<u>C341.a</u> 10/x-69 B-185 СООБШЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P4 - 4742

В.А.Вартанян, М.А.Жусупов, Р.А.Эрамжян

1.1

РАСПАД СОСТОЯНИЙ ГИГАНТСКОГО РЕЗОНАНСА

в ядре ¹⁶ о

1969

HNHEH

ААБФРАТФРИЯ ТЕФРЕТИЧЕСКОЙ (

P4 - 4742

В.А.Вартанян, М.А.Жусупов, Р.А.Эрамжян

РАСПАД СОСТОЯНИЙ ГИГАНТСКОГО РЕЗОНАНСА

в ядре ¹⁶0

8056/2 yp

Изучение фотоядерных реакций ¹⁶ 0 (γ , n)¹⁵0 и ¹⁶ 0 (γ , p)¹⁵ N, а также процесса захвата μ -мезона по каналу ¹⁶ 0 (μ , ν n) ¹⁵ N представляет особенный интерес. Эти каналы являются основными. В результате распада состояний гигантского резонанса ядра ¹⁵ N и ¹⁵ 0 могут образовываться как в основном, так и в возбужденном состоянии. Вероятность образования этих ядер в различных состояниях наряду с прямыми данными о спектре нуклонов дает важную информацию о структуре состояний гигантского резонанса.

Sec. 1

Расчеты, основанные на частично-дырочном подходе, описывают главные максимумы в кривой поглощения. При расчете ветвей распада учитывались только два дырочных состояния ядер ¹⁵ N и ¹⁵ O – основное J^{π} ... = 1/2 и возбужденное Ј[#] = 3/2. Теория, в целом, описывает соотношение между ветвями распада на эти уровни. Однако наряду с этими уровнями имеется /1,2/ большое число их с противоположной четностью. (см. рисунок). Структура таких состояний более сложная. Это уровни с конфигурацией две дырки - одна частица ^{/3,4/}: p⁻²1d и p⁻²2 s . В част-J^π =1/2⁺ в основном образуется из состояний ности, первый уровень второй конфигурации, а расположенный рядом J [#] =5/2⁺ первой. Очевидно, что распад частично-дырочных состояний с испусканием нуклона из внешней 2 в или 1 d оболочки на уровни положительной четности ядер ¹⁵ N и ¹⁵ О полностью запрещен. Однако экспериментальные данные показывают (табл. 1 и 2), что приблизительно в 20% случаев при фотоядерных реакциях /5-7/и в 15% - при и -захвате /8,9/ возбуждаются эти состояния.

3

¹⁵N

Схема связанных состояний ядра¹⁵ N.

Как уже указывалось, при расчете ветвей распада учитывался лет лишь внешнего нуклона. Однако наряду с таким процессом мо идти и другой, когда вылетает внутренний 1 р нуклон, который не нимал непосредственного участия в элементарном акте. В резульиз исходного частично-дырочного состояния образуется состояние до него ядра с положительной четностью:

$$|p^{-1}\ell; {}^{2T+1, 2S+1}L, J > \rightarrow |p^{-2} {}^{2T'+1, 2S'+1}L', \ell ; {}^{2T_0+1, 2S_0+1}L_0, J_0' > + + |p > .$$

В данной работе исследован этот канал.

Расчет проведен в рамках частично-дырочного подхода. Более сл ные возбуждения в процессе поглощения не учитывались. Состояния польного резонанса описывались волновыми функциями Эллиотта и Флаз са /10/, полученными в результате диагонализации. Функции положите ной четности брались из работы /4/. Расчет каналов распада прове на основе R -матричной теории путем вычисления парциальных ши Γ_{λ} :

$$\Gamma_{\lambda} = 2k P_{\lambda} \gamma_{\lambda}^2$$

где $\gamma_{\lambda}^2 = \frac{3}{2} - \frac{\hbar^2}{\mu a} S \Theta_0^2$ есть приведенная ширина уровня, $S = 2 \sum_{z} \beta_{z}^2$ спектроскопический фактор и Θ_0^2 - одночастичная приведенная шири в безразмерных единицах. Суммирование ведется по спину канала В случае распада по каналу (1)

 β_{z} (J,E \rightarrow J₀,E₀) = <T₀ T_{z0} 1/2 - 1/2 : T.T_z > ×

× Σ (-1)^{L+S+T+L₀+S₀+T₀ u(1L'L ℓ :1L₀) u(1/2S'S 1/2:1/2S₀) u(1/2T'T 1/2:1/2}

$$\sqrt{\frac{(2T'+1)(2S+1)(2L+1)}{12}}_{12} \left\{ (-1) \right\}_{u}^{S_{0}-S+J-J_{0}} u(L_{0}S_{0}Z 1/2 : J_{0}S) u(1L_{0}JS : LZ)$$

 $\times \alpha_1$ (T S L) α_2 (T'S'L'; T₀ S₀ L₀),

где ^аі и ^а₂ - коэффициенты разложения соответствующих волновых функций по базисным.

Результаты расчетов приведены в табл. 1 и 2. Как следует из данных этих таблиц, расхождение теории с экспериментом остается эначительным в случае переходов на уровни положительной четности. Что же касается переходов на дырочные уровни ядер¹⁵ N и ¹⁵ O, то более точные расчеты /11-13/, в которых непосредственно учитывался непрерывный спектр и связь каналов, исправляют результаты, полученные в стандартном диагонализационном подходе, и приводят к хорошему согласию с экспериментом. Однако при этом возникают трудности описания распадов на уровни положительной четности.

Данные, приведенные в табл. 1 и 2, показывают, что для описания тонкой структуры гигантского резонанса необходимо учесть детали структуры как основного состояния ядра ¹⁶ 0, так и состояний гигантского резонанса.

Известно /14/, что в основное состояние ядра ¹⁶ 0 около 20% дают вклад конфигурации типа две частицы – две дырки. В результате прямого процесса поглощения γ -кванта или μ -мезона внешним нуклоном в таких конфигурациях будут образовываться состояния ¹⁵ N и ¹⁵ O с положительной четностью.

К возбуждению уровней положительной четности в ¹⁵ N и. ¹⁵ O также будет приводить распад состояний квадрупольного резонанса в ¹⁶O в случае фотопоглошения и состояний, образовавшихся в результате разрешенных переходов и переходов второго запрета в случае μ -захвата на ядре ¹⁶O. Доля таких возбуждений оценивается Фолди и Валецка/15/ в 29% от полной вероятности μ -захвата. Непосредственный расчет /16/, основанный на частично-дырочном подходе /17/, дает несколько меньшее значение. Отметим, что по интересующему нас каналу распад будет идти только за счет компонент две частицы- две дырки. К сожалению, эти компоненты в расчете /17/ не учитывались. Поэтому скорость выхода ядра ¹⁵ N в состояниях с положительной четностью оказалась в /16/ равной нулю.

Таким образом, учет двух указанных механизмов приведет к увеличению выхода ядер ¹⁶ N и ¹⁵ О в состояниях с положительной четностью.

6

Однако , по-видимому, нужны количественные оценки этой ветви распада.

Литература

2.10

- 1. G.W.Phillips, F.C.Young, J.B.Marion. Phys.Rev., <u>159</u>, 891 (1967).
- 2.E.K.Warburton, J.W.Olness, D.E.Alburger. Phys.Rev., <u>140</u>, B1202 (1965).
- 3. E.C.Halbert, J.B.French, Phys.Rev., <u>105</u>, 1563 (1957).
- 4. М.А. Жусупов, В.В. Карапетян, Р.А. Эрамжян. Известия АН СССР, серия физ., <u>32</u>, 332 (1968).
- 5. J.T.Caldwell, S.C.Fultz, R.L.Bramblett. Phys.Rev.Letters, <u>19</u>, 447 (1967).
- 6. H.Ullrich, H.Krauth. Nucl.Phys., <u>A123,</u> 641 (1969).
- 7.V.P.Denisov, A.P.Komar, L.A.Kultchitsky. Nucl.Phys., <u>A113</u>, 289 (1968).
- 8. S.N.Kaplan, R.V.Pyle, L.E.Temple, G.F.Valby. Phys.Rev. Letters, 22, 795 (1969).
- Ю.Г. Будяшов, В.Г. Зинов, А.Д. Конин, С.В. Медведь, А.И. Мухин,
 Е.Б. Озеров, А.М. Чатрчян, Р.А. Эрамжян. Препринт ОИЯИ Р15-4745,
 Дубна, 1969.
- 10. J.P.Elliott, B.H.Flowers. Proc.Roy.Soc,A272, 57 (1957).
- 11. V.V.Balashov, G.Ya.Korenman, V.L.Korotkih, V.N.Fetisov. Nucl.Phys., B1, 158 (1967).
- 12. B.Buck, A.D.Hill. Nucl. Phys. <u>A95</u>, 271 (1967).
- 13. N.M.Kabachnik, V.L.Korotkih, H.J.Unger. Nucl. Phys., <u>A103</u>, 450 (1967).
- 14. G.E.Brown, A.M.Green. Nucl. Phys., 75, 401 (1966).
- 15. L.L.Foldy, J.D.Walecka. Nuovo Cim., <u>34</u>, 1026 (1964).
- 16, R.Raphael, H.Überall, C.Werntz. Phys.Lett., 24B, 15 (1967).
- 17. B.M. Spicer, J.M. Eisenberg. Nucl. Phys., <u>63</u>, 520 (1965).

Рукопись поступила в издательский отдел

10 октября 1969 года.

Таблица І

Сечение образования ядер ¹⁵ N и ¹⁵ O в результате поглощения у -- квантов ядром ¹⁵ O в интервале энергий до 27 Мэв

Спины уровней ядер ¹⁵ N И ¹⁵ О	/5/	Теория		
	эксперимент -/			
		Диагонализаци- онный метод	С учетом связи каналов/13/	
I/2 ⁻	50,9	29,6	≈ 50	
I/2 ⁺ , 5/2 ⁺	7,0	I, 6	en e	
3/2-	26,4	68,0	≈ 50	
3/2+	8,5			
Остальные уровни	7,2	0,8		

Спины уровней ядра ^{ва} N	=	•	Λ _μ			
	Эксперимент ^X /		Теория			
	в IO ⁴ сек ^{-I} в %	в %	Диагонализационный метод Сучетом связи каналов /II/			
		в IO ⁴ сек ⁻¹	в %	в 10 ⁴ сек ⁻¹	в %	
3/2	2,50±0,23	25	5,27	45 , 6	2,6	30
	2,01 <u>+</u> 0,50					
1/2	4,92	60	6,09	52,7	6,2	70
	5,30					
Уровни положи- тельной четности I,39±	I,28±0,23	15	0,19	I,7	-	: <u> </u>
	I,39 <u>+</u> 0,46					-
Полная скорость реакции с выле- том нейтрона	8,7	. ,	II,55		8,8	