ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

A CONTRACTOR OF

A-954

Дубна

P4 - 5318

19/x.7

Б. Ахмадходжаев, В.Б.Беляев, А.Л. Зубарев

РЕШЕНИЕ УРАВНЕНИЙ ФАДДЕЕВА С ЛОКАЛЬНЫМИ ПОТЕНЦИАЛАМИ

P4 - 5318

В. Ахмадходжаев*, В.Б. Беляев, А.Л. Зубарев **

Ţ

РЕШЕНИЕ УРАВНЕНИЙ ФАДДЕЕВА С ЛОКАЛЬНЫМИ ПОТЕНЦИАЛАМИ

Направлено в ЖЭТФ

*ИЯФ АН УзССР ** ТешГУ При изучении задачи трех частиц мы сталкиваемся со следующей ситуацией. Во-первых, в задаче используется двухчастичное взаимодействие в виде амплитуды вне энергетической поверхности t (k,k ', z). Потенциал (или амплитуда) подбираются так, чтобы удовлетворить экспериментальным данным по взаимодействию на энергетической поверхности. Потенциал и амплитуда t(k,k',z) из этого условия определяются неоднозначно. И, следовательно, возникает вопрос о зависимости трехчастичных характеристик от формы потенциала.

Во-вторых, синглетные двухчастичные параметры (длина рассеяния, эффективный радиус) известны экспериментально с большой неопределенностью. Важно выяснить поэтому, как сильно зависят трехчастичные параметры от двухчастичных. И, наконец, эначительный интерес представляет выяснение вопроса о возможности количественного объяснения свойств трехнуклонных систем на основе двухчастичных сил.

При исследовании зависимости трехчастичных параметров от формы потенциала естественно рассмотреть потенциалы, не содержащие отталкивания, и "реалистические" потенциалы. Расчёты ^{/1,6,8/} энергии связи трития и дублетной длины рассеяния указывают на сильную зависимость

от формы потенциала, если потенциалы не содержат отталкивания. Рас-/2,3/ с "реалистическими" потенциалами и расчёты, излагаемые в этой заметке, указывают, что в этом случае зависимость от формы достаточно слабая.

Что касается зависимости трехчастичных характеристик от синглетных, то наиболее последовательно эта зависимость изучалась для нелокальных потенциалов. В частности, было показано, что зависимость от синглетного радиуса гораздо сильнее зависимости от синглетной длины рассеяния.

В настоящей работе изучается зависимость энергии связи трития и дублетной длины от синглетных параметров для локальных потенциалов следующего вида:

$$V(\mathbf{r}) = -\mathbf{s} (102.276) \mathbf{b}^{-2} \qquad \mathbf{r} < \mathbf{b} \qquad (S)$$

$$V(\mathbf{r}) = 0 \qquad \mathbf{r} > \mathbf{b}$$

$$V(\mathbf{r}) = -\mathbf{s} (229.208) \mathbf{b}^{-2} \mathbf{e}^{-2.0604(\mathbf{r}/\mathbf{b})^{2}} \qquad (G)$$

$$V(\mathbf{r}) = -\mathbf{s} (751.541) \mathbf{b}^{-2} \mathbf{e}^{-8.5412(\mathbf{r}/\mathbf{b})} \qquad (E)$$

$$V(\mathbf{r}) = \lambda_{1} \frac{\mathbf{e}}{\mathbf{r}}^{-1} - \lambda_{2} \frac{\mathbf{e}}{\mathbf{r}} \qquad (M.T)$$

Параметры потенциалов (S)-(E) для различных эначений синглетного и триплетного эффективных радиусов приведены в Приложении.

Отметим, что потенциал (M.T.)⁷⁷ описывает S -фазу в широком интервале энергий (до 350 MeV). Зависимость трехчастичных характеристик от синглетной длины можно получить в явном виде. Действительно, для двухпараметрических потенциалов имеем

$${}^{4}a = b^{t} f_{1}(s^{t})$$

$${}^{2}a = f_{2}(s^{t}, s^{s}, b^{t}, b^{s})$$

$$E_{T} = f_{3}(s^{t}, s^{s}, b^{t}, b^{s}).$$
(2)

Здесь ⁴ а и ² а - квартетная и дублетная длины ad -рассеяния, E_{T} - энергия связи H³. Ho^{/9/} s = 1 + $\sum_{i=1}^{\infty} \alpha_{i} \left(\frac{\mathbf{r}}{a}\right)^{i}$ b = r $\left(1 + \sum_{i=1}^{\infty} \beta_{i} \left(\frac{\mathbf{r}}{a}\right)^{i}\right)$, (3)

где a_i , β_i - численные параметры, не зависящие от г и а; а , г - длина рассеяния и эффективный радиус, соответственно. Следовательно

5

(4)

⁴a = $r^{t} \phi_{1} \left(\frac{r^{t}}{a^{t}}\right)$ ²a = $\phi_{2} \left(r^{t}, r^{s}, \frac{r^{t}}{a^{t}}, \frac{r^{s}}{a^{s}}\right)$

 $\mathbf{E}_{\mathbf{T}} = \phi_{\mathbf{g}} \left(\mathbf{r}^{\mathsf{t}}, \mathbf{r}^{\mathsf{s}}, \frac{\mathbf{r}^{\mathsf{t}}}{\mathbf{a}^{\mathsf{t}}}, \frac{\mathbf{r}^{\mathsf{s}}}{\mathbf{a}^{\mathsf{s}}} \right)$

2

(5)

$$E_{T} \approx \phi_{3}^{QO}(\mathbf{r}^{t},\mathbf{r}^{s}) + \phi_{3}^{O1}(\mathbf{r}^{t},\mathbf{r}^{s})(\frac{\mathbf{r}^{s}}{a^{s}}) + \phi_{3}^{10}(\mathbf{r}^{t},\mathbf{r}^{s})(\frac{\mathbf{r}^{t}}{a^{t}}) + \phi_{2}^{11}(\mathbf{r}^{t},\mathbf{r}^{s})(\frac{\mathbf{r}^{t}}{a^{t}})(\frac{\mathbf{r}^{s}}{a^{s}})$$

$$E_{T} \approx \phi_{3}^{QO}(\mathbf{r}^{t},\mathbf{r}^{s}) + \phi_{3}^{O1}(\mathbf{r}^{t},\mathbf{r}^{s})(\frac{\mathbf{r}^{s}}{a^{s}}) + \phi_{3}^{10}(\mathbf{r}^{t},\mathbf{r}^{s})(\frac{\mathbf{r}^{t}}{a^{t}}) + \phi_{3}^{11}(\mathbf{r}^{t},\mathbf{r}^{s})(\frac{\mathbf{r}^{t}}{a^{t}})(\frac{\mathbf{r}^{s}}{a^{s}})$$

В частности, для квартетной длины всегда выполняется соотношение

$${}^{4}a = r^{t} \left(6.6 - 9.3 \frac{r^{t}}{r^{t}}\right).$$
 (7)

Перейдем теперь к зависимости от синглетного радиуса. Излагаемые расчёты основываются на сепарабильном представлении 2-частичной t -матрицы на внемассовой поверхности по методу /4/ Бейтмана

$$t_{\ell}^{(N)}(k,k',z) = \sum_{i,j=1}^{N} \left[\left(C^{\ell}(z) \right)^{-1} \right]_{ij} V_{\ell}(k,s_{i}) V_{\ell}(k',s_{j})$$
(8)

 $V_{\ell}(\mathbf{k},\mathbf{k}^{\prime})-\ell$ -я гармоника фурье-образа потенциала $V(\mathbf{r})$, а

$$C_{ij}^{\ell}(z) = V_{\ell}(s_{i}, s_{j}) + 8\pi\mu_{12}I_{ij}^{\ell}(z)$$

$$I_{ij}^{\ell}(z) = \int_{0}^{\infty} \frac{V_{\ell}(k, s_{i}) V_{\ell}(k, s_{j}) k^{2} dk}{k^{2} - 2\mu_{12} z - i \epsilon}$$

N =4. Расчёты проводились для значения

Таблица 1

N⁰	(fm)	² a (S) (fm)	² a (C) (fm)	² a(E) (fm)	² a (M.T.) (fm)	E _T (S) (MeV)	E _T (G) (MeV)	E _T (E) (MeV)	E _{'T} (M.' (MeV)
1.	2,5	0,33	-0,08	-0,4		9,15	9,33	9,4	
2.	2,6	0,52	0,11	-0,21	0,87	8,93	9,13	9 ,2 2	8,9
3.	2,704	0,71	0,285	-0,02		8,72	8,96	9,02	
4.	2,8	0,9	0,46`	0,17	1,15	8,52	8,78	8,83	8,56

Дублетная длина ²а и энергия связи трития Е _т в зависимости от синглетного радиуса r_s ($a_s = -23,714 \text{ fm}$, $a_t = 5,425 \text{ fm}$, r. =1,749 fm) для 4 типов потенциалов.

На рис. 1 показана зависимость энергии связи трития от синглетного радиуса для 4 типов потенциалов. Эта зависимость может быть описана интерполяционными формулами

7

(S)
$$E_{T} = 14.1 - 2r_{s}$$

(G) $E_{T} = 14.3 - 2r_{s}$
(E) $E_{T} = 14.4 - 2r_{s}$
(M.T) $E_{m} = 14.1 - 2r_{s}$

На рис. 2 представлена зависимость дублетной длины рассеяния от синглетного радиуса для этих же потенциалов. Соответствующие интерполяционные формулы имеют вид

(9)

(S)
$${}^{2}a = -4.42 + 1.9 r_{a}$$

(G) ${}^{2}a = -4.84 + 1.9 r_{a}$
(E) ${}^{2}a = -5.15 + 1.9 r_{a}$
(M.T) ${}^{2}a = -4.27 + 1.9 r_{a}$. (10)

Следует заметить, что в литературе имеются расчёты энергии связи трития для прямоугольной ямы при $r_s = 2,704$ fm . В работе ^{/5/} методом К -гармоник получено значение $E_T = 8,72$ MeV, а в работе ^{/6/} методом Гильберта-Шмидта получено $E_T = 9,08$ MeV. Триплетные параметры в этих двух расчётах несколько отличаются. Мы произвели расчёт с параметрами ^{/5,6/} и получили $E_T = 8,72$ и 8,73 MeV, соответственно.

Таким образом, вопрос о природе различия результатов, полученных методом Бейтмана и методом К -гармоник с одной стороны, и результатов, полученных методом Гильберта-Шмидта, с другой, остается открытым. На рис. З показана зависимость энергии связи трития от дублетной длины рассеяния для 4 типов потенциалов. Видно, что с хорошей точностью все точки ложатся на прямые. Итак, имеется сильная зависимость трехчастичных параметров от синглетного радиуса. При изменении в физически интересном интервале от 2,5 до 2,8 fm , эта зависимость является линейной для всех потенциалов, и наклон прямой слабо зависит от формы потенциала. Сравнивая результаты расчётов с потенциалом (M.T.). и результаты работ^{(2,3/}, мы видим, что зависимость трехчастичных параметров от формы для реалистических потенциалов слабая. И, наконец, поскольку расчёты энергии связи с ямой совпадают с соответствующими расчётами для реалистических потенциалов, видимо, можно утверждать, что при описании связанного состояния 3 нуклонов из всех двухпараметрических потенциалов прямоугольная яма будет наилучшим приближением к "реалистическому" потенциалу.

Авторы выражают благодарность Е. Вжеционко за интерес к работе и обсуждения.

Приложение

В таблице 2 приведены значения приближенных синглетных и триплетных длин рассеяния \tilde{a}_s , \tilde{a}_t (вычисленных по формуле 8) и точных a_s , a_t для потенциалов без отталкивания. Видно, что относительная ошибка меньше 0,5%

Т	аб	ли	ца	ι2
_			_	

ā _s (S)	ã _s (G)	ãs (E)	a ^a t (S)	ลั _t (G)	ã _t (E)	a _s	a _t
(fm)	(fm)	(fm)	(fm)	(fm)	(fm)	(fm)	(fm)
-23,64	-23,6	-23,58	5,441	5,45	5,451	-23,714	5 ,425

8

Литература

- В. Н. Ефимов. Препринт ОИЯИ Р-2890, Дубна, 1966, Е-2214, Дубна, 1965; Ю.А. Симонов, А.М. Бадалян. ЯФ, 1967, <u>5</u>, 88; В.Ф. Харченко, Н.М. Петров. Препринт ИТФ-69-8, Киев, 1969.
- 2. В.Б. Беляев, Е. Вжеционко, А.Л. Зубарев. Препринт ОИЯИ, Р4-5000, Дубна, 1970.
- 3. Б. Ахмадходжаев, В.Б. Беляев, Е. Вжеционко. ЯФ, том II, 1016 (1970).
- 4. В.Б. Беляев, Е. Вжепнонко. Препринт ОИЯИ, Р4-4144, Дубна, 1968.
- 5. O.O. Brayshow, B. Buck. Phys. Rev. Lett., 86, 733 (1970).
- 6. В.Ф. Харченко, С.А. Строженко . Препринт ИТФ-69-19, Киев, 1969.
- 7. L.A. Malfliet and I.A. Tjon, Nucl. Phys. A127, 161 (1969).
- 8. А.Г. Ситенко, В.Ф. Харченко. Препринт ИТФ-68-11, Киев, 1968.

9. I.M. Blatt, J.D. Jackson, Phys.Rev., 76, 18 (1949).

Рукопись поступила в издательский отдел 10 августа 1970 года.

ř

лов без отталкивания b^{*}, s^{*} для различных значений синглетного радиуса. В таблице 4 приведены значения триплетных параметров потенциалов без отталкивания b^t, s^t для различных значений триплетного радиуса. Расчёты дублетной длины nd рассеяния и энергии связи три-

В таблице 3 приведены значения синглетных параметров потенциа-

Таблица 4

тия проводились для значения r = 1,749 fm .

r _t (fm)	b ^t (S) (fm)	b ^t (G) (fm)	b ^t (E) (fm)	s ^t (S)	s ^t (G)	s ^t (E)	
1,7	2,0028	2,1225	2,3507	1,4226	1,42	1,4151	
1,749	2,0719	2,2056	2,4566	1,4439	1,4426	1,4394	
1,766	2,0982	2,2348	2,4951	1,4516	1,4507	1,4482	
1,8	2,1484	2,2943	2,5748	1,4672	1,4674	1,4669	

