1970

К ТЕОРИИ КУЛОНОВСКОГО ДЕЛЕНИЯ В РЕАКЦИЯХ МЕЖДУ СЛОЖНЫМИ ЯДРАМИ

Я. Грабовский, Б.Н. Калинкин

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

NNMENG

AABOPATOPHS TEOPETHUEKKOM

Arestat.

F.751

P4 - 5158

Я. Грабовский*, Б.Н. Калинкин

К ТЕОРИИ КУЛОНОВСКОГО ДЕЛЕНИЯ В РЕАКЦИЯХ

МЕЖДУ СЛОЖНЫМИ ЯДРАМИ

Направлено в "Acta Physica Polonica"

1. Введение

Перспективы развития эксперимента по реакциям между сложными ядрами, открывающиеся в связи с планированием ускорителей, способных давать пучки ядер с большими значениями Z , позволяют надеяться, что в самое ближайшее время стажет реальным исследование качественно новых процессов.

К таким процессам относится кулоновское деление. Оно представляет большой интерес, так как обусловлено механизмом, который сразу переводит ядро в канал вынужденного деления, минуя промежуточные стадии.

Действительно, в случае деления, индуцированного, например, нейтронами, компаунд-ядро проходит чрезвычайно сложный и запутанный путь, прежде чем его энергия сконцентрируется на коллективной степени свободы (β-вибрации), что и приводит в конечном счете к делению. Это обстоятельство сильно затрудняет анализ динамики деления, а следовательно, и роли характеристик ядра в этом процессе.

Напротив, деление, индуцированное кулоновским полем, в принципе носит более прямой характер, так как хорошо известно, что кулоновское поле наиболее интенсивно возбуждает именно коллективные степени сво-

1

боды. Большим проимуществом кулоновского деления является то, что характер сил, вызывающих его, ясен. Эти факты способствуют сильному упрощению анализа самой динамики деления.

Использование очень тяжелых ионов - предполагается ускорять ядра вплоть до урана- приведет к тому, что величина кулоновского взаимодействия между ними достигнет огромной величины (например, высота кулоновского барьера V_в в случае столкновения двух ядер урана составит V_в 0,8 Гэв!). Следовательно, можно ожидать, что процесс кулоновского деления станет достаточно эффективным.

Сказанное выше объясняет, почему уже сейчас предпринимаются попытки рассмотреть теоретически величину сечения, основные особенности кулоновского деления, а также обсудить возможность извлечения с его помощью новой информации о ядре.

Первые оценки сечения, приведенные в работе $^{/1/}$ на основе классического приближения, являются обнадеживающими. Однако, как справедливо отмечалось в работе $^{/2/}$, они довольно грубы, и проблема нуждается в более корректном исследовании. Один из возможных путей был указан авторами работы $^{/2/}$, оценившими сечение по квантовой теории многократного возбуждения высоких β -вибрационных состояний, лежащих вблизи вершины барьера деления ядра-мишени.

Здесь мы рассмотрим иной подход, основанный на более детальном исследовании динамики столкновения ядер с учетом квантовых эффектов и возможности распада ядра-мишени в ходе столкновения.

II. <u>Основные соотношения</u>

Для описания процесса кулоновского деления воспользуемся следующей картиной.

Сближающиеся ядра ($\mathbf{E} \approx \mathbf{V}_{B}$) испытывают сильное кулоновское взаимодействие, которое приводит к их взаимной деформации. В первом приближении можно считать, что главный вклад в дисторсионные эффекты вносит квадрупольная составляющая кулоновского поля. Поскольку ядра обладают конечной жесткостью (в коллективной модели она представлена параметром С₂), то в результате взаимодействия, сблизившись на минимальное расстояние, они приобретут дополнительную, динамическую деформацию. Таким образом, параметр деформации β_0 в точке наибольшего сближения (момент времени t=0), вообще говоря, отличается от своего значения, соответствующего случаю отсутствия взаимодействия ($t \rightarrow \pm \infty$).

Дополнительная деформация равна:

$$\Delta\beta_{0}(t) = \gamma / C_{2} R^{3}(t) ; \gamma = \frac{3 Z_{1} Z_{2} e^{2} R_{0}^{2}}{2(5\pi)^{1/2}} P_{2}(\cos \theta) , \qquad (1)$$

где R_0 - средний радиус рассматриваемого ядра, θ - угол, образованный линией центров масс сталкивающихся ядер и осью симметрии делящегося ядра (известно, что форма делящихся ядер с неплохой точностью описывается вытянутым эллипсоидом вращения). Легко видеть, что $\Delta\beta_0$ достигает максимального значения при t=0, так как $R(t=0)=R_{min}$.

Однако процесс сближения ядер при $E \approx V_B$ не происходит бесконечно медленно. Деформируясь, они могут возбуждаться. Кулоновский механизм приводит к интенсивному возбуждению коллективных степеней свободы: вращательных и вибрационных ^{/3/}. Наиболее существенной для кулоновского деления является β -вибрационная степень свободы. Значения параметра адиабатичности $\xi_{\beta} = \frac{\omega_{\beta} R_{\min}}{2v}$ в случае столкновения тяжелых ионов с делящимися ядрами (уран) составляет прибли-

женно 0,4. Поэтому необходимо учитывать детальную динамику столкновения и рассматривать квантовые эффекты.

Можно было бы попытаться учесть и возможность изменения положения оси симметрии ядра-мишени в процессе столкновения. Однако на первом этапе разумно пренебречь такой возможностью, так как в этом случае $\xi_{rot} \ll 1$ – реализуется ситуация, известная в литературе под названием "приближения удара" /2,3/. Выполнение соотношения $\xi_{rot} \ll 1$ означает просто, что за время столкновения ось симметрии ядра не успевает заметно изменить свою ориентацию в пространстве. Необходимые оценки проведены в работе /2/.

Следует сделать замечание относительно формулы (1). Она получчена в предположении, что энергия деформации ядра-мишени может быть представлена в виде $w(\beta) = -\frac{1}{2} C_2 (\beta - \beta_0)^2$, а его квадрупольный электрический момент зависит от параметра β линейно (учтен глав-ный член $^{/3/}$).

Обоснование аппроксимации функции w (β) параболой будет дано ниже. Что же касается преимуществ использования именно такой формы зависимости w (β), то они очевидны: решение задачи о распределении ядра-мишени по возбужденным β -вибрационным состояниям в результате его динамической деформации можно представить в аналитическом виде. Для вероятности найти ядро в n -ом β -вибрационном состоянии (можно использовать метод $^{/4/}$) имеем:

$$w_{n} = \frac{1}{n!} \left(\frac{\zeta}{h \omega_{\beta}} \right)^{n} \exp\left(-\zeta / h \omega_{\beta}\right), \qquad (2)$$

причем

$$\zeta = 10^{-5} \cdot \frac{\mu^2 R_0^4}{C_2 \xi^2} \{ [I_{2,0}(\pi,\xi)]^2 + [\frac{2.04 \cdot \phi(\xi)}{\xi}]^2 \} [P_2(\cos\theta)]^2, (3)$$

$$\phi(\xi) = \zeta \cdot \mathbf{J}(\xi) - \mathbf{0},125 \quad . \tag{4}$$

В формуле (3) μ – приведенная масса сталкивающихся ядер, С₂ выражено в Мэв, а R₀- в фм. I_{2,0} (π,ξ)- известный из теории кулоновского возбуждения классический орбитальный интеграл, табулированный в ^{/3/}. Функция J(ξ) представляет другой классический орбитальный интеграл:

$$J(\xi) = \int_{0}^{\infty} \frac{|\operatorname{Sin} [\xi(\operatorname{sh} x + x)] dx}{(\operatorname{ch} x + 1)^{2}}, \qquad (5)$$

который в теории обычно не рассматривается, так как в симметричных по времени пределах ($-\infty < t < \infty$) его вклад равен нулю. В нашем случае, когда представляет интерес поведение возбужденной системы в окрестности $t \approx 0$, его вкладом пренебрегать нельзя. Интеграл $J(\xi)$ табулирован нами.

Обсудим теперь существенный для дальнейшего вопрос о поведении энергии деформации делящегося ядра в зависимости от параметра β . Кривая w(β) для ²⁸⁸U представлена качественно на рис. 1(A). Она отражает известные к настоящему времени факты. Действительно, равновесное значение параметра $\beta = \beta_0$ для группы деляшихся ядер равно приближенно 0,25. Величина барьера деления E_t (см. рис.1) составляет \approx 5-6 Мэв. Пунктиром обозначены те части кривой, где достаточно убедительная информация отсутствует – это область малых и больших значений β . Значение β , при котором w(β) достигает максимальной величины (вершина барьера деления), строго говоря, неизвестно. Положение точки w(β) _{тах} = w(β_t) на рис. 1 выбрано в соответствии с расчетами, проведенными в работе ^{/5/}, согласно которым $\beta_{,} \approx 0,5$ -0,6. Следовательно, фактически $\beta_{,}$ является пара-

7

\$

Рис. 1. Зависимость энергии деформации от параметра β для случая ¹⁸² Xe + ²⁸⁸U. (A) – зависимость w(β), (B) – зависимость эффективной энергии деформации w*(β) от θ .

метром задачи. На том же рисунке дана парабола $\frac{1}{2} C_2 (\beta - \beta_0)^2$, аппроксимирующая поведение w(β) в интервале значений $\beta < \beta_1$. Следует заметить также, что кривая "А" выбрана достаточно гладкой. Вид реальной зависимости w(β) в принципе может заметно отличаться от кривой "А", которая описывает w(β) лишь в среднем.

Таким образом, отсутствие надежной информации вынуждает нас на данном этапе воспользоваться приближением

$$w(\beta) = \frac{1}{2} C_{2}(\beta - \beta_{0})^{2}; \ \beta \stackrel{\approx}{<} \beta_{t} \approx 0, 5 - 0, 6$$
(6)

как наиболее простым. При этом заведомо ясно, что при β > β, кривая (6) не соответствует поведению реальной w(β), являющейся конечной.

Перейдем теперь к определению сечения кулоновского деления. Рассмотрим конкретный случай столкновения ядер 132 Xe + 238 U ($E = V_B = 480$ Мэв). Ядро-мишень 238 U , будучи деформированным, испытывает воздействие кулоновского поля, индуцированного налетающим ядром Xe . Это поле является для ядра 238 U "внешним", а энергия возникающего при этом квадрупольного взаимодействия равна:

$$\mathbf{V}_{\mathbf{Q}}(\mathbf{R},\beta,\theta) = \gamma \cdot \beta / \mathbf{R}^{3}.$$
 (7)

Эффективная потенциальная энергия w*(β) для колебаний ядра-мишени может быть представлена суммой энергии деформации w(β) и энергии квадрупольного взаимодействия:

$$w^{*}(\beta) = w(\beta) + V_{Q}(\mathbf{R}, \beta, \theta).$$
(8)

На рис. 1 w*(β) представлена группой кривых "В", соответствующих энергии E = 480 Мэв и различным ориентациям оси симметрии ядрамишени ($\theta = 60^{\circ}, 70^{\circ}, 80^{\circ}, 90^{\circ}$).

Помимо сдвига точки β_0 – минимума кривой w*(β) , наблюдается уменьшение эффективного барьера – E*, .

Аналогичные кривые могут быть построены и для разных значений **R** при фиксированном значении угла θ . Сдвиг точки $\beta_0(\mathbf{R})$ будет отражать ее зависимость от времени $\beta_0(\mathbf{t})$.

При θ < 54[°] β₀ будет уменьшаться, а эффективный барьер Е*г расти. Вкладом таких конфигураций в дальнейшем будем пренебрегать.

Вероятности w_n возбуждения (см. формулу (2)) вычислены путем разложения волновой функции системы $\Psi(\beta, t = 0)$ по мгновенным собственным функциям $\phi_n [\beta, \beta_0(t = 0)]$ эффективного потенциала w*(β), взятого в осцилляторном приближении.

Попытаемся учесть конечность потенциала w*(β). Будем считать, что если ядро-мишень находится в n-ом возбужденном состоянии, для энергии которого выполняется соотношение

$$E_{n} - E_{f}^{*} = (n+1/2) h \omega_{\beta} - E_{f}^{*} < 0, \qquad (9)$$

то ядро не испытывает вынужденного деления. В противном случае деление имеет место.

Волновые функции состояний с Е $_{n} > E *_{f}$ неизвестны. Однако, для оценки вероятности η деления, мы можем воспользоваться условием $\sum_{n} w_{n} = 1$. Очевидно, что для η можно написать следующую формулу:

$$\eta(\theta) = 1 - \sum_{n=0}^{n_{\max}} w_n(\theta), \qquad (10)$$

где п _____ определяется из соотношения (9).

Таким образом, определение (10) предполагает, что ядро, находящееся в любом из состояний с Е _в > Е ^{*} , делится.

Рассматривая наиболее простой случай, когда налетающее ядро рассеивается назад, дифференциальное сечение кулоновского деления можем записать в виде:

$$\left(\frac{d\sigma}{d\Omega}\right)_{f} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega}\right)_{\text{pes}} \int \eta(\theta) \sin \theta \, d\theta =$$

$$= \frac{R_{\min}^{2}}{8} \int \eta(\theta) \sin \theta \, d\theta$$
(11)

 $\left(\frac{d\sigma}{d\Omega}\right)_{pes}$ - резерфордовское сечение рассеяния назад). Таким образом, формула (11) дает приближенную оценку сечения кулоновского деления. Однако она отражает наиболее важные аспекты динамики процесса: неадиабатичность столкновения ядер и возможность распада ядра-мишени уже в ходе самого столкновения.

III . Результаты и обсуждение

Рассмотрим некоторые следствия, вытекающие из описанной модели. Для иллюстрации полученных результатов наиболее подробно обсудим упомянутый выше случай столкновения ядер ¹³² Xe + ²³⁸ U , E =480Мэв. Из предыдущего видно, что параметрами модели являются h ω_{β} , C₂ и E₁ . Для ядра ²³⁸ U с неплохой точностью можно положить h $\omega_{\beta} \approx 1$ Мэв, E₁ =5 Мэв. Относительно величины параметра C₂ сделать определенные выводы трудно. Дело в том, что если извлекать его значение из данных по возбуждению нижайшего β -вибрационного уровня ^{/2/}, то следовало бы принять C₂ \approx 300 Мэв. Однако в нашей модели эффективно учитываются и более высокие состояния, реализующиеся в усредненном потенциале w(β). Как мы уже отмечали, на

\$

данном этапе нет смысла рассматривать детальные флуктуации, приводящие на отдельных участках по β к отклонению реальной зависимости w(β) от принятой средней. Коэффициент жесткости С₂, соответствующий такой средней кривой, можно было бы определить из соотношения:

$$E_{f} \stackrel{\approx}{=} \frac{1}{2} C_{2} (\beta_{0} - \beta_{f})^{2} . \qquad (12)$$

Из (12) видно, что величина С₂ сильно зависит от выбора β_{f} . Если использовать принятые сейчас ^{/5/} значения $\beta_{f} \approx 0,5-0,6$, то для С₂ получим:

Последнее значение практически совпадает с гидродинамическим.

Итак, мы видим, что константу С₂ следует считать параметром, от которого зависит сечение кулоновского деления. Зависимость вероятности деления η от угла ориентации оси симметрии ядра-мишени

 θ при $C_2 = 60$ Мэв представлена на рис. 2 для энергии E = 480 Мэв. Зависимость дифференциального сечения кулоновского деления $(\frac{d\sigma}{d\Omega})_{t}$ от энергии в интервале E = 480-440 Мэв дана на рис. 3.

Кривая, описывающая поведение сечения деления, индуцированного ионами с разными $Z(E = V_B)$, изображена на рис. 4 (кривая 1). На том же рисунке кривая 2 соответствует результатам работы ^{/2/} (авторы работы ^{/2/} использовали значение $C_2 \approx 300$ Мэв). Кривая 1' представляет результаты расчетов при $C_2 = 300$ Мэв. Сравнивая кривые 1 и 1', видим, что сечение существенным образом зависит от величины C_2 . С физической точки зрения этот результат является вполне естественным, - с увеличением жесткости системы ее динамическая

деформация и разброс по возбужденным состояниям должен уменьшаться.

Из рис. 4 видно также, что сечения деления 1(1') и 2 сильно отличаются. Этот факт также объясняется просто. В работе ^{/2/} возможность распада состояний с $E_n < E_t$ не учитывается, и основной вклад в сечение дает высокое вибрационное состояние с n = 6, вероятность возбуждения которого весьма мала.

В нашем подходе в сечение дают вклад и более низкие состояния. Этим и объясняется большое отличие по величине сечений 1,1' и 2, приведенных на рис. 4.

В этой связи необходимо сделать замечание. Как уже указывалось, сечения 1 и 1' получены в предположении, что возбуждение ядра на

 β -вибрационный уровень с $E_n > E_f^*$ с необходимостью приводит к

\$

Рис. 3. Зависимость $(d\sigma(\pi)/d\Omega)_{f}$ от Е вблизи V_В. Столкновение ядер ¹³² Хе + ²³⁸ U.

Рис. 4. Зависимость $(d\sigma(\pi) / d\Omega)_{f}$ от заряда налетающего на ²³⁸ U ядра (при $E \approx V_{B}$).

делению. Однако, поскольку эффективный барьер зависит от времени, т.е. $E_{f}^{*} = E_{f}^{*}(t)$, а развитие системы по переменной β происходит с конечной скоростью (следует ожидать, что она соизмерима со скоростью разлета столкнувшихся ядер вблизи $t \approx 0$), то, строго говоря, в выражение для сечения следует ввести коэффициент, меньший единицы.

Этот интересный вопрос в дальнейшем следует изучить, так как его решение может дать сведения о деталях динамики распадающейся ядерной системы, находящейся на одном из *β*-вибрационных уровней.

Таким образом, сечения 1; 1' и 2 представляют верхнюю и нижнюк оценки эффективности процесса деления, соответственно.

Масштаб величины сечения при Z > 50 позволяет надеяться на возможность успешного экспериментального изучения этого интересного продесса.

В заключение сделаем несколько замечаний. По сути дела исследования кулоновского деления, выполненные в работах ^{/1,2/} и данной, являются только первым этапом построения теории этого эффекта. Его привлекательные особенности, на которые указывалось во Введении, делают крайне желательным усовершенствование теории. По-видимому, предстоит решить еще немало вопросов, прежде чем эффект станет полезным источником новой информации.

Нам представляется целесообразным отметить несколько таких вопросов.

 Необходимо исследовать задачу о прохождении системы над барьером, с изменяющейся во времени высотой (об этом мы упоминали выше).

 Линейное по β приближение для энергии квадрупольного взаимодействия следовало бы улучшить путем учета квадратичных членов.
 Эти члены могут внести заметный вклад, так как изменят величину

эффективного барьера E*, а также приведут к появлению временной зависимости частоты в -колебаний системы во внешнем поле.

3. Из физических соображений ясно, что ограничиться рассмотрением только β -колебаний нельзя. В более корректной постановке задачи необходимо учесть возможность возбуждения γ -колебаний, которые должны эффективно проявляться для конфигурации с $\theta = \pi/2$.

4. Наконец, не менее интересно в рамках данной модели исследовать и поведение ядра-мишени в случае столкновения с $\theta \approx 0$. Рассмотренный нами механизм, в принципе, может привести к тому, что вблизи точки $\iota \approx 0$ ядро-мишень окажется разбросанным по состояниям, соответствующим спектру β -колебаний сплюснутого ядра ($\beta_0 < 0$). Не исключено, что и эти состояния могут распадаться по каналу деления. Интуитивно представляется вероятным, что доля распадов этих состояний по каналу тройного деления должна быть весьма большой.

Литература

1. L. Wilets, E. Guth, I.S. Tenn. Phys. Rev., 156, N4, 1349 (1967).

- 2. Karin Beyer, Aa.Winther. Phys. Lett., 30B, 196 (1969).
- К. Альдер, О. Бор, Т. Хус, Б. Моттельсон, О. Винтер. Сборник статей "Деформация атомных ядер". ИИЛ, Москва, 1958.
- 4. В.И. Коган, В.М. Галицкий. Сборник задач по квантовой механике. ГИТТЛ, Москва, 1956.
- 5. В.М. Струтинский. Всесоюзная летняя школа по ядерной стектроскопии при ядерных реакциях, 526, Обнинск, 1966.

Рккопись поступила в издательский отдел 5 июня 1970 года.

17