}+4\sum_{np}(\frac{\sigma_{np}^{2}u_{n}^{2}v_{p}^{2}}{\epsilon_{np}-\omega_{i}}+\frac{\sigma_{np}^{2}u_{p}^{2}v_{n}^{2}}{\epsilon_{np}+\omega_{i}})]\times$$

$$\times \left[ 1/\kappa_{\beta} + 4\sum_{np} \left( \frac{\sigma_{np}^{2} u_{p}^{2} v_{n}^{2}}{\epsilon_{np} \omega_{1}} + \frac{\sigma_{np}^{2} u_{n}^{2} v_{p}^{2}}{\epsilon_{np} + \omega_{1}} \right) \right] -$$
(13)

$$- \left| 4 \sum_{np} \sigma_{np}^{2} \mathbf{u}_{n} \mathbf{v}_{p} \mathbf{u}_{p} \mathbf{v}_{n} \left( \frac{1}{\epsilon_{np} - \omega_{i}} + \frac{1}{\epsilon_{np} + \omega_{i}} \right) \right|^{2} = 0$$

где  $\epsilon_{np} = \epsilon_{n} + \epsilon_{p}$ . Как известно, отбрасывая множители, содержащие  $\frac{1}{\epsilon_{np} + \omega_{i}}$ , получим секулярное уравнение в методе Тамма-Данкова (соотвественно необ-ходимо поставить  $\phi_{np}^{i} = 0$ ).

Анализ этого уравнения показывает, что при положительном значении  $\kappa_{\beta}$  первое решение находится выше порога нейтрон-протонного возбуждения. Как и в случае сферических ядер  $^{/4/}$ , возможно, что между некоторыми полюсами  $\epsilon_{np}^{i}$  и  $\epsilon_{np}^{l+1}$  не появляется решение  $\omega_{i}$ , но зато между другими полюсами будет два различных решения.

Для амплитуд  $\psi_{np}^{i}$  и  $\phi_{np}^{i}$  получены следующие выражения:

$$\psi_{np}^{i} = -\frac{2}{\sqrt{\Upsilon(\omega_{i})}} \frac{\sigma_{np}(u_{n}v_{p}+u_{p}v_{n}L(\omega_{i}))}{\epsilon_{np}-\omega_{1}},$$

· / (14)

$$\phi_{np}^{i} = \frac{2}{\sqrt{\Upsilon(\omega_{i})}} \frac{\sigma_{np}(u_{p}v_{n} + u_{n}v_{p}L(\omega_{i}))}{\epsilon_{np} + \omega_{i}}$$

7

где

$$L(\omega_{i}) = -\frac{\frac{1}{\kappa_{\beta}} + 4\sum_{np} \left(\frac{\sigma_{np}^{2} u_{n}^{2} v_{p}^{2}}{\epsilon_{np} - \omega_{i}} + \frac{\sigma_{np}^{2} u_{p}^{2} v_{n}^{2}}{\epsilon_{np} + \omega_{i}}\right)}{4\sum_{np} u_{n} v_{p} u_{p} v_{n} \left(\frac{1}{\epsilon_{np} - \omega_{i}} + \frac{1}{\epsilon_{np} + \omega_{i}}\right)}$$

$$Y(\omega_{i}) = 4 \sum_{np} \sigma_{np}^{2} \left\{ \frac{(u_{n}v_{p} + u_{p}v_{n}L(\omega_{i}))}{(\epsilon_{np} - \omega_{i})^{2}} - \frac{(13)}{(\epsilon_{np} - \omega_{i})^{2}} \right\}$$

$$-\frac{\left(\mathbf{u}_{\mathbf{p}}\mathbf{v}_{\mathbf{n}}+\mathbf{u}_{\mathbf{n}}\mathbf{v}_{\mathbf{p}}\mathbf{L}(\omega_{i})\right)^{2}}{\left(\epsilon_{\mathbf{n}\mathbf{p}}+\omega_{i}\right)^{2}}\right\}.$$

Характерной величиной гамов-теллеровских 1 -возбуждений являются вероятности  $\beta^{(\pm)}$ -распада их на основные состояния соседних ядер, так как оператор  $\beta^{(\pm)}$ -распада является оператором коллективного возбуждения (см. (2) и (3)). Поэтому можно ожидать, что взаимодействия (2) будут генерировать коллективные состояния, характеризующиеся большой скоростью  $\beta^{(\pm)}$ -распада.

Для матричных элементов  $\beta^{(\pm)}$  -перехода типа  $0^+ \rightarrow 1^+$  получаем с помощью уравнений (5) и (10):

$$M_{1}^{(+)} = \langle \Psi_{0} | [Q_{1}, \beta^{(+)}] | \Psi_{0} \rangle = \frac{1}{\kappa_{\beta} \sqrt{2Y(\omega_{1})}},$$

$$M_{1}^{(-)} = \langle \Psi_{0} | [Q_{1}, \beta^{(-)}] | \Psi_{0} \rangle = \frac{L(\omega_{1})}{\kappa_{\beta} \sqrt{2Y(\omega_{1})}}.$$
(16)

Хорошо известно, что исследование высоковозбужденных состояний удобно проводить в терминах силовых функций. По определению, силовыми функциям β<sup>±</sup> -распада называются выражения

$$S_{\beta}^{(\pm)} = \frac{1}{\Delta E} \sum_{(\Delta E, 1)} |\langle \Psi_{0} | \beta^{(\pm)} | \Psi_{1} \rangle|^{2}.$$
(17)

Матричные элементы  $\beta^{(\pm)}$  -переходов определяются из (16), а усреднение проводится на некотором интервале энергии возбуждений  $\Delta E$ .

§ 3. Результаты расчётов и обсуждения

Для исследования структурных и распадных свойств гамов-теллеровских  $1^+$  -возбуждений нами проведены расчёты для некоторых ядер редкоземельной области. При вычислениях использовалась константа  $\kappa_{\beta}$ = = 0,02 ћ  $\omega_0$ , полученная из исследований разрешенных  $\beta$  -переходов между нечётными ядрами<sup>2</sup>. Численные расчёты проведены с использованием схемы одночастичных уровней модели Нильссона и параметров парных взаимодействий, приведенных в работе<sup>6</sup>. Число рассчитанных  $1^+$ состояний в интервале энергий возбуждения от 2 до 20 Мэв оказалось примерно 160. Так как при исследовании таких возбуждений представляет интерес установить область энергии, в которой могут появляться сильно коллективизированные состояния, имеющие большие значения вероятности

β -распада, было исследовано поведение силовых функций (17) в зависимости от энергии возбуждения.

Расчёты показали, что основная сила  $\beta^{(-)}$ -перехода сконцентрирована в энергетически запрещенной области вблизи аналогова резонанса (см. рисунок). В этой области формируется гамов-теллеровский резонанс, который вбирает в себя основную силу  $\beta^{(-)}$ -перехода ( $\approx 95\%$ ). Распад этого состояния обусловлен в основном одноквазичастичными  $\beta$ -переходами между состояниями с одинаковыми асимптотическими квантовыми числами [N n  $_{x}\Lambda$ ]. Наблюдаемые низкоэнергетические переходы обусловлены, таким образом, хвостом силовой функции. Полная сила  $\beta^{(-)}$ -перехода (сумма квадратов матричных элементов) примерно в 40 раз больше,

чем полная сила  $\beta^{(+)}$ -перехода. Однако  $\beta^{(+)}$ -переходы сосредоточены в области спектроскопических энергий (до энергии связи нуклона). При этом  $\beta^{(+)}$ -распад в этой области доминирует над  $\beta^{-}$ -распадом.

На рисунке показаны, как пример, силовые функции разрешенных гамов-теллеровских переходов типа  $0^+ \rightarrow 1^+$  для <sup>184</sup> lr , рассчитанные в приближении Тамма-Данкова. Усреднение проводилось в интервале  $\Delta E =$ =1,5 Мэв. В таблице даны характеристики некоторых  $1^+$  -состояний в этом ядре, имеющие относительно малые эначения ft .

В заключение хотим отметить, что в последнее время проводятся интенсивные исследования свойств ядер, находящихся вдали от линии стабильности<sup>//,8/</sup>. В таких ядрах можно наблюдать бета-переходы на высоковозбужденные состояния. Для некоторых сферических ядер аналогичные исследования уже проводятся. В экспериментах группы Хансена<sup>/9/</sup> доходят до изотопов Ir, которые находятся на верхней границе деформированных ядер. Поэтому в качестве примера приведены расчеты для <sup>184</sup> Ir . Можно надеяться, что подобные эксперименты в недалеком будущем будут сделаны и для деформированных ядер.

Приятный долг авторов - поблагодарить Н.И. Пятова, который предложил настоящую тему и оказывал нам постоянно помощь. Благодарим также профессора В.Г. Соловьева за полезные обсуждения.

#### Литература

1. Z.Bochnacki, S.Ogasa, Nucl. Phys., A102, 529 (1967).

 С.И. Габраков, А.А. Кулиев. Сообщение ОИЯИ, Р4-5003, Дубна, 1970.
 С.И. Габраков, А.А. Кулиев, Д.И. Саламов. Программа и тезисы докладов XXI ежегодного совещания по ядерной спектроскопии и структуре атомного ядра, стр. 175. Ленинград, 1971.

4. J.A. Halbleib, R.A. Sorensen, Nucl. Phys., A98, 542 (1967).

5. А.А. Кулиев, Н.И. Пятов. ЯФ, <u>9</u>, 313, 955 (1969).

6. К.М. Железнова и др. Препринт ОИЯИ, Д-2157, Дубна, 1965.

7. Nuclides Far off the Stability Line . Proceedings of the Lysekil Symposium, 1966. Arkiv f. Fysik, 36 (1967).

 International Conference on the Properties of Nuclei Far from the Region of Beta-Stability. Leysin, 1970.
 Proceedings, CERN, 70-30, Geneva, 1970.

9. C.L.Dune, P.G.Hansen et al., Nucl. Phys., A151, 609 (1970).

Рукопись поступила в издательский отдел 9 апреля 1971 года.



10

| Энергия «,<br>(Мэв) | log ft±                                    | Структура состояний                                                                    |                                                                                                                                                                                                                                                | ампли-<br>туда $\psi^i_{_{33}}$                                    |
|---------------------|--------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 0.7                 | (+) <sub>3.88</sub><br>(-) <sub>5.97</sub> | { pn<br>np<br>pn<br>np<br>np                                                           | 514† - 514;<br>512† - 532;<br>514† - 503†<br>512+ - 530†                                                                                                                                                                                       | -0.962<br>0.130<br>0.111<br>-0.107                                 |
| I.2                 | (+) <sub>4,58</sub><br>(-) <sub>7,97</sub> | (pn)<br>(pn)                                                                           | 514+ - 503+<br>514+ - 514+                                                                                                                                                                                                                     | -0.990<br>-0.II0                                                   |
| I.8                 | (+) <sub>4.42</sub><br>(-) <sub>5.48</sub> | (pm))                                                                                  | 505t <b>-</b> 505t                                                                                                                                                                                                                             | -0,998                                                             |
| 4.4                 | (+) <sub>5.76</sub><br>(-) <sub>4.97</sub> | ( pn )<br>np )<br>ap )<br>pn )<br>np )<br>pn )<br>np )                                 | $530^{+} + 530^{+}$ $530^{+} + 530^{+}$ $532^{+} - 530^{+}$ $532^{+} - 530^{+}$ $633^{+} - 642^{+}$ $523^{+} - 523^{+}$                                                                                                                        | -0.624<br>-0.624<br>-0.228<br>0.210<br>-0.181<br>-0.143            |
| 9.2                 | { <b>+</b> }6.92<br>4.36                   | ( pn )<br>ap )<br>ap )<br>np )<br>pn )<br>ap )<br>ap )<br>ap )<br>ap )                 | 521+ - 530+<br>402+ - 402+<br>532+ - 532+<br>400+ + 400+<br>400+ + 400+<br>541+ - 541+<br>505+ - 505+                                                                                                                                          | -0.797<br>-0.425<br>0.202<br>-0.118<br>-0.118<br>0.110<br>0.106    |
| 21.0                | (+) <sub>5.39</sub><br>(-) <sub>2.02</sub> | ( np)<br>( np)<br>( np)<br>( np)<br>( np)<br>( np)<br>( np)<br>( np)<br>( np)<br>( np) | $505^{\dagger} - 505^{\downarrow}$ $514^{\dagger} - 514^{\downarrow}$ $523^{\dagger} - 523^{\downarrow}$ $402^{\dagger} - 402^{\downarrow}$ $400^{\dagger} + 400^{\dagger}$ $400^{\dagger} + 400^{\dagger}$ $532^{\dagger} - 532^{\downarrow}$ | -0.354<br>-0.351<br>-0.328<br>-0.269<br>-0.245<br>-0.245<br>-0.229 |

Характеристика ряда 1<sup>+</sup> -состояний в <sup>184</sup> lr