900, 1970, 512, NG, c. 1175-1182 A-941 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ **Дубна** P4 - 5008

Г.Н. Афанасьев

AABODATOPHA TEOPETHUEKKOM

КЛАССИФИКАЦИЯ СОСТОЯНИЙ И ВЗАИМОДЕЙСТВИЙ

В КОЛЛЕКТИВНОЙ МОДЕЛИ ЯДРА

P4 - 5008

Г.Н. Афанасьев

8325/2 2

КЛАССИФИКАЦИЯ СОСТОЯНИЙ И ВЗАИМОДЕЙСТВИЙ В КОЛЛЕКТИВНОЙ МОДЕЛИ ЯДРА

Направлено в ЯФ

OSMOLEDNESS LUCENTYN EFMPLEX HOLDONODDON LONGDIACTEMA 1. Нашей целью является рассмотрение обобщенной модели ядра с точки зрения заложенных в ней свойств симметрии. Гамильтониан пятимерного сферически симметричного осциллятора имеет вид:

and the second

(1)

 $H_{0} \approx \omega_{0} b_{2\mu}^{+} b_{2\mu},$

 $\mu = (2, 1, 0, -1, -2).$

Здесь b⁺_{2µ}, b_{2µ} - операторы квадрупольных фононов. В дальнейшем мы выбираем фоковскую реализацию для операторов b :

$$\mathbf{b}_{2\mu}^{+} \equiv \mathbf{x}_{\mu}$$
, $\mathbf{b}_{2\mu} = \mathbf{p}_{\mu} \equiv \frac{\partial}{\partial \mathbf{x}_{\mu}}$

Наличие таких коммутирующих с гамильтонианом операторов приводит к тому, что п фононный уровень энергии имеет кратность вырождения равную (n+4), что совпадает с размерностью наиболее симметричного представления SU 5. Это означает, что состояния, принадлежащие п фононному уровню, преобразуются между собой при действии $x_{\mu}p_{\nu}$ по неприводимому представлению SU 5, имеющему только первый, отличный от нуля (и равный п) индекс. Включение взаимодействия между фононами приводит, как правило, к понижению симметрии гамильтониана и, следовательно, к снятию вырождения по квантовым. числам, описывающим базисные векторы SU . Взаимодействия, таким образом,

можно классифицировать смотря по тому, какие квантовые числа нарушаются этим взаимодействием.

Перейдем к построению базиса неприводимого представления SU₅.
 Одной из возможных является следующая схема редукции:

 $SU_5 \supset R_5 \supset R_3$.

Выясним, на какие представления распадается неприводимое представление SU₅ при ограничении матрицами пятимерных врашений и на какие представления распадается неприводимое представление R₅ при ограничении трехмерными вращениями. Характеры неприводимых, представлений SU₆, R₆ и R₇ равны соответственно ^{/2/}:

$$\chi_{n}(SU_{5}) = \Sigma \exp \left[i \left(n_{1} \phi_{1} + n_{2} \phi_{2} + n_{3} \phi_{3} + n_{4} \phi_{4} + n_{5} \phi_{5} \right) \right],$$

$$\phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} = 0,$$

$$n_{1} + n_{2} + n_{3} + n_{4} + n_{5} = n,$$

$$0 \le n_{1} \le n,$$
(2)

$$\chi_{\rm m}({\rm R}_{\rm 5}) = \frac{\sin\left({\rm m} + \frac{3}{2}\right)\phi_1^*\sin\frac{\phi_2}{2} - \sin\left({\rm m} + \frac{3}{2}\right)\phi_2^*\sin\frac{\phi_1}{2}}{\sin\frac{3}{2}\phi_1^*\sin\frac{\phi_2}{2} - \sin\frac{3}{2}\phi_2^*\sin\frac{\phi_1}{2}},$$
(3)

$$\chi_{\ell}(\mathbf{R}_{3}) \equiv \mathbf{T}_{\ell} = \frac{\sin(\ell + \frac{1}{2})\phi}{\sin\frac{\phi}{2}}.$$
(4)

Матрицы пятимерных вращений получаются из пятимерных унитарных, если положить:

$$\phi_1 = -\phi_3, \phi_2 = -\phi_4, \phi_5 = 0.$$
 (5)

Подставляя (5) в (2) и собирая коэффициенты при $\chi_m(R_5)$, находим:

$$\chi_{n} (SU_{5}) = \chi_{n} (R_{5}) + \chi_{n-2} (R_{5}) + \dots$$

Матрицы трехмерных вращений получаются из матриц пятимерных если положить:

$$\phi_1 = 2\phi_2 \equiv 2\phi \quad . \tag{6}$$

ς.

(8)

Подставляя (6) в (3), получаем:

$$\chi_{m}(\mathbf{R}_{5}) = \sum_{s=0}^{m} (r_{2s} - r_{-}),$$

где мы положили:

 $r_{s} = T_{s} + T_{s-3} + T_{s-6} + \dots$

Явный вид формул (7) дан в приложении 1.

3. Генераторы группы трехмерных вращений R_3 фиксируются требованием, чтобы операторы b_{μ} были неприводимыми тензорными операторами ранга 2 относительно R_3 :

$$T_0 = 2(x_2 p_2 - x_2 p_{-2}) + x_1 p_1 - x_{-1} p_{-1}$$

$$T_{f} = \sqrt{2} \left(x_{2} p_{1} + x_{-1} p_{-2} \right) + \sqrt{3} \left(x_{1} p_{0} + x_{0} p_{-1} \right),$$

$$T_{-1} = \sqrt{2} \left(x_{1} p_{2} + x_{-2} p_{-1} \right) + \sqrt{3} \left(x_{0} p_{1} + x_{-1} p_{0} \right).$$

Проиллюстрируем идею построения базиса для состояний с нулевым угловым моментом. Такие состояния должны быть скалярами относительно трехмерных вращений. Таким образом, приходим к задаче нахождения инвариантов трехмерной группы вращений. Согласно теореме Гильберта^{/2/} каждый такой инвариант может быть представлен в виде полинома от конечного числа базисных инвариантов; таковых оказывается два:

$$I_{2} = x_{0}^{3} + 2(x_{2}x_{-1} - x_{1}x_{-1}),$$

$$I_{3} = x_{0}^{3} - 3x_{0}(x_{1}x_{-1} + 2x_{2}x_{-2}) + 3\sqrt{\frac{3}{2}}(x_{2}x_{-1}^{2} + x_{-2}x_{-2}^{2}).$$

Инвариант степени n имеет вид:

$$| pq \rangle = (I_2)^p (I_3)^q 2p + 3q = n.$$
 (9)

|p,q[>] реализует функциональный базис для состояний с нулевым угловым моментом. В справедливости того, что |pq > действительно исчерпывают базисные инварианты (от пяти переменных) трехмерной группы вращений, можно убедиться, если заметить, что число целочисленных решений уравнения

совпадает с кратностью вырождения состояний с нулевым угловым моментом (см. приложение 1).

Аналогичные рассуждения для состояний с произвольным угловым моментом ℓ позволяют построить произвольное состояние SU₅. При этом мы ограничимся построением приведенных базисных функций (для которых магнитное квантовое число m равно своему максимальному значению, то есть ℓ). Состояния с произвольным m получаются приложением к приведенной функции достаточного числа раз оператора T_{-r} . Приведенные функции, описывающие n фононное состояние с орбитальным моментом ℓ , имеют вид:

а) для четных (

 $|pq \ell_n \rangle = (I_2)^p \cdot (I_3)^q \cdot (x_2) \cdot y$

 $\max(0, n - \ell) \le 2p + 3q \le n - \frac{\ell}{2},$

p,q > 0;

6

(10.1)

б) для нечетных L

$$|pq\ell n\rangle = (I_2)^p (I_3)^q (x_2)^{\ell-n+2p+3q} \cdot y$$

max (0,
$$n - \ell$$
) $\leq 2p + 3q \leq n - \frac{\ell + 3}{2}$.

$$y = \sqrt{3} x_1^2 - 2\sqrt{2} x_2 x_0, \qquad (10.2)$$

$$z = x \frac{3}{1} - \sqrt{6} x \frac{2}{2} x \frac{3}{4} x \frac{2}{0} + 2x \frac{2}{2} x \frac{2}{-1}$$

Таким образом, кроме квантовых чисел n , l , необходимо задать числа р , q , т.е. число скалярных фононных дублетов и триплетов.

4. Хотя базисные функции (9,10) полны и имеют ясный физический смысл, они неудобны с математической точки эрения. Напомним определение тензорного оператора ранга ℓ относительно группы трехмерных вращений. µ -ая компонента тензорного оператора удовлетворяет соотношениям:

 $[\mathbf{T}_{\mathbf{o}},\mathbf{f}_{\mu}] = \mu \mathbf{f}_{\mu},$

 $\begin{bmatrix} T_{1} \begin{bmatrix} T_{-1} & f_{\mu} \end{bmatrix} \end{bmatrix} + \begin{bmatrix} T_{-1} \begin{bmatrix} T_{1} & f_{\mu} \end{bmatrix} + \begin{bmatrix} T_{0} \begin{bmatrix} T_{0} & f_{\mu} \end{bmatrix} \end{bmatrix} = \ell(\ell+1) f_{\mu} , \quad (11)$ $\begin{bmatrix} T_{1} & f_{\rho} \end{bmatrix} = \begin{bmatrix} T_{-1} & f_{\rho} \end{bmatrix} = 0.$

Stores w

Практически поступают так: решают уравнение (11) для одной компоненты, например для f₀, а остальные получают коммутацией f₀ с T₁ и T₋₁, f₀ ищем в виде

$$\mathbf{f}_{0} = \boldsymbol{\phi} (\boldsymbol{\mu}) \mathbf{x}_{\mu} \mathbf{p}_{\mu} \mathbf{\mu}^{*}$$
(12)

Подставляя (12) в (11), получаем следующее уравнение для ϕ_{μ} :

$$\lfloor 12 - 2\mu^2 - \ell(\ell+1) \rfloor \phi(\mu) = (2 - \mu)(3 + \mu) \phi(\mu + 1) +$$

+ $(3-\mu)(2+\mu)\phi(\mu-1)$.

Отсюда следует:

$$\phi(\underline{+1}) = \begin{bmatrix} 1 - \frac{1}{4}\ell(\ell+1) & j \phi(\underline{+2}), \\ \phi(0) = \frac{(\ell+2)(\ell-1)(\ell-3)(\ell+4)}{6[4-\ell(\ell+1)]}\phi(\underline{+1}) \end{bmatrix}$$

Значениями $\ell = 0,1,2,3,4$ исчерпываются генераторы SU₅. Тензор нулевого ранга совпадает с С₁ = $x_{\mu} p_{\mu}$, т.е. с оператором Казимира первого порядка группы U₅. При $\ell = 1$ получаем генераторы группы углового момента T_µ. Явный вид тензорных операторов Q_µ (ранга 2), F₁($\ell = 3$) и H_µ($\ell = 4$) дан в приложении 2,

Собокупность операторов T_{μ} , F_{k} генерирует группу R_{5} . Естественно поэтому маркировать базис SU₅ следующими квантовыми числами: n - собственным значением C_{1} ; Λ - собственным значением $C_{2}(R_{5})$ - оператора Казимира второго порядка группы R_{5} ; ℓ , m - угловым моментом и его проекцией. Из приложения 1 следует, что внутри данного мультиплета R_{5} . состояния с данным ℓ встречаются несколько раз. Поэтому необходимо найти дополнительное квантовое число, снимающее вырождение по ℓ .

5. Заметим, что состояния (8) не инвариантны относительно вращений в пятимерном пространстве. Из (8), однако, можно составить собственную функцию С (R ,), равного:

$$C_{2}(R_{5}) = T^{2} + F^{2},$$

$$T^{2} = T_{0}(T_{0} + 1) + 2T_{-1}T_{1},$$

$$F^{2} = F^{2}_{0} + F_{0} + 2F_{-1}F_{1} + 10F_{-2}F_{2} + 10F_{-3}F_{3} + 6T_{0}.$$

Действуем C_2 на |q>: $C_2 |q> = 45 q(q+1) |q> -45 q(q-1) |q-2>.$

Ищем $\phi = \sum c(q)|q>$, такие, чтобы $C_2 \phi = \lambda \phi$. Этому можно удовлетворить, если для C(q) выполняется следующее рекуррентное соотношение:

$$(q+2) = \frac{45q(q+1)-\Lambda}{(q+1)(q+2)} e(q).$$

Условие обрыва ряда определяет собственные значения Л и коэффициенты с(q):

$$\lambda = 45 q_0(q_0 + 1),$$

$$c(q) = c_0 \prod_{s=1}^{q_0 - 2} \frac{(q+2s)(q+2s-1)}{(q-q_0 - 2 + 2s)(q+q_0 + 2s - 1)},$$

$$c_0 = \frac{1}{45} c(q_0).$$

Можно показать, что $q_0 = \frac{1}{b} \ell_0$, где ℓ_0 – максимальное эначение углового момента для данного представления R_5 . Имея скалярную приведенную функцию, легко построить функцию, отвечающую угловому моменту ℓ . Например, для $\ell_0 = 0 \pmod{3}$ имеем:

$$f_{2} = F_{0}F_{2} - \frac{1}{5}\sqrt{\frac{3}{2}} (F_{1}^{2} - T_{1}^{2}) - \frac{1}{\sqrt{2}}F_{-1}F_{3} - F_{2}$$

$$-\frac{1}{2}(\sqrt{3}T_{-1}F_{3} + T_{0}F_{2} + \frac{1}{5}T_{1}F_{1}),$$

$$f_{4} = 2\sqrt{3}F_{1}F_{3} + 5F_{2}^{2} - 2\sqrt{2}T_{1}F_{3}.$$

При этом функции с одинаковым ω', ℓ и различными р, q оказываются линейно зависимыми.

6. Включим взаимодействие между фононами. При этом мы ограничимся сферически симметричными двухчастичными, не нарушающими эрмитовости гамильтониана и сохраняющими число фононов. Самое общее взаимодействие такого типа имеет вид

$$\mathbf{V} = \sum_{\mathbf{L}M} \mathbf{G}_{\mathbf{L}} [\mathbf{x} \mathbf{x}]_{\mathbf{M}}^{\mathbf{L}} [\mathbf{p} \mathbf{p}]_{\mathbf{M}}^{\mathbf{L}}$$

L принимает значение 0,2,4. Переходя в гамильтониане H = H₀ + V в канал частица-дырка, получаем:

$$H = (\omega - f_0)C_1 + \frac{1}{5}f_0C_1^2 + \frac{1}{10}f_1T^2 + \frac{1}{10}f_2Q^2 + \frac{1}{10}f_3F^2 + \frac{1}{70}f_4H^2.$$
(13)

С₁, T^2 и F^2 были определены ранее. Операторы Q^2 и H^2 равны:

$$Q^{2} = Q_{0}^{2} + 2Q_{1}Q_{1} + 4Q_{2}Q_{2} + \frac{21}{5}T_{0} + \frac{8}{5}F_{0}$$

$$II^{2} = II_{0}^{2} + 10H_{1}II_{1} + 10H_{2}H_{2} + 70H_{3}H_{3}$$

$$+ 140H_{-4}H_{4} + 70T_{0} - 15F_{0}.$$

Константы взаимодействия в кана ле частица-дырка связаны с константами в канале частица-частица:

$$f_{0} = \frac{1}{5} G_{0} + G_{2} + \frac{9}{5} G_{4},$$

$$f_{1} = \frac{1}{5} G_{0} + \frac{1}{2} G_{2} - \frac{6}{5} G_{4},$$

$$f_{2} = \frac{1}{5} G_{0} - \frac{3}{14} G_{2} + \frac{18}{35} G_{4},$$

$$f_{3} = \frac{1}{5} G_{0} - \frac{4}{7} G_{2} - \frac{9}{70} G_{4},$$

$$f_{4} = \frac{1}{5} G_{0} + \frac{2}{7} G_{2} + \frac{1}{70} G_{4}.$$

Гамильтониан (13) составлен из генераторов группы U₅ . Квадратичный оператор Казимира группы SU₅ равен:

$$C_{2}(SU_{5}) = 7(T^{2} + F^{2}) + 5Q^{2} + H^{2} = 56C_{1}(C_{1} + 5)$$

Находя H^2 из (13), F^2 из $C_2(R_5)$ и подставляя их в (13), получаем: $H = (\omega - f_0 + 4f_4)C_1 + \frac{1}{5}(f_0 + 4f_4)C_1^2 + \frac{1}{10}(f_3 - f_4)C_2(R_5)$ $- \frac{f_1 - f_3}{10}T^2 + \frac{f_2 - f_4}{14}Q^2.$

При $f_2 = f_4$ (или, что то же самое, $G_2 = G_4$) точное собственное значение гамильтониана равно:

$$(\omega - f_0 + 4f_4)n + \frac{1}{5}(f_0 + 4f_4)n^2 + \frac{1}{8}(f_3 - f_4) \ell_0(\ell_0 + 6).$$

Ротационной полосы в этом случае не возникает. При $G_2 \neq G_4$ ротационная полоса появляется, но ℓ_0 , определяющее неприводимое представление R_5 , перестает быть хорошим квантовым числом. Заметим, что получаемая таким образом ротационная полоса оказывается конечной. По сути дела, она есть следствие того, что полный гамильтониан имеет низшую степень симметрии (R_3) по сравнению с исходным гамильтонианом (SU₅).

7. С другой стороны, в работе /3/ из анализа экспериментальных ланных был сделан вывод, что ротационная полоса в ядрах формируется таким образом, что никакие два члена ротационной полосы не принадлежат одному и тому же мультиплету SU . Например, вращательная полоса основного состояния формируется из 0^+ (n=0), 2^+ (n=1), 4^+ (n=2)..; β - полоса состоит из 0⁺(n=2), 2⁺(n=3), 4⁺(n=4) ...; у - полоса (K=2) состоит из 2⁺(n=2), 3⁺(n=3), 4⁺(n=4)... и т.д. Посмотрим, нельзя ли организовать состояния внутри такой ротационной полосы в мультиплет некоторой группы Г. . Поскольку вращательная полоска содержит все значения (для В -полосы, - только четные) угловых моментов, начиная с некоторого ℓ_{\min} , то группа Γ_1 некомпактна. Далее, Γ_1 является подгруппой Г , описывающей все ротационные мультиплеты. Заметим, что начальные и конечные звенья этой цепочки определяются почти однозначно: в самом деле, группа трехмерных вращений состоит из генераторов T_0, T_1 , T_{-1} . Вид T_0, T_1, T_{-1} однозначно фиксируется требованием, чтобы x_{μ} , р были тензорными операторами второго ранга. С другой стороны, Г определяется как некомпактное расширение SU, , содержащее каждый мультиплет SU, точно один раз. Таких расширений два /4/: SU (5,1) и Sp (5,5). Некомпактные генераторы равны:

a)
$$\pi \pi \pi$$
 SU (5,1)
 $\sqrt{C_1 - 1} \times \sqrt{C_1} p_{\nu}$
6) $\pi \pi \pi Sp$ (5,5)

Заметим, что Γ_1 также определяется однозначно: единственной подгруппой, наиболее симметричное представление которой содержит только четные угловые моменты для β -полосы и все моменты для γ -полосы, является GL(3R) /5/. Легко убедиться, что из T₀, T₁, T₋₁, определенных соотношениями (8), и выписанных некомпактных генераторов невозможно построить GL(3R). Это означает, что не существует промежуточной группы Γ_1 , которая описала бы все состояния только одной вращательной полосы.

8. Заметим, что, Sp(5,5) содержит подгруппу, являющуюся прямым произведением R₅ и SO(2,1) ; R₅ генерируется операторами T_µ, F_k ; генераторы SO (2,1) равны: $S_0 = \frac{1}{2} (C_1 + \frac{5}{2}), S_1 = \frac{1}{2\sqrt{2}} I_0(x), S_{-1} = \frac{1}{2\sqrt{2}} I_0(p).$

Таким образом, состояния Sp (5,5) разбиваются на некомпактные мультиплеты SO (2,1) × R₅ . Каждый мультиплет маркируется одним квантовым числом, которое равно n₀ (минимальному собственному значению C₁ в данном мультиплете SO(2,1)), и в то же самое время равно половине максимального момента, содержащегося в данном представлении R₅ (n₀ = $\frac{1}{2} \ell_{max} = \frac{1}{2} \ell_0$). Поясним, почему наряду с мультиплетом ($\ell_0 \ell_0$) не встречаются мультиплеты ($\ell_0 + 2, \ell_0$), ($\ell_0 + 4, \ell_0$) и т.д. Это связано с тем, что для данного значения числа п мультиплет R₅ встречается точно один раз. Появление мультиплета ($\ell_0 + 2, \ell_0$) привело бы, например, к тому, что имелось бы два мультиплета R₅ с одинаковыми (n, ℓ_0) и разными n₀.

Резюмируя, можно сказать, что' SU₅ может быть вложено в некомпактную группу Sp (5,5). При этом каждое представление SU₅ встречается точно один раз. Sp (5,5) может быть разложена по представлениям некомпактной группы SO (2,1) × R₅. При этом встречаются только мультиплеты вида (ℓ_0 , ℓ_0) и только по одному разу. Каж-, дый мультиплет SO (2,1) × R₅ может быть, в свою очередь, разложен как по мультиплетам SO (2,1), так и по мультиплетам R₅. Например, ℓ_0 мультиплет SO (2,1) содержит собственные значения C₁ (т.е. оператора числа фононов), равные: n = $\frac{1}{2}\ell_0$, $\frac{1}{2}\ell_0+2$, $\frac{1}{2}\ell_0+4$...

Разложение ℓ_0 мультиплета R_5 дано в приложении 1. На рис. 1 схематически показано разложение Sp (5,5) как на мультиплеты SU₅, так и на мультиплеты SO (2,1)× R_5 . Ясно, что оба разложения полностью эквивалентны, но разложение на мультиплеты SU₅ лучше приспособлено для описания вибрационных свойств ядер (чему соответствует на рисунке "готовая" вибрационная полоса), тогда как разложение по мультиплетам SO (2,1)× R_5 более удобно при описании ротационных свойств ядер (соответственно готовая ротационная полоса). Если гамильтониан инвариантен относительно SU₅, то спектр – чисто вибрационный, т.к. оператор Казимира C₁ – единственный оператор, инвариантный

12

относительно всех преобразований SU₅. Если гамильтониан инвариантен относительно R₅×SO(2,1), то спектр определяется комбинаций операторов Казимира R₅ и SO (2,1) и имеет вращательный характер. Взаимодействия, реализуемые в действительности, являются, по-видимому, промежуточными между этими двумя случаями. Разумеется, мы неявно предположили, что Sp (5,5) является группой неинвариантности невозмущенного гамильтониана.

Позволим себе в заключение спекуляцию. Глядя на рис. 2 заимствованный из статьи Р. Шелайна ^{/3/}, трудно отделаться от мысли, что переход от сферических ядер района V к у -нестабильным ядрам проис-, ходит, если гамильтониан перестает быть инвариантным относительно SU₅, но сохраняет инвариантность относительно R_5 (происходит расщепление на мультиплеты R_5 , сами же. мультиплеты R_5 сохраняют свою целостность). При переходе в район вращений снимается инвариантность относительно R_5 .

Автор считает своим приятным долгом поблагодарить В.Г. Соловьева за постоянное внимание и интерес к работе, Р. Джолоса - за обсуждение. 3+ 2+ n_B=0 n_ö=1 K=2 0.1.2.3. 0,2,2,4, 0.2.2.4 2+ 0,2,3, 0.2.3. ก้อะ0 K=0 0,2,4+ 0,2,4+ .nozQ 2+ SPHERICAL NUCLEI °8*0 na=0,n_B=0 ng*0, ng*0 SPHERICAL ROTATIONAL NUCLET & UNSTABLE NUCLEI NUCLEI I "B UNSTABLE" NUCLEI I

Приложение 1

Ниже приведены кратности вырождения по угловому моменту для наиболее симметричного представления R₅, характеризуемого одним индексом п . В первой колонке даны угловые моменты, во второй – кратность вырождения, в третьей – пределы изменения. Величина m означает, что β= m (mod3).

$\frac{\mathbf{n}=6\lambda}{2}$, m = 0	
T(6s)+T(6s+3)	s + 1 ′	$0 \le s \le \lambda - 1$
Т. (6л)	·λ+1	ана стана стана
T(6s) + T(6s - 3)	$2\lambda + 1 - s$	$\lambda + 1 \leq s \leq 2 \lambda$
$n = 6\lambda$, m ≠1	
T(6s+1) + T(6s-2)	s .	$0 \leq s \leq \lambda - 1$
Τ(6λ-2)	λ	· · · · · · · · · · · · · · · · · · ·
T(6s+1)+T(6s+4)	2λ-s	$\lambda \leq s \leq 2 \lambda$
$\mathbf{n} = 6\lambda$, m = 2	
T(6s+2) + T(6s+5)	S	$0 \leq s \leq \lambda - 1$
Τ(6λ+2)	λ.	
T(6s+2) + T(6s-1)	2λ – s	$\lambda+1 \leq s \leq 2 \lambda$
<u>n = 6</u>	$\lambda + 1, m = 0$	
T(6s) + T(6s+3)	S	$0 \leq s \leq \lambda - 1$
T(z)	2	
1(6^)	^	attanta da serie de la serie

			· . · ·	
	$n=6\lambda+1,$	m = 1		
andaria Antonio de Carlos de Carlos Alexandos de Carlos de	14 1			3
T(6s+1)+T(6s	_2) '	S		$0 \le s \le \lambda - 1$
$T(6\lambda - 2)$		λ		<u> </u>
T(6s+1)+T(6s	+4)	$2\lambda - s$		$\lambda \leq s \leq 2 \lambda$
	$n = 6\lambda + 1$, m = 2		
T(6s+2) + T(6s+	5)	s + l	$\alpha \in \sum_{i=1}^{n-1} (i)$	$0 \le s \le \lambda - 1$
$T(6\lambda + 2)$		λ + 1		
T(6s+2)+T(6s	1)	$2\lambda + 1 - s$		$\lambda + 1 \leq s \leq 2 \lambda$
	$n = 6\lambda + 2$, m = 0		

T(6 s) + T(6 s + 3)	5	$0 \le s \le \lambda -1$
Τ(6λ)	λ	
T(6s)+T(6s-3)	$2\lambda + 1 - s$	$\lambda + 1 \leq s \leq 2 \lambda$
<u>n =6</u>	A + 2, $m = 1$	

 $T(6s+1) + T(6s-2) \qquad s \qquad 0 \le s \le \lambda$ $T(6\lambda+4) \qquad \lambda+1 \qquad --- T(6s+1) + T(6s+4) \qquad 2\lambda+1-s \qquad \lambda+1 \le s \le 2\lambda$ $\frac{n = 6\lambda+2, m = 2}{T(6s+2) + T(6s+5) \qquad s+1} \qquad 0 \le s \le \lambda-1$ $T(6\lambda+2) \qquad \lambda+1 \qquad ----$

T (6 λ + 2) λ + 1T (6 s + 2) + T (6s - 1) 2λ + 1 - s λ + 1 \leq s \leq 2 λ

 $n = 6 \cdot \lambda + 3, m = 0$

 $\mathcal{J} \in \mathcal{J}$

Г(бз)+Т(бз+3)	s +1	$0 < s < \lambda - 1$
Τ(6λ)	λ+1	
T(6s) + T(6s-3)	$2\lambda + 2 - s$	$\lambda + 1 \leq s \leq 2\lambda + 1$
$\underline{\mathbf{n}} = 6\mathbf{\lambda} + 3$, m = 1	
T(6 + 1) + T(6 - 2)	S.	0 <u>≤</u> s ≤λ
Τ(6λ+4)	λ+1	
T(6s+1)+T(6s+4)	$2\lambda + 1 - s$	$\lambda + 1 \leq s \leq 2\lambda + 1$
$\mathbf{n}=6\lambda+3$, m = 2	
T(6s+2) + T(6s+5)	S	$0 \le s \le \lambda - 1$
Τ(6λ+2)	λ	
T(6s+2) + T(6s-1)	$2\lambda + 1 - s$	$\lambda + 1 \leq s \leq 2\lambda + 1$
$\mathbf{n} = 6\lambda + $	4, m = 0	
T(6s) + T (6s+3)	5 8	$0 \leq s < \lambda$
Τ(6λ+ 6)	λ+1	
T(6s)+T(6s-3)	$2\Lambda + 2 - s$	$\lambda + 1 \leq s \leq 2\lambda + 1$
$\underline{n=6\lambda+4}$	1, m = l	
T(6s+1) + T(6s-2)	S	0≤ s <i>≤</i> λ
Т (6Л+4)	λ + 1	
T(6s+1)+T(6s+4)	$2\lambda + 2-s$	$\lambda + 1 \leq s \leq 2\lambda + 1$

<u>n_=6λ+</u>	4 , m = 2	
(6s+2) + T(6s+5)	S	$0 \leq s \leq \lambda - 1$
Γ(6λ+2)	λ+1	
Γ(6s+2) + Γ (6s – 1)	$2\lambda + 2 - s$	$\lambda + 1 \leq s \leq 2 \lambda + 1$
$n = 6\lambda + 1$	5, $m = 0$	
T (6s) + T (6 s + 3)	S	$0 \leq s \leq \lambda$
Τ(6λ+6)	$\lambda + 1$	and the second
T(6s) + T(6s - 3)	$2\lambda + 2-s$	$\lambda + 2 \leq s \leq 2\lambda + 1$
$n = 6 \lambda$	+5, m = 1	
		an a
T(6s + 1) + T(6s - 2)	S	$0 \le s \le \lambda$
Τ (6λ+4)	λ.	$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$
T(6s+1)+T(6s+4)	2λ+2-s	$\lambda + 1 \leq s \leq 2 \lambda + 1$
()	. 5 9	
$\mathbf{n} = 0\mathbf{\lambda}$	+ 0, m = 2	
T(6s+2)+T(6s+5)	s + 1	$0 \leq s \leq \lambda - 1$
Τ(6λ+2)	λ + 1	· · · · · · · · · · · · · · · · · · ·
T(6s+2) + T(6s-1)	$2\lambda + 2 - s$	$\lambda + 1 \leq s \leq 2\lambda + 1$
*		
	- 	
		and the second

Πρωτογομία 2	
Компактные генераторы SU ₅ :	
$T_{n} = 2(x_{2} P_{n} - x_{2} P_{-2}) + x_{1} P_{1} - x_{-1} P_{-1}$	
$T_{1} = \sqrt{2} (x_{1} p_{1} + x_{2} p_{2}) + \sqrt{3} (x_{1} p_{2} + x_{2} p_{1})$	
$\mathbf{T} = \frac{1}{2} \mathbf{T} = \frac{1}{2} \mathbf{T}$	
$F_0 = x_2 p_2 - x_{-2} p_{-2} - 2(x_1 p_1 - x_{-1} p_{-1})$	
$F_1 = \sqrt{2} (x_1 p_0 + x_0 p_{-1}) - \sqrt{3} (x_2 p_1 + x_{-1} p_{-2})$	
$F_{0} = x_{2} P_{0} - x_{0} P_{-2}$	
$F_3 = x_1 p_{-2} + x_2 p_{-1}$	
$\mathbf{F}_{-\mu}^{*} = (\mathbf{F}_{\mu})^{+}$	
(1 = 2(x - p + x - p) - x - p - x - p - 2x - p)	
$x_0 = x_1^2 x_2^2 = x_2^2 - x_2^2 - x_1^2 x_1^2 + x_1^2 - x_1^2 = x_1^2 - x_$	
$Q_{1} = -\sqrt{6} (x_{2}p_{1} - x_{-1}p_{-2}) - x_{1}p_{0} + x_{0}p_{-1}$	
$Q_{-} = \sqrt{2} (x_{-} p_{-} + x_{-} p_{-}) + \sqrt{3} x_{-} p_{-}$	
2 2 0 0 -2 1 -1 -	
$\mathbf{Q}_{-\mu} = (\mathbf{Q}_{\mu})^+$	
$H_{0} = x_{2}p_{2} + x_{-2}p_{-2} - 4(x_{1}p_{1} + x_{-1}p_{-1}) + 6x_{0}p_{0}$	
$H_{1} = \sqrt{6} \left(x_{1} p_{0} - x_{0} p_{-1} \right) - x_{2} p_{1} + x_{-1} p_{-2}$	
$H_{2} = \sqrt{3} (x_{2}p_{0} + x_{0}p_{-2}) - 2\sqrt{2} x_{1}p_{-1}$	
$H_3 = x_1 P_{-2} - x_2 P_{-1}$	
$H_4 = x_2 p_{-2}$ $H = (H)^+$	
$I_{0}(x) = x_{0}^{2} + 2(x_{1}x_{2} - x_{1}x_{1})$	
$I_{0}(p) = p_{0}^{2} + 2(p_{2}p_{-2} - p_{1}p_{-1})$	

- Литература
- 1. V. Bargmann, Comm. Pure Appl. Math., 14, 187 (1961).
- 2. Г. Вейль. Классические группы, их инварианты и представления, ИЛ, 1947.
- 3. R.K. Sheline, Revs.Mod.Phys., 32, 1 (1960).
- 4. R.C. Hwa, J. Nuyts. Phys.Rev., 145, 1188 (1965).
- 5. N. Mukunda, L.O' Raifeartaigh, E.C.G. Sudarshan. Syracuse Preprint NYO-3399 - 30 (1966).

Рукопись поступила в издательский отдел 1 апреля 1970 года.