5039

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

all and the second

DATOPMS TEOPETMUELK

Дубна.

P4-5039

Экз. чит. ЗАЛА

А.В. Матвеенко, Л.И. Пономарев

МЕДЛЕННЫЕ СТОЛКНОВЕНИЯ В СИСТЕМЕ ТРЕХ ТЕЛ, ВЗАИМОДЕЙСТВУЮЩИХ ПО ЗАКОНУ КУЛОНА. IV. МЕЗОАТОМНЫЕ ПРОЦЕССЫ В ВОДОРОДЕ

P4-5039

А.В. Матвеенко, Л.И. Пономарев

МЕДЛЕННЫЕ СТОЛКНОВЕНИЯ В СИСТЕМЕ ТРЕХ ТЕЛ, ВЗАИМОДЕЙСТВУЮЩИХ ПО ЗАКОНУ КУЛОНА. IV. МЕЗОАТОМНЫЕ ПРОЦЕССЫ В ВОДОРОДЕ

Направлено в ЖЭТФ

Введение

 μ^- -мезоны, попадая в смесь изотопов водорода, тормозятся там и захватываются кулоновским полем ядер, образуя мезоатомы, которые затем довольно быстро переходят в основное состояние. В жидком водороде все эти процессы занимают $\approx 10^{-12}$ сек, что значительно меньше собственного времени жизни μ^- -мезонов ($\tau = 2,2\cdot10^{-6}$ сек). За это время при тепловых скоростях ($v_T \approx 2\cdot10^5$ см/сек) мезоатом водорода успевает испытать $\approx 10^8$ соударений с ядрами других атомов водорода.

При соударениях, помимо упругого рассеяния, происходят многочисленные мезоатомные процессы: перехват мезона ядрами более тяжелых изотопов, переходы между уровнями сверхтонкой структуры мезоатомов, образование мезомолекул, катализ ядерных реакций и т.д. /1,2/.

В данной работе вычислены сечения первых двух процессов, проведено сравнение полученных результатов с экспериментом ^{/3-6/} и более ранними расчетами ^{/1,7-9/}. При вычислении использован метод возмущенных стационарных состояний (В.С.С.) ^{х/}, изложенный детально в предыдущих работах авторов ^{/10,11/}.

x/ На наш взгляд, более правильно называть этот метод "методом молекулярных состояний", как это предложено, например, в /12/.

Общая постановка задачи

В методе возмущенных стационарных состояний все перечисленные задачи формулируются единым образом и сводятся к решению связанной системы уравнений Шредингера /11/. В двухуровневом приближении система приобретает вид:

$$\left(\frac{d^{2}}{dR^{2}} + k_{1}^{2} - \frac{L(L+1)}{R^{2}}\right)\chi_{1} = K_{11}\chi_{1} + K_{12}\chi_{2} + 2Q_{12} - \frac{d\chi_{2}}{dR},$$
(1)
$$\left(\frac{d^{2}}{dR^{2}} + k_{2}^{2} - \frac{L(L+1)}{R^{2}}\right)\chi_{2} = K_{21}\chi_{1} + K_{22}\chi_{2} + 2Q_{21} - \frac{d\chi_{1}}{dR}.$$

Здесь: k_1 и k_2 – импульсы во входном и зыходном каналах реакции (в дальнейшем всегда $k_1 \le k_2$), а К $_{1j} = K_{1j}(R) - K_{1j}(\infty)$ и Q $_{1j} = Q_{1j}(R)$ некоторые эффективные потенциалы, конкретный вид которых определяется особенностями задачи. При каждом заданном значении L орбитального момента система уравнений Шредингера (1) эквивалентна системе нелинейных дифференциальных уравнений первого порядка для элементов t $_{1j}^{L}(R)$ матрицы реакции $T^{L}(R)^{/14,15/}$.

$$\frac{d}{dR} t_{ij}^{L}(R) = -a_{ia} \left(K_{\alpha\beta}^{a} \beta_{j} + 2 Q_{\alpha\beta}^{a} \beta_{j} \right) ,$$

$$t_{ij}^{L}(0) = 0, \quad a, \beta, i, j = 1; 2,$$

где

$$a_{ia} = \delta_{ia} u_{a} + t_{ia}^{L}(R) v_{a},$$

$$\overset{\approx}{a}_{\beta j} = \delta_{\beta j} u_{\beta} + t_{\beta j}^{L}(R) v_{\beta},$$

$$\overset{\approx}{a}_{\beta j} = \delta_{\beta j} u_{\beta} + t_{\beta j}^{L}(R) v_{\beta}.$$
(3)

(2)

Функции и a и va выражаются через сферические функции Бесселя

$$\mathbf{u}_{a} = \sqrt{\frac{\pi R}{2}} \mathbf{j}_{L}(\mathbf{k}_{a}R), \quad \mathbf{v}_{a} = -\sqrt{\frac{\pi R}{2}} \mathbf{n}_{L}(\mathbf{k}_{a}R)$$
 (3a)

и при R→∞имеют асимптотику

$$\mathbf{u}_{a} = \frac{1}{\sqrt{\mathbf{k}_{a}}} \sin\left(\mathbf{k}_{a}\mathbf{R} - \frac{\pi \mathbf{L}}{2}\right); \quad \mathbf{v}_{a} = \frac{1}{\sqrt{\mathbf{k}_{a}}} \cos\left(\mathbf{k}_{a}\mathbf{R} - \frac{\pi \mathbf{L}}{2}\right). \quad (36)$$

Матрица Т^L определяется условием $t_{ij}^{L} = t_{ij}^{L} (\infty)$. Практически система уравнений (2) интегрируется до значений $R = R_0$, а вклад Δt_{ij}^{L} от области $R_0 \leq R < \infty$ оценивается аналитически /11,14/

$$t_{ij}^{L} = t_{ij}^{L} (R_0) + \Delta t_{ij}^{L} .$$
(4)

Кроме того, поскольку матричные элементы К $_{1,1}(R)$ при $R \to 0$ сингулярны, необходимо задать асимптотику

$$t_{ij}^{L}(R) = c_{ij}^{L}(k_{i}k_{j})^{L+1/2} R^{2L+1}$$
, (5)

где коэффициенты с ₁₁ = const и определяются видом К ₁₁ (R) из уравнений (2). Парциальные сечения упругих и неупругих процессов вычисляются по формуле /16/

$$\sigma_{ij}^{L} = \frac{\pi}{k_{ij}^{2}} (2L+1) \left| \delta_{ij} - S_{ij}^{L} \right|^{2}, \qquad (6)$$

(7)

где матрица рассеяния

$$S^{L} = \frac{1 + i T^{L}}{1 - i T^{L}}$$
.

С учетом формул (6) и (7) общее выражение для сечений σ_{ij} через элементы t_{ij} матрицы реакции можно записать в следующем виде:

$$\sigma_{ij} = \frac{4\pi}{k_{i}^{2}} \frac{\delta_{ij} D^{2} + t_{ij}^{2}}{(D-1)^{2} + (t_{ij} + t_{22})^{2}},$$
(8)

где

$$\mathbf{D} = \mathbf{t}_{11}\mathbf{t}_{22} - \mathbf{t}_{12}\mathbf{t}_{21}$$

При малых энергиях столкновений Е можно ввести параметры низкоэнергетического рассеяния а 11

$$i_{j} = -a_{ij} \sqrt{k}_{i} k_{j} , \qquad (9)$$

которые аналогичны длинам рассеяния а и а в одноканальном /16/ случае .

Если $k_1 \rightarrow 0$, то $D \approx k_1$, $k_2 \rightarrow k_0 = \sqrt{2M\Delta E}$, и формула (8) упрощается

$$_{ij} = 4 \pi \frac{k_j}{k_i} \cdot \frac{a_{ij}^2}{1 + k_0^2 a_{22}^2}$$
(10)

Матричные элементы K₁₁ и Q₁₁ для всех типов решаемых далее задач выражаются через симметричный W_g(R) и антисимметричный W_g(R) термы задачи двух центров, а также через матричные элементы

$$K_{\alpha\beta} = K_{\alpha\beta}^{(+)} + \kappa K_{\alpha\beta}^{(-)} + \kappa^{2} K_{\alpha\beta}^{*} ,$$

$$Q_{\alpha\beta} = Q_{\alpha\beta}^{(+)} + \kappa Q_{\alpha\beta}^{(-)} ,$$
(11)

$$\kappa = \frac{M_2 - M_1}{M_2 + M_1}, \quad M_2 \ge M_1 \quad (\alpha, \beta) \equiv (g, u)$$

которые вычислены в работах /17,18/

На рис. 1 и 2 приведены графики этих функций в единицах задачи h = e = m = 1 (M_{μ} - масса μ -мезона)

$$m = M_{\mu} \frac{M_1 + M_2}{M_1 + M_2 + M_{\mu}}$$
(12)

Рис.1. Симметричный ₩ g(R) и антисимметричный ₩ u (R) термы системы из двух ядер и μ⁻ -мезона.

7

Соответствующие формулы перехода имеют вид: $K(R) = A \stackrel{\approx}{K} A^{-1} \ ,$

(13)

ГДЕ

$$\vec{K}_{11} = 2MW_g(R) + K_{gg}(R) = 2M\vec{W}_g,$$

 $\vec{K}_{12} = K_{gu}(R),$
 $\vec{K}_{21} = K_{ug}(R),$
 $\vec{K}_{22} = 2MW_u(R) + K_{uu}(R) = 2M\vec{W}_u,$
 $M = \frac{M_0}{m}; \frac{1}{M_0} = \frac{1}{M_1} + \frac{1}{M_2}.$

Матрица A осуществляет переход от набора молекулярных функций χ_{g} (симметричная) и χ_{u} (антисимметричная) к набору χ_{1} и χ_{2}

$$\begin{pmatrix} \chi_{1} \\ \\ \chi_{2} \end{pmatrix} = A \begin{pmatrix} \chi_{g} \\ \\ \\ \chi_{u} \end{pmatrix}$$

(15)

(14)

конкретный вид которого определяется особенностями задачи.

Процессы изотопного обмена

В смеси изотопов водорода идут процессы изотопного обмена

$$p \mu^{-} + d \leftrightarrow p + d \mu^{-}, \qquad (16a)$$

$$p \mu^{-} + t \leftrightarrow p + t \mu^{-}, \qquad (16b)$$

$$d \mu^{-} + t \leftrightarrow d + t \mu^{-}, \qquad (16b)$$

8

Рис. 2a. Диагональные матричные элементы ядерного движения по волновым функциям задачи двух центров. При R $\rightarrow \infty$ $K^{(+)}_{uu} = K^{(-)}_{gg} = K^{(-)}_{gg} = K^{(-)}_{gg} = \frac{1}{2} W_{u} = \frac{1}{4}$.

схематически представленные на рис. 3. Энергия столкновения Eотсчитывается от уровня E_1 более легкого мезоатома, $E' = E + \Delta E$ и в соответствии с этим x/

$$k_1^2 = 2ME', \quad k_2^2 = 2ME' = k_1^2 + k_0^2$$

 $k_0 = \sqrt{2M\Delta E}$ (17)

(например, в смеси изотопов (16а) уровень E_1 соответствует системе $p\mu^- + d$, а уровень E_2 – системе $p + d\mu^-$). Каждое из сечений $\sigma_{1,i}$ описывает переход $E_i \rightarrow E_i$, например, сечение $\sigma_{1,2}$ для процесса (16а) соответствует реакции перехвата

 $p\mu^{-} + d \rightarrow p + d\mu^{-}. \tag{16r}$

При таком подходе мы оставляем в стороне изучение подпороговых эффектов и все задачи, связанные с влиянием закрытого канала (σ_{11}) на открытый (σ_{22}), например, при упругом рассеянии $d\mu^-$ -мезоатомов на протонах с энергией Е '< Δ Е.

Для процессов изотопного обмена (16) матрица перехода А имеет вид:

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$
(18)

^{x/}В двухуровневом приближении изотопическая разность уровней $\Delta E = \frac{\kappa}{2} \cdot \frac{m}{M}$, в то время как точное значение $\Delta E_0 = \frac{\kappa}{2} \cdot \frac{M_1 + M_2}{(M_1 + 1)(M_2 + 1)}$ (все – в мезоатомных единицах $h = e = M_{\mu} = 1$). Однако, поскольку $\Delta E - \Delta E_0 \approx \frac{\kappa}{2} (\frac{1}{M_1^2} + \frac{1}{M_2^2})$, то указанной погрешностью можно пренебречь при той точности вычислений, которая принята вработе. Численно для систем (13): $\Delta E = 147$ эв, 200 эв, 50,4 эв;

ΔЕ₀ = 135 эв, 183 эв, 48,1 эв.

Она выбрана таким образом, что при R $\rightarrow \infty$ система уравнений (1) распадается на два независимых уравнения, причем функция χ_1 описывает систему $p\mu + d$ (или $p\mu + t$, $d\mu + t$), а функция χ_2 -систему $p + d\mu$ (или $p + t\mu$, $d + t\mu$).

Окончательно для процессов (16) выражения К_и (R) примут вид

$$K_{11}(R) = M(\tilde{W}_{g} + \tilde{W}_{u}) - \frac{1}{2}(K_{gu} + K_{ug}),$$

$$K_{12}(K) = M(\tilde{W}_{g} - \tilde{W}_{u}) + \frac{1}{2}(K_{gu} - K_{ug}),$$

$$K_{21}(R) = M(\tilde{W}_{g} - \tilde{W}_{u}) - \frac{1}{2}(K_{gu} - K_{ug}),$$

$$K_{22}(R) = M(\tilde{W}_{g} + \tilde{W}_{u}) + \frac{1}{2}(K_{gu} - K_{ug}).$$
(19)

Коэффициенты c_{1j}^{L} для процессов изотопного обмена (16) равны: $c_{11}^{L} = c_{22}^{L} = -c_{12}^{L} = -c_{21}^{L}$, $c_{11}^{L} = -\frac{2L+1}{\lfloor (2L+1)! \rfloor \rfloor^{2}} \cdot \frac{(2L+1)^{2}+4-(2L+1)\sqrt{(2L+1)^{2}+8}}{8}$. (20)

Результаты численных расчетов для процессов (16а-16в) при энергиях столкновений 10^{-3} - 100 эв приведены в таблицах 1-3. (Сечения даны в единицах 10^{-20} см²). Отметим некоторые особенности полученных результатов.

Из формулы (10) легко видеть, что при медленных столкновениях (k $\rightarrow 0$) k \approx k = const , поэтому

$$\sigma_{11} \approx \text{const}, \ \sigma_{22} \approx \text{const},$$

$$\sigma_{12} \sim \frac{1}{k_1}, \quad \sigma_{21} \sim k_1.$$
(21)

11

Таблица	2
---------	---

Таблица 1 Сечения σ₁₁ и коистанта λ для системы рµ-+d

Сечения σ_{ii} и константа λ для системы рµ⁻+t

 σ_{11}

Е эв

L

Еэв	L	σ 11	σ 12	σ 2 t	λ, 10 ⁻¹³ 3 -1 cм cex
10-3	0	6,7	7,3.10+2	5,0.10 ⁻³	3,9
10 -2	Ο	7,0	2,3.10 ²	1,5.10 ⁻²	3,9
0,I	I	7,9	71	4,8.IO ⁻²	3,8
I,0	2	9,7	21	0,14	3,6
10	3	IO	8,5	0,54	4,6
100	6	6,7	5,4	2,2	9,I
				· .	

M=6,14; $\frac{M}{m} = 1,04;$ k = 4,76.10⁻² $\sqrt{E_{9B}};$ $\sigma_{22} \approx 1,8.10^{-19} c^{2}$

Сечения даны в единицах 10^{-20} см²

	$k_1 = 5,00.10$)-2√Е эв;		$\sigma_{22} \approx 2,0.10^{-19} \text{ cm}^2.$			
	M = 6,85 ;	M m	$\frac{\mu}{1} = 1,03;$	k ₀ =0,706;			
100	6	7,0	3,6	I,2	5,8		
IO	3	9,9	5,9	0,28	3,0		
I,0	2	7,I	II	5,6.10-2	. I,8		
0,1	I	4,6	34	I,7.10 ⁻²	I,7		
10-2	0	3,6	I,I.10 ²	5,5.10-3	1,7		
10-3	0	3,3	3,5.10 ²	I,7.10 ⁻³	I,8		

 σ_{12}

λ, 10⁻¹³ cm³ ceκ⁻¹

σ. 21

Сечения даны в единицах 10⁻²⁰ см².

Это позволяет ввести константу перехвата λ по фо

по формуле

$$\mathbf{A} = \sigma_{12} \mathbf{v}_{1} \tag{22}$$

или же

$$\Lambda = \lambda n_0 ,$$

где $n_0 = 4,25 \cdot 10^{22}$ см⁻³ - плотность жидкого водорода, а v_1 - начальная скорость столкновения.

При k₁→ 0

$$f_{12} \approx 4\pi \frac{k_0}{k_1} \frac{a_{12}^2}{1 + k_0^2 a_{22}^2},$$
(24)

$$\lambda \approx 4\pi \frac{k_0}{M} \frac{a_{12}^2}{1 + k_0^2 a_{22}^2}.$$
 (24a)

Из формул (21) следует также характер порогового поведения сечений $\sigma_{21} \sim k_{1}$. Во втором столбце таблиц указано число парциальных волн, дающих вклад в сечения σ_{11} , σ_{12} и σ_{21} . Из них следует, что область чистого s -рассеяния для процессов (16) простирается вплоть до энергии столкновения $E \approx 10^{-2}$ эв. В этой области для сечений σ_{1j} справедливы формулы (10) и (24) с параметрами a_{1j} , которые приведены под таблицами 1-3 в мезоатомных единицах a_{μ}

$$= \frac{h^2}{M_{\mu}e^2} = 2,56 \cdot 10^{-11} \text{ cm.}$$

Область энергий столкновения, при которых выполняется условие $a_{ij} \approx const$, еще уже, чем область чистого s -рассеяния и ограничена условием $E \leq 10^{-3}$ эв. Условие $\lambda \approx const$, которое обычно используют

λ, 10⁻¹³cm³cek⁻¹

I,6.I0⁻²

I,8.10⁻²

3,4.IO⁻²

0,21

2,6

σ 22

18

I8

I8

I8

17

$$k_1 = 6,29 \cdot 10^{-2} \sqrt{E} \Rightarrow B.$$

Сечения даны в единицах 10⁻²⁰ см².

14

$$\frac{-\mu}{m} = 1,02;$$
 $k_0 = 0,446;$

Таблица З

12

4,I

I,4

0,85

I,6

6,5

7,0

М

и константа λ для системы $d\mu$ + t

σ 21

8,I.I0⁻⁵

2,9.10-4

I,7.IO⁻³

3,2.10-2

I,I

4,7

Сечения он

σ 11

2,6

3,2

5,3

II

17

12

L_{max}

0

Ι

Ι

2

6

M=10,9;

Еэв

10-3

10-2

0,I

I.0

IO

100

при анализе экспериментов (16а) и (16б) по рассеянию мезоатомов. выполняется вплоть до энергий столкновения Е≈ 1 эв. несмотря на то. что приближение s -волны в этом случае нарушено (см. таблицы 1 и 2). Из таблицы З видно также, что для реакции (16в) λ аномально мало и вклад Р -волны приходится учитывать уже при $E \approx 10^{-2}$ эв. Следует ожидать, что в этом случае двухуровневое приближение дает менее надежный результат, чем в случае реакций (16а) и (16б).

Число парциальных волн, дающих вклад в сечение σ_{22} , при энергии столкновения E < 100 эв примерно постоянно и для процессов (16а-16в) соответственно равно 5, 6 и 7.

В таблице 4 результаты наших расчетов для константы перехвата сравниваются с результатами прежних расчетов и с экспериментальλ ными данными.

Переходы между уровнями сверхтонкой структуры

Для мезоатомов водорода сверхтонкое расщепление ΔE основного состояния значительно превышает среднюю энергию тепловых соударений.(Е≈0,02 эв):

$$\Delta E = \begin{cases} 0,183 \ ЭВ \ для \ P^{\mu} \\ 0,049 \ ЭВ \ для \ d\mu^{-} \\ 0,241 \ ЭВ \ для \ t\mu^{-} \end{cases}$$
(25)

Это приводит к усложнению картины процессов рассеяния в систеи к необходимости учитывать влияние $\max p\mu + p , d\mu + d u t\mu + t$ спина при их описании. Система возникающих при этом уравнений совпадает с системой (1) и найдена в работах Герштейна /8/. Поскольку ΔЕ достаточно мало, то при Е < 1 эв в уравнениях (1) можно ограничить-

17

обмена

ИЗОТОПНОГО

đ

процесс

4

Таблица

3 Cek

перехвата для пр _λ,10-13 см

Константа

~

ся в -волной (L=0). При E > 1 эв это приближение неоправдано и необходимо учитывать парциальные сечения σ_{11}^{L} с L $\neq 0$. Однако при этих энергиях столкновений влиянием спина на процессы рассеяния уже можно пренебречь и задача упрощается. В предыдущей работе авторов /11/, она решена.

Учет спинового взаимодействия мезона с ядрами приводит к перепутыванию уравнений для волновых функций χ_{g} и χ_{u} . Кроме того, ввиду тождественности ядер необходимо учитывать статистику рассеивающихся частиц. В приближении чистого ^s -рассеяния система из двух ядер со спинами J_{1} и J_{2} и мезона со спином S=1/2 характеризуется значением полного момента $\vec{J}=\vec{J_{1}}+\vec{J}_{2}+\vec{S}$. Если пренебречь спиновым взаимодействием ядер, то уровни классифицируются также по значению F полного момента системы мезон + ядро: $F=J_{1}+1/2$

В дальнейшем особый интерес представляют переходы между уровнями сверхтонкой структуры мезоатомов, т.е. переходы

 $F_1 = J_1 + 1/2 \rightarrow F_2 = J_1 - 1/2$.

Схема уровней на рис. З остается справедливой и в этом случае, но

Рис. 3. Схема уровней системы трех тел при $R \rightarrow \infty$: $E_1 = K_{11}(\infty)$ и $E_{2^{\pm}}K_{22}(\infty)$. Отсчет энергии столкновения E – от верхнего уровня системы E_1 .

Рис. 4. Зависимость от энергии сечений различных процессов в системе р μ + р . При E < 1 эв необходимо учитывать сверхтонкую структуру р μ -мезоатома и реальный смысл имеют только сечения σ_{11} . При 1 < E < 150 эв сверхтонким расшеплением можно пренебречь, но еще необходимо учитывать статистику частиц:

σ_{8,8} - сечение рассеяния в синглетном состоянии протонов, σ_{8,8} - в триплетном, σ₈ - статистическая смесь обоих состояний. При E> 150 эв все эти сечения совпадают с σ -сечением рассеяния без учета спинов частиц. теперь уровень E_1 соответствует верхнему состоянию сверхтонкой структуры с моментом F_1 , а уровень E_2 – нижнему состоянию с моментом F_2 .

Как и в случае реакций изотопного обмена, для вычисления сечений $\sigma_J(F_1 \rightarrow F_2)$ при заданном значении полного момента J необходимо найти матрицу A перехода от молекулярных функций χ_g и χ_u с определенными значениями спина двух ядер к атомным функциям χ_1 и χ_2 с заданным значением F спина системы мезон + + ядро. После этого эффективные потенциалы задачи K_{ij} просто вычисляются по формуле (13).

При известной величине (25) сверхтонкого расшепления и заданных значениях масс M = 10+30 импульс k_0 очень мал ($\approx 10^{-2}$). Поэтому формулы (10) и (24а) упрощаются x':

 $\sigma_{ij} \approx 4\pi \quad a_{ij}^{2} \frac{k_{j}}{k_{i}}, \qquad (26)$ $\lambda (J) \approx 4\pi \quad a_{12}^{2} \frac{k_{0}}{M}, \qquad (26a)$

где $\lambda(J)$ – константа перехвата в состоянии с полным моментом J. Численные расчеты показывают, что при энергии столкновений $E \leq 10^{-2}$ эв (для системы $t\mu^- + t$ при $E \leq 10^{-3}$ эв) $a_{ij} \approx \text{const}$, причем матрица коэффициентов $a = \{a_{ij}\}$ связана с диагональной матрицей \tilde{a} соотношением, аналогичным (13):

x' Все предыдущие формулы записаны в единицах задачи e = h = m = 1. В дальнейшем удобно использовать параметры a_{ij} в мезоатомной системе единиц $e = h = M_{\mu} = 1$. В этом случае для получения размерных величин формулы (10), (24) и (26) необходимо домножить соответственно на $a_{\mu}^2 = 6,55\cdot10^{-22}$ см², а формулы (24a) и (26a) на $a c \cdot a_{\mu}^2 = 1,43\cdot10^{-13}$ см³ сек⁻¹ ($a = \frac{1}{137}$, $c = 3\cdot10^{10}$ см/сек). $a = A \tilde{\tilde{a}} A^{-1}$ $\tilde{\tilde{a}} = \begin{pmatrix} a_g \\ g \end{pmatrix}.$

Здесь а_g и а_u – длины рассеяния соответственно в четном и нечетном каналах без учета сверхтонкой структуры, вычисленные в предыдущей работе /9/.

Реакция р µ + р

Для этой системы

$$M_1 = J_2 = 1/2$$
; $M = 4,69$; $\frac{M\mu}{m} = 1,06$,
 $k_0 = 1,80 \cdot 10^{-2}$ $k_1 = 4,20 \cdot 10^{-2} \sqrt{E}$.

Матрица перехода А равна:

$$A = \frac{1}{2} \begin{pmatrix} -\sqrt{3} & -1 \\ 1 & -\sqrt{3} \end{pmatrix},$$
(29a)

а матричные элементы K_{ij} в уравнениях (1), описывающих этот процесс, примут вид:

21

$$\begin{split} \mathbf{K}_{11} &= \frac{\mathbf{M}}{2} \left(3 \, \widetilde{\mathbf{W}}_{\mathbf{g}} + \widetilde{\mathbf{W}}_{\mathbf{u}} \right), \\ \mathbf{K}_{12} &= \mathbf{K}_{21} = -\frac{\sqrt{3}}{2} \, \mathbf{M} \left(\widetilde{\mathbf{W}}_{\mathbf{g}} - \widetilde{\mathbf{W}}_{\mathbf{u}} \right), \\ \mathbf{K}_{22} &= \frac{\mathbf{M}}{2} \left(\widetilde{\mathbf{W}}_{\mathbf{g}} + 3 \, \widetilde{\mathbf{W}}_{\mathbf{u}} \right). \end{split}$$

(30a)

(28a)

(27)

. При R →∞ функция X 1 представляет систему протон + налетающий мезоатом рµ в верхнем состоянии E₁ сверхтонкой структуры с моментом $F_1 = 1$, а функция χ_2 - ту же систему в нижнем состоянии E_2 с моментом $F_2 = 0$. (При этом перехват $F_1 \rightarrow F_2$ возможен только в состоянии с полным моментом J=1/2 , поскольку состояние J = 3/2 не содержит уровня с моментом $F_{0} = 0$).

Значения коэффициентов с _{іі} в формуле (5) начальных условий интегрирования соответственно равны:

 $c_{11} = -\frac{1}{8}; c_{12} = c_{21} = -\frac{\sqrt{3}}{8}; c_{22} = -\frac{3}{8}.$ (31a)

Результаты вычислений для системы р µ + р приведены в таблице 5. от энер-Обращает на себя внимание резкая зависимость сечения $\sigma_{_{22}}$ гии столкновения.

Реакция
$$d\mu + d$$

(286)

Для этой системы

 $J_1 = J_2 = 1$; M = 9,12; $\frac{M_{\mu}}{m} = 1,03$;

 $k_0 = 1.3 \cdot 10^{-2}$; $k_1 = 5.77 \cdot 10^{-2} \sqrt{E}$.

Функция X₁ соответствует системе дейтрон + налетающий мезоатом $d\mu^-$ в состоянии с моментом $F_1 = 3/2$, а функция χ_2 - системе в состоянии с моментом F =1/2 . При в -рассеянии полный момент J системы трех частиц сохраняется, и переходы $F_1 \rightarrow F_2$ возможны лишь в том случае, если оба уровня F_1 и F_2 принадлежат

22

-0,I4 -0,I3 5.IO a 22 1^{*} = a 2 1 6,6 2 đ 8. 8 ထို -8-3 a 11 _01.0. ,6.IO 0,32 0,97 2,4 2,7 ²1 Сечения σ_{1j} 58 II8,6 6,7 3,7 $^{\sigma}_{12}$ а 11 6,3 5,6 4,0 IO⁻³ IO⁻² 0,I 0,5 ЭВ 62

μ+

۵,

CHCTEMЫ

впд

параметры

Ы

Таблица 5

единицах 10-19 см2

Сечения приведены в

мультиплету с определенным значением J . Для системы d µ - + d возможны два случая: J=3/2 и J=1/2 , которые следует рассматри-22 5° 5,6 5,8 6,2 đ При J=3/2 матрица перехода: A = $\frac{1}{\sqrt{6}}$ (_ _). ŝ 0,86 0,86 0,83 0,86 63 (296) 12 ø Матричные элементы: C 4 4 3,6 3 для системы $K_{11}(\mathbf{R}) = \frac{M}{3} (\widetilde{W}_{g} + 5\widetilde{W}_{u}),$ 3/2 3_11 cm cer λ, 10⁻¹⁵ 2,0 3,2 $K_{12}(K) = K_{21}(K) = -\frac{\sqrt{5}}{3} M(\tilde{W}_g - \tilde{W}_u),$ 11 (30₆) моментом J $K_{22}(R) = \frac{M}{3} (5 \tilde{W}_{g} + \tilde{W}_{u}).$ 2,5 2,7 2,9 S S параметры ^аіј 2 2 ь Таблица 2,5°I0⁻² 4,8.IO⁻² 4,9.I0⁻² υ 8,6.IO⁻⁵ Коэффициенты начальных условий состоянии а 21 $c_{11} = -\frac{5}{12}; c_{12} = c_{21} = -\frac{\sqrt{5}}{12}; c_{22} = -\frac{1}{12}.$ (316) 7,2.I0⁻² 5,3,I0⁻² σ a 0,43 0,I5 Результаты расчетов приведены в таблице 6. 12 Сечения + + ь Отметим, что сечение перехвата σ_{12} по сравнению с аналогич--**μ**b ным сечением для процесса (16а) аномально мало. Это объясняется 0 11 I,7 одинаковым знаком длин рассеяния а и а , которые через пара-

метр а 12 определяют величину сечения перехвата.

24

При значении J = 1/2

вать отдельно.

$$A = \frac{\sqrt{2} \ 1}{\sqrt{3} \ -1} \ \sqrt{2},$$

(29_B)

единицах IO-I9 см2 А приведены Сечения

25

ЭВ

E9

10⁻²

0,5

H⁰

10⁻³

Таблица 7

Сечения σ_{ii} и параметры а для системы $d\mu^- + d$ в состоянии с моментом J = 1/2

Еэв	σ 11	σ_{12}	σ 2 1	σ 22	. 10 ⁻¹⁵ см ³ сел	_K -1 ^a 11	$\mathbf{a}_{12} = \mathbf{a}_{21}$	a 22
10-3	I , 9	0,71	I,4.I0 ⁻²	I,3	3,I	4,8	-I,I	4,0
10-2	2,0	0,24	4,I.I0 ⁻²	I,3	3,4	4,9	-I,I	4,0
0,I	2,3	0,12	7,8.10 ⁻²	I,5	5 , I	5,2	-I,I	4,3
0,5	2,6 9	,0.10-2	8,2.10 ⁻²	I,9	8,8	5,8	-I,I	4,9

Сечения приведены в единицах 10-19см2

Таблица 8

Сечения о

и параметры а для системы tµ-+t

Е эв σ_{11} σ_{12} σ_{21} a_{22} a 11 $a_{12} = a_{21}$ a22 I,7.10² 10⁻³ 13 0,7 2,9 -4,0 I,9 3,6 10-2 II 53 2,I 3,0 -3,7 3,6 I,9 0,I 5,7 17 5,I 3,8 -2,5 3,5 2,0 0,5 5,6 6,5 0,90 8,3 -0,87 2,9 3,0

27

Сечения приведены в единицах 10^{-20} см²

$$K_{11}(R) = \frac{2}{3} M(2\widetilde{W}_{g} + \widetilde{W}_{u}),$$

$$K_{12}(R) = K_{21}(R) = -\frac{2\sqrt{2}}{3} M(\widetilde{W}_{g} - \widetilde{W}_{u}),$$

$$K_{22}(R) = \frac{2}{3} M(\widetilde{W}_{g} + 2\widetilde{W}_{u}).$$

Коэффициенты с :

 $c_{11} = -\frac{1}{6}; c_{12} = c_{21} = -\frac{\sqrt{2}}{6}; c_{22} = -\frac{1}{3}.$ (31в)

(30в)

Результаты вычислений приведены в таблице 7.

<u>Реакция</u> tµ⁻ + t

Эта система во многом аналогична системе р µ + р и формально отличается от нее лишь значениями

$$M = 13.5 ; \frac{M_{\mu}}{m} = 1.02 ;$$

$$k_0 = 3.44 \cdot 10^{-2} ; k_1 = 7.00 \cdot 10^{-2} \sqrt{E} .$$
(28r)

Однако фактически оказалось, что при этом значении М условия a $_{IJ}$ \approx const справедливы лишь до энергий столкновения $\mathrm{E} \leq$ 10⁻³ эв. Результаты численных расчетов для этого процесса приведены в таблице 8.

26.

Обсуждение результатов

Результаты расчетов показывают, что вплоть до энергий столкновения E ≈ 1 эв при вычислении сечений перехода между уровнями сверхтонкой структуры мезоатомов водорода можно ограничиться чистым s -рассеянием. При этом существуют простые формулы (26), позволяющие выразить сечения через параметры низкоэнергетического рассеяния, вычисленные в данной работе. При малых энергиях столкновения, когда выполняется условие a₁₁ ≈ const, параметры a₁₁ просто выражаются по формулам (27) через длины рассеяния a₂ и a₂ , вычисленные в предыдушей работе авторов ^{/9/}. Конкретный вид этих формул совпадает с выражениями (30) после замен ²M^W_w → a₂, ²M^W_w → a₄.

Подстановка этих выражений в соотношение (26) приводит к формулам Герштейна $^{/6/}$ для сечений σ_{ij} . Область применимости этих формул определяется условием $a_{ij} \approx \text{const}$ и различна для разных сечений и процессов.

Для всех процессов симметричной перезарядки с учетом сверхтонкого расщепления в области энергий столкновения E < 0.5 эв хорошо выполняется условие $a_{12} = \text{const}$. Условие $a_{11} = \text{const}$ выполнено для процессов $p\mu^- + p$ и $d\mu^- + d$ вплоть до энергий столкновения $E \approx 10^{-2}$ эв, а для процесса $t\mu^- + t$ – до $E \approx 10^{-3}$ эв. Параметр a_{22} имеет реальный смысл только для процесса $d\mu^- + d$, для которого сверхтонкое расщепление ΔE достаточно мало. Для процессов $p\mu^- + p$ и $t\mu^- + t$ значение a_{22} , найденное по формуле (9), следует рассматривать лишь как формальный параметр, не имеющий особого физического смысла. Однако его использование удобно, поскольку в области энергий столкновения $E \leq 0.5$ эв $a_{22} \approx \text{const}$ (кроме процесса $p\mu^- + p$, см. таблицу 5). Вне указанной области энергий следует пользоваться общей формулой (8) для сечений σ_{11} . Для процессов Р μ +Р и особенно $d\mu$ +d область применимости таблицы 9 можно расширить, если воспользоваться разложением (33) для диагональных параметров a_{11} :

$$k_{i} t_{ii}^{-1} = -\frac{1}{a_{ii}} + \frac{3\pi M}{2a_{ii}^{2}} + \frac{3M}{a_{ii}} k_{i}^{2} l_{n} \frac{9Mk_{i}^{2}}{32}.$$
 (33)

Из этого разложения можно вычислить матричные элементы ^t ¹¹ для процесса $p\mu + p$, а также ^t ₁₁ и ^t₂₂ для процесса $d\mu + d$ и после подстановки их в формулу (8) получить аналитические выражения для сечений σ_{11} вплоть до энергий столкновения $E \approx 0,1$ эв x/2.

Константы перехвата

Константы перехвата $\lambda(J)$ и $\Lambda(J)$ в состояниях с определенным значением полного момента J отличаются от физически измеримых констант перехвата $\lambda = \lambda (F_1 \rightarrow F_2)$ на множитель, равный статистическому весу уровней со значением момента F_1 в смеси состояний с различными значениями полного момента J системы из трех час-

^{x/}Следует отметить, что при вычислении матричных элементов ^tii из уравнения (33) в него необходимо подставлять параметры ^a ii в единицах задачи $a_m = \frac{\hbar^2}{me^2}$, которые отличаются от табличных значений множителем m/M_{μ} . Если импульсы k і определены формулами (28), то сечения (8) получаются в единицах

 $a_m^2 = \left(\frac{M_{\mu}}{m}\right)^2 6,55 \cdot 10^{-22} c_M^2$.

тиц ^{x/}. Соответствующие формулы выписаны в работах Герштейна ^{/6/}. Для процессов $p \mu^- + p$, $t \mu^- + t$ и $d \mu^- + d$, соответственно, они имеют вид

$$\lambda = \lambda (1 \to 0) = \frac{1}{3} \lambda (J = 1/2), \qquad (34)$$

$$\lambda = \lambda \ (3/2 \to 1/2) = \frac{1}{3} \lambda \ (J = 3/2) + \frac{1}{6} \lambda \ (J = \frac{1}{2}). \tag{35}$$

Из таблицы 10 видно, что условие $\lambda = \text{const}$, которое обычно используется при анализе экспериментальных данных, выполняется только в узкой области энергий $\text{E} < 10^{-2}$ эв. При $\text{E} < 10^{-2}$ эв с учетом соотношений (27) и (26) выражения (34) и (35) переходят в формулы Герштейна ^{/8/}:

$$\lambda_{p} \approx \frac{\pi}{4} (a_{g} - a_{u})^{2} \frac{k_{0}}{M} \alpha c a_{\mu}^{2} c M^{3} c e \kappa^{-1},$$
 (36)

 $\lambda_{d} \approx \frac{\pi}{3} (a_{g} - a_{u})^{2} \frac{k_{0}}{M} a c a_{\mu}^{2} c M^{3} c e \kappa^{-1} .$ (7)

Значения, полученные Герштейном в работе $\binom{8}{}$, соответственно равны: $\lambda_{p} = 0.5 \cdot 10^{-13}$ и $\lambda_{d} = 1.7 \cdot 10^{-16}$.

х/ Например, для системы dµ⁻+d , J₁ = J₂=1 , S=1/2 общее число состояний равно 18, из них 6 состояний со значениями J=5/2 , F=3/2, 4+4 состояния со значениями J=3/2 , F=3/2 + F=1/2 , 2 + 2 состояния со значениями J=1/2 , F=3/2+F=1/2 . Формула (38) отсюда легко следует, если учесть, что общее число состояний с моментом J=3/2 равно 12. Конечно, соотношения (34) и (35) можно получить и другим способом, используя формализм коэффициентов Рака.

E, 22 12 21 11 рм⁻+р dµ⁻+d (J= ½) dµ⁻+d (J = ½) tm⁻+t -8,9 -0,3I -13,3 3,7 7,2 4,7 3,5 -I,I 5,5 3,I 3,5 5,I 5,5 3,I 0,86 -4,2 I,9 -6,5 2,4 3,6

низкоэнергетического рассеяния

Таблица 9

Параметры а

Таблица 10 Константы перехвата λ , 10⁻¹³ см³ сек⁻¹ между уровнями сверхтонкой структуры при разных энергиях столкновения

Еэв	pμ [−] +p	$d\mu + d$	$t\mu$ + t	
10-3	I,2	1,1.10 ⁻²	0,20	
10-2	I,2	1,2.10 ⁻²	0,20	
0,I	I,4	1,9.10 ⁻²	0,21	
0,5	I,7	3,2.10-2	0,22	
Герш- тейн/8/	0,5	I,7.10 ⁻³	. - .	

30

Упругое рассеяние в нижнем состоянии сверхтонкой

структуры

Схема расчета, принятая в данной работе, не приспособлена для вычисления сечений σ_{22} при энергиях столкновений E'< Δ E. Однако их можно оценить по формулам Герштейна ^{/8/}, используя значения длин рассеяния a_g и a_n , вычисленные в предыдущей работе авторов ^{/11/}. Применимость формул Герштейна при тепловых энергиях столкновения E' 10^{-2} эв обоснована результатами данной работы. Для процессов р μ + p, t μ + t и d μ + d соответственно эти формулы имеют вид $\sigma_{22} = \pi (a_r + 3a_u)^2$,

$$\sigma_{22} = \frac{4\pi}{3} \left[\left(\frac{a_{g} + 3a_{u}}{3} \right)^{2} + 2 \left(\frac{5a_{g} + a_{u}}{6} \right)^{2} \right] .$$
(38)

В таблицах 11 и 12 эти значения сравниваются с более ранними /8,9/ и результатами экспериментов /3-6/

Столкновения при больщих энергиях

При энергиях столкновения E > 1 эв необходимо учитывать вклад в сечения σ_{ij} парциальных волн с $L \neq 0$. При строгом рассмотрении задачи для этого необходимо учесть спин-орбитальное взаимодействие при движении ядер, что представляет значительные трудности. Однако, как показывает опыт прежних расчетов ^{/9/}, при сравнительно больших энергиях столкновений можно пренебречь как влиянием спин-орбитального взаимодействия, так и сверхтонким расшеплением уровней ΔE и учитывать лишь тождественность рассеивающихся частии. В этом слуТаблица 11 Сечение упругого рассеяния ри -мезоатомов в нижнем

состоянии сверхтонкой структуры

	Джелепов и др./4/	/6/ Alberigietal (/9/ Cohenetal.	Зельдович и Герштейн /1/	Данная работа
^o 22, 10 ⁻²¹ cm ²	İ 67 <u>+</u> 30	7,6 <u>+</u> 0,7	8,2	I,2	2,5

	•		Таблица 1	2			
	Сечение у	пругого расс	еяния dµ -	мез	воатомов в н	ижнем	
	$\sigma_{22} = \frac{1}{3} \sigma_{22} $ (1)	остоянии све $J = 1/2$) + $\frac{2}{3}\sigma_{22}$	рхтонкой стр (J=3/2)	рукт	уры		
	Джелепов и др./5/	/6/ Alberigi et al.	Джелепов др./4/]	Вельдович Герштейн /1/	/9/ Cohen et al.	Дан- ная рабола
σ ₂₂ ,10 ⁻¹⁹ cm ²	I,5 <u>+</u> 0,5	0,55 <u>+</u> 0,20	0 4,15 <u>+</u> 0,	,29	3,3	3,5	I,8
							· · · · ·

32

чае имеет смысл лишь полное симметризованное сечение $^{/10/}$ (в дальнейшем рассмотрим лишь процесс р μ + р)

 $\sigma_{\mathbf{s}}(\mathbf{k}) = \frac{1}{4} \sigma_{\mathbf{s},\mathbf{s}}(\mathbf{k}) + \frac{3}{4} \sigma_{\mathbf{s},\mathbf{s}}(\mathbf{k}), \qquad (39)$

где $\sigma_{s,s}(\mathbf{k})$ - сечение рассеяния в синглетном состоянии двух протонов, а $\sigma_{s,s}(\mathbf{k})$ - сечение в триплетном состоянии. При $\mathbf{E} > 10^3$ эв становится излишним также учет статистики протонов, поскольку в этой области $\sigma_s(\mathbf{k}) \approx \sigma(\mathbf{k})$, т.е. полному сечению без учета спинов частиц. На рис. 4 приведены графики соответствующих сечений. Интересно отметить наличие резонансов в реакциях такого типа, происхождение которых обсуждалось ранее

Заключение

Результаты данной работы позволяют определить точность и границы применимости более ранних вычислений. Используемый метод расчета допускает обобщение и уточнение. Главным образом, это касается учета высших состояний, которые не участвуют непосредственно в процессах перехвата, однако, вносят поправки $\approx 1/M^2$ в эффективные потенциалы задачи К ₁₁. Обычно этим влиянием можно пренебречь, однако, в резонансных ситуациях, когда велики длины рассеяния (например, a в процессе $p\mu$ +p), учет этих поправок может оказаться существенным.

Кроме физических приложений, проведенные расчеты представляют также методический интерес, как обоснование применимости метода В.С.С. при медленных столкновениях в системе трех тел, взаимодействующих по закону Кулона.

Литература

- 1. Я.Б. Зельдович, С.С. Герштейн. УФН, <u>71</u>, 581 (1960).
- С.С. Герштейн, В.И. Петрухин, Л.И. Пономарев, Ю.Д. Прокошкин. УФН, 3 (1969).
- 3. E.I.Bleser, E.W.Anderson, L.M.Lederman, S.L.Meyer, J.L.Rosen, J.E. Rothenberg, I.T.Wang. Phys. Rev. <u>132</u>, 2679 (1963).
- В.П. Джелепов, П.Ф. Ермолов, В.И. Москалев, В.В. Фильченков, М. Фримл. ЖЭТФ, <u>17</u>, 1243 (1964).
 - В.П. Джелепов, П.Ф. Ермолов, В.В. Фильченков. ЖЭТФ, 49, 393(1965).
- 5. В.П. Джелепов, П.Ф. Ермолов, В.И. Москалев, В.В. Фильченков. ЖЭТФ, <u>50</u>, 1235 (1966).
- A.Alberigi, Quaranta, A.Bertin, G.Matone, F.Palmonari,
 A.Placci, P.Dalpiatz, G.Torelli, E.Zavattini, Nuovo Cim. <u>47B</u>,72 (1967).
- 7. В.Б. Беляев, С.С. Герштейн, Б.Н. Захарьев, С.П. Ломнев. ЖЭТФ, <u>37</u>, 1652 (1959).
- 8. С.С. Герштейн. ЖЭТФ, 34, 463 (1958). ЖЭТФ, 40, 698 (1961).
- 9. S.Cohen, D.L. Judd, R.J. Riddel. Phys. Rev. 119, 386, 1960.
- 10. А.В. Матвеенко, Л.И. Пономарев. ЖЭТФ, 57, 2084 (1969).
- А.В. Матвеенко, Л.И. Пономарев. Препринт ОИЯИ Р4-4676, Дубна, 1969; ЖЭТФ, <u>58</u>, 1640, 1970.
- 12. Т.Ю. Ву, Т. Омура. Квантовая теория рассеяния, М., 1969, "Наука".
- 13. Л.И. Пономарев. ЖЭТФ, <u>52</u>, 1550 (1967).
- В.В. Бабиков. Метод фазовых функций в квантовой механике, Москва, 1968, изд. "Наука".
- А.В. Матвеенко, Л.И. Пономарев. Препринт ОИЯИ, Р4-4481 , Дубна, 1970.
- 16. Н.Ф. Мотт, Г.Ю. Мэсси. Теория атомных столкновений, Мир, 1969.

34

17.T.M. Peek. J. Chem. Phys. 43, 3004 (1965).

Sandia Corporation Report No. Sc-RR-65-67 (1965). 18. G.Hunter, B.F.Gray, H.O.Prichard. J.Chem. Phys. <u>45</u>, 3806 (1966),<u>146</u>, 2146 (1967), <u>46</u>, 2153 (1967).

Л.И. Пономарев, Т.П. Пузынина. Препринт ОИЯИ Р-5040, Дубна, 1967, 1970.

> Рукопись поступила в издательский отдел 13 апреля 1970 года.